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1 Introduction

In recent years much attention has been drawn to the stability and boundedness of
solutions of ordinary scalar and vector nonlinear differential equations of third order. See
Afuwape [1,2],Omeike [9,10] Ezeilo [4,5], Remili [11–14] and the references cited therein
for a comprehensive treatment of the subject. Lyapunov’s second (direct) method has
been used as a basic tool to verify the results established in these works.

In 2009, Tunç [17] proved two results, for the cases P = 0 and P 6= 0, respectively,
on the stability and boundedness of solutions to the vector differential equations of third
order

X ′′′(t) + Ψ(X ′(t))X ′′(t) +BX ′(t) + cX(t) = P (t). (1)
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Recently, in 2014, for the same cases, Omeike [9] discussed the global asymptotic stability
and boundedness of solutions to nonlinