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Abstract: The paper deals with the problem of monoaxial attitude stabilization
of a rigid body. The possibility of implementing such a control system in which
the restoring torque tends to zero as time increases is studied. With the aid of the
Lyapunov direct method and the differential inequalities theory, conditions under
which an equilibrium position of the body is stable with respect to all variables as
well as with respect to a part of variables are derived. The results of a numerical
modeling are presented to demonstrate the effectiveness of the proposed approaches.
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1 Introduction

In problems of a rigid body attitude control, restoring torques are usually the basis
of control system functioning. However, attitude stabilization of a body is impossible
without damping torques ensuring suppression of a body oscillations in a neighborhood
of a stable equilibrium position. Therefore, the question how to create a damping torque
and to design a specific damping mechanism is one of the main problems that should
be solved for practical realization of attitude control systems [6, 7, 9, 14, 20, 24]. At
the same time, due to limited resources of control systems based on jet propulsion, there
arises a natural question on the possibility of implementing such a control system in
which the restoring torque tends to zero as time increases.
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A more general formulation of the problem suggests that a mechanical system with
dissipative and potential forces is given. Let the system admit an asymptotically stable
equilibrium position. Consider the case of an evolution of the potential forces. We assume
that the evolution consists of the appearance of a scalar positive time-varying multiplier
at the vector of these forces. The issue of preservation of stability of the equilibrium
position despite the evolution of potential forces is stated.

The stability problem in mechanical systems with a nonstationary parameter at po-
tential forces was considered in many works, see, for example, [1, 3, 10, 13, 15, 22, 23,
26, 28] and the references cited therein. However, it should be noted that a few results
were obtained for the case of vanishing potential forces.

In this contribution, the issue of monoaxial attitude stabilization of a rigid body is
studied. It is assumed that the body is under the action of a time-invariant essentially
nonlinear dissipative torque and a time-varying restoring torque that vanishes as time
increases. Using the differential inequalities theory [11, 16–18] and approaches proposed
in [1, 3, 23], conditions providing stability with respect to all variables as well as with
respect to a part of variables of an equilibrium position of the body are derived.

2 Statement of the Problem

Consider a rigid body rotating about its mass center O with angular velocity ω. Assume
that the axes Oxyz are principal central axes of inertia of the body. Differential equations
governing the attitude motion of the body under control torque M have the following
form

Jω̇ + ω × Jω = M, (1)

where J = diag{A,B,C} is a body inertia tensor in the axes Oxyz.

Let unit vectors s and r be given, the vector s be constant in the inertial space and
the vector r be constant in the body-fixed frame. Then the vector s rotates with respect
to the coordinate system Oxyz with angular velocity −ω. Hence,

ṡ = −ω × s. (2)

Thus, we will consider the differential system consisting of the Euler dynamic equations
(1) and the Poisson kinematic equations (2).

Let the torque M be a sum of the dissipative component Md and the restoring one
Mr: M = Md + Mr. We will assume that the dissipative torque is defined by the
formula Md = −∂W (ω)/∂ω, where W (ω) is a continuously differentiable for ω ∈ R3

positive definite homogeneous function of the order ν + 1, ν > 1. It should be noted
that mechanical systems with essentially nonlinear dissipative forces were considered, for
instance, in [19, 21]. In particular, such type forces arise when a body rotates in a viscous
medium [19]. Moreover, it is worth mentioning that essentially nonlinear control laws are
more robust with respect to the impact of delay and nonstationary perturbations than
linear ones, see [2, 5].

The restoring torque Mr should be chosen such that the torque M ensures monoaxial
stabilization of a rigid body [29]: the system of equations (1), (2) should admit the
asymptotically stable equilibrium position

ω = 0, s = r. (3)
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From the results of [25, 29] it follows that the torque Mr can be determined by the
formula

Mr = −a‖s− r‖µ−1s× r,

where µ ≥ 1, a > 0, and ‖ · ‖ denotes the Euclidean norm of a vector.
Next, consider the case where the restoring torque evolves with time, and the evolution

is expressed in the appearance of a scalar multiplier h(t) at the vector of the torque. Thus,
system (1) can be rewritten as follows

Jω̇ + ω × Jω = −∂W (ω)

∂ω
− h(t)a‖s− r‖µ−1s× r. (4)

Assume that h(t) is a positive and continuously differentiable for t ≥ 0 function, and
h(t) → 0 as t → +∞. Hence, the restoring torque vanishes as time increases. We will
look for conditions under which the equilibrium position (3) of system (2), (4) is stable
with respect to all or a part of variables.

3 Main Results

First, according to the approach proposed in [23], construct a Lyapunov function in the
form

V1 =
1

2
ω>Jω +

ah(t)

µ+ 1
‖s− r‖µ+1.

Differentiating the function with respect to system (2), (4), we obtain

V̇1 = −(ν + 1)W (ω) +
aḣ(t)

µ+ 1
‖s− r‖µ+1 ≤ ϕ(t)V1,

where ϕ(t) = max
{

0; ḣ(t)/h(t)
}

.

Thus, on the basis of the theory of differential inequalities, see [11, 16], we arrive at
the following theorem.

Theorem 3.1 If there exists a constant L > 0 such that
∫ t
0
ϕ(τ)dτ ≤ L for t ≥ 0,

then the equilibrium position (3) of system (2), (4) is stable with respect to ω.

Corollary 3.1 If ḣ(t) ≤ 0 for t ≥ 0, then the equilibrium position (3) of system (2),
(4) is stable with respect to ω.

Next, we will show that with the aid of more precise estimates of the derivative of
V1, conditions of the asymptotic stability with respect to ω of the equilibrium position
(3) can be derived.

Let ḣ(t) ≤ 0 for t ≥ 0. Denote

z1 =
1

2
ω>Jω, z2 =

ah(t)

µ+ 1
‖s− r‖µ+1.

Then V1 = z1 + z2.
Choose a positive number ∆. We obtain

V̇1 ≤ −czν+1
1 − ψ(t)zν+1

2
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for t ≥ 0, z1 ≥ 0, 0 ≤ z2 ≤ ∆, where

c = (ν + 1) min
‖ω‖=1

W (ω)

(ω>Jω/2)
ν+1
2

> 0, ψ(t) = − ḣ(t)

h(t)
∆

1−ν
2 .

Hence, the differential inequality

V̇1 ≤ −ϕ̃(t)V
ν+1
2

1 (5)

holds in a neighborhood of the equilibrium position (3) and for all t ≥ 0. Here

ϕ̃(t) = min
u1≥0, u2≥0, u1+u2=1

(
c uν+1

1 + ψ(t)uν+1
2

)
.

It can be shown that

ϕ̃(t) =
cψ(t)(

c
2

ν−1 + ψ
2

ν−1 (t)
) ν−1

2

.

Assume that for a solution (ω>(t), s>(t))> of (2), (4) the condition

ah(t)

µ+ 1
‖s(t)− r‖µ+1 ≤ ∆

is fulfilled on an interval [t0, t1], where 0 ≤ t0 < t1. Then, integrating differential
inequality (5), we obtain

1

2
ω>(t)Jω(t) +

ah(t)

µ+ 1
‖s(t)− r‖µ+1 = V̂1(t)

≤ V̂1(t0)

(
1 +

ν − 1

2
V̂

ν−1
2

1 (t0)

∫ t

t0

ϕ̃(τ)dτ

)− 2
ν−1

(6)

for t ∈ [t0, t1]. Here V̂1(t) = V1(t,ω(t), s(t)).
Thus, we arrive at the following theorem.

Theorem 3.2 If ḣ(t) ≤ 0 for t ≥ 0 and∫ t

0

ϕ̃(τ)dτ → +∞ as t→ +∞, (7)

then the equilibrium position (3) of system (2), (4) is asymptotically stable with respect
to ω.

Example 3.1 Let the nonstationary multiplier h(t) in system (4) be defined by the
formula h(t) = e−βt, where β = const > 0. Then, for any β > 0 and any ∆ > 0,
we obtain ϕ̃(t) ≡ const > 0. Hence, the equilibrium position (3) of system (2), (4) is
asymptotically stable with respect to ω.

Remark 3.1 Function ϕ̃(t) depends on the chosen number ∆. To guarantee that
the equilibrium position is asymptotically stable with respect to ω, it is sufficient to find
at least one value of ∆ for which condition (7) is fulfilled.



16 A.Yu. ALEKSANDROV, E.B. ALEKSANDROVA AND A.A. TIKHONOV

Remark 3.2 It is easy to verify that, the smaller the value of ∆, the more precise
estimate (6). However, decreasing the value of ∆, we narrow the domain of initial
conditions of solutions of system (2), (4) for which the estimate can be applied.

Remark 3.3 The use of estimate (6) does not permit us to obtain conditions of
stability with respect to s.

Really, for any ∆ > 0, the inequality ϕ̃(t) ≤ ψ(t) holds for t ≥ 0. Hence,

1

h(t)

(
1 +

ν − 1

2
V̂

ν−1
2

1 (t0)

∫ t

t0

ϕ̃(τ)dτ

)− 2
ν−1

≥ 1

h(t)

(
1− ν − 1

2
V̂

ν−1
2

1 (t0)∆
1−ν
2

∫ t

t0

ḣ(τ)

h(τ)
dτ

)− 2
ν−1

=
1

h(t)

(
1− ν − 1

2
V̂

ν−1
2

1 (t0)∆
1−ν
2 log

h(t)

h(t0)

)− 2
ν−1

→ +∞ as t→ +∞.

Finally in this section, we consider one more approach to a Lyapunov function con-
struction for system (2), (4) which permits us to find stability conditions not only with
respect to ω, but also with respect to all variables.

Let

V2 =
1

2
ω>Jω +

ah(t)

µ+ 1
‖s− r‖µ+1 + γhσ(t)‖s× r‖β−1ω>J(s× r),

where γ > 0, β ≥ 1, σ > 0. Then there exist positive numbers α1, α2, α3 such that

α1‖ω‖2 +
ah(t)

µ+ 1
‖s− r‖µ+1 − α3γh

σ(t)‖ω‖‖s− r‖β ≤ V2

≤ α2‖ω‖2 +
ah(t)

µ+ 1
‖s− r‖µ+1 + α3γh

σ(t)‖ω‖‖s− r‖β .

Differentiating function V2 with respect to system (2), (4), we obtain

V̇2 = −(ν + 1)W (ω) +
aḣ(t)

µ+ 1
‖s− r‖µ+1 + σγhσ−1(t)ḣ(t)‖s× r‖β−1ω>J(s× r)

+γhσ(t)‖s× r‖β−1(s× r)>
(
−ω × Jω − ∂W (ω)

∂ω
− h(t)a‖s− r‖µ−1(s× r)

)

+γhσ(t)ω>J
∂
(
‖s× r‖β−1(s× r)

)
∂s

(−ω × s) .

Assume that ḣ(t) ≤ 0 for t ≥ 0. It is easy to verify that one can choose positive
constants α4, α5, α6 and δ such that the inequality

V̇2 ≤ −α4

(
‖ω‖ν+1 + γhσ+1(t)‖s− r‖β+µ

)
+ α5γh

σ−1(t)ḣ(t)‖s− r‖β‖ω‖

+α6γh
σ(t)

(
‖s− r‖β‖ω‖2 + ‖s− r‖β‖ω‖ν + ‖s− r‖β−1‖ω‖2

)
holds for t ≥ 0, ω ∈ R3, ‖s− r‖ < δ.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (1) (2018) 12–21 17

With the aid of the substitution ξ = h
1

µ+1 ‖s− r‖, we arrive at the estimates

α1‖ω‖2 +
a

µ+ 1
ξµ+1 − α3γh

σ− β
µ+1 (t)‖ω‖ξβ ≤ V2

≤ α2‖ω‖2 +
a

µ+ 1
ξµ+1 + α3γh

σ− β
µ+1 (t)‖ω‖ξβ ,

V̇2 ≤ −α4

(
‖ω‖ν+1 + γhσ−

β−1
µ+1 (t)ξβ+µ

)
+ α5γh

σ−1− β
µ+1 (t)ḣ(t)‖ω‖ξβ

+α6γh
σ− β

µ+1 (t)
(
‖ω‖2 + ‖ω‖ν

)
ξβ + α6γh

σ− β−1
µ+1 (t)‖ω‖2ξβ−1.

Hence, if β ≥ µν, σ ≥ β/µ, γ is sufficiently small, ‖s− r‖ < δ, and

|ḣ(t)| ≤ Lh1+
β−σµ
β+µ (t) for t ≥ 0, (8)

where L = const > 0, then

1

2

(
α1‖ω‖2 +

a

µ+ 1
ξµ+1

)
≤ V2 ≤ 2

(
α2‖ω‖2 +

a

µ+ 1
ξµ+1

)
, (9)

V̇2 ≤ −
1

2
α4h

σ− β−1
µ+1 (t)

(
‖ω‖ν+1 + γξβ+µ

)
≤ −α7h

σ− β−1
µ+1 (t)V

β+µ
µ+1

2 . (10)

Here α7 is a positive constant.
Using estimates (9) and (10), we obtain that if there exist numbers β and σ such that

β ≥ µν, σ ≥ β/µ, inequality (8) is valid, and

h
β−1
µ+1 (t)

∫ t

0

hσ−
β−1
µ+1 (τ) dτ → +∞ as t→ +∞, (11)

then the equilibrium position (3) of system (2), (4) is asymptotically stable with respect
to all variables.

Denote θ = σ − β/µ. Then conditions (8) and (11) can be rewritten as follows

|ḣ(t)| ≤ Lh1−
θµ

β+µ (t) for t ≥ 0,

h
β−1
µ+1 (t)

∫ t

0

hθ+
β+µ

µ(µ+1) (τ) dτ → +∞ as t→ +∞.

It is easy to see that, to derive less conservative stability conditions, we should take
β = µν. As a result, we obtain the following theorem.

Theorem 3.3 If ḣ(t) ≤ 0 for t ≥ 0, and there exist positive numbers θ and L such
that

|ḣ(t)| ≤ Lh1−
θ

ν+1 (t) for t ≥ 0, (12)

h
µν−1
µ+1 (t)

∫ t

0

hθ+
ν+1
µ+1 (τ) dτ → +∞ as t→ +∞,

then the equilibrium position (3) of system (2), (4) is asymptotically stable with respect
to all variables.
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Corollary 3.2 If ḣ(t) ≤ 0 for t ≥ 0, there exist positive numbers θ and L such that
condition (12) is valid, and

h
µν−1
µ+1 (t)

(
1 +

∫ t

0

hθ+
ν+1
µ+1 (τ) dτ

)
≥ ρ for t ≥ 0,

where ρ = const > 0, then the equilibrium position (3) of system (2), (4) is stable with
respect to all variables and asymptotically stable with respect to ω.

Example 3.2 Let the nonstationary multiplier h(t) in system (4) be defined by the
formula h(t) = (t+1)α, where α < 0. In this case Theorem 3.3 and Corollary 3.2 provide
less conservative stability conditions for θ = 0.

We obtain that if α > −1/ν, then the equilibrium position (3) of system (2), (4)
is asymptotically stable with respect to all variables, whereas if α = −1/ν, then the
equilibrium position is stable with respect to all variables and asymptotically stable with
respect to ω.

Remark 3.4 Recently, attention was paid to the problems of synchronization in
various nonlinear systems such as dumbbell satellites [8], coupled systems [27], dissimilar
and uncoupled rotating systems [12]. As the stability properties are important in studying
oscillations in such systems, it seems that the results obtained in this paper may be
extended to the mentioned classes of nonlinear systems.

4 Results of a Numerical Simulation

In this section, we demonstrate the previous theoretical results by means of a numerical
simulation. Consider the monoaxial attitude stabilization of a rigid body with the inertia
tensor J = diag{1.0, 1.2, 0.8} in the equilibrium position (3). Denote the unit vectors of
the body-fixed frame Oxyz by r1, r2, r3 and the direction cosines of the unit vector r in
the body-fixed frame Oxyz by γ1, γ2, γ3. Let r be chosen as r = 1√

3
r1 + 1√

3
r2 + 1√

3
r3.

So, in the equilibrium position (3) the direction cosines γ1, γ2, γ3 are equal to 1/
√

3.
Assume that a positive definite homogeneous dissipative function W is defined by the

formula

W =
3

8

(
ω8/3
x + ω8/3

y + ω8/3
z

)
.

Here ωx, ωy, ωz are components of the vector ω. In this case ν = 5/3, and the dissipative

torque is Md = −
(
ω
5/3
x , ω

5/3
y , ω

5/3
z

)>
.

Choose the restoring torque as a linear function of s (µ = 1). Such approach is
commonly used for satellite attitude stabilization, see [25, 29]. In particular, in [4], it
was applied to the problem of monoaxial satellite stabilization in the orbital frame. Let

Mr = − h(t)

5
√

3
s× r,

where h(t) = (t+ 0.1)α, α = const < 0. We will consider two values of the parameter α:
1) α = −1/5 and 2) α = −12/5.

In the first case, in accordance with Theorem 3.3, the equilibrium position (3) of
system (2), (4) is asymptotically stable with respect to all variables γ1, γ2, γ3, ωx, ωy, ωz
(see Figs. 1 and 2).
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Figure 1: Angular velocity for α = −1/5. Figure 2: Direction cosines for α = −1/5.

In the second case, in accordance with Theorem 3.2, the equilibrium position is asymp-
totically stable with respect to ωx, ωy, ωz (see Fig. 3). At the same time, Fig. 4 demon-
strates that there is no asymptotic stability with respect to γ1, γ2, γ3.

Figure 3: Angular velocity for α = −12/5. Figure 4: Direction cosines for α = −12/5.

In both cases one and the same set of initial conditions was taken. The initial values of
“aircraft” angles ϕ(0) = 0.8, ψ(0) = 1.0, θ(0) = −0.6 result in the following initial values
of direction cosines: γ1(0) = 0.5646424737, γ2(0) = 0.5920595303, γ3(0) = 0.5750168603.
The initial values of angular velocity projections are ωx(0) = ωy(0) = ωz(0) = 0.3.

5 Conclusion

The method of differential inequalities is a powerful tool for the stability analysis of
nonlinear systems. In the present paper, the method is used for the investigation of the
problem of monoaxial attitude stabilization of a rigid body. The possibility of implement-
ing such a control system in which the restoring torque tends to zero as time increases is
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studied. The practical use of the investigation is connected with the challenge of propel-
lant economy in control systems. With the aid of the Lyapunov direct method and the
differential inequalities theory, stability conditions of an equilibrium position of the body
are derived. It should be noted that Theorem 3.1 provides conditions of stability with
respect to the angular velocity, in Theorem 3.2 conditions of the asymptotic stability
with respect to the angular velocity are given, whereas, under the conditions of Theorem
3.3, we can guarantee the asymptotic stability with respect to all variables.

An interesting direction for further research is the application of the proposed ap-
proaches to the problem of three-axial stabilization of a rigid body.
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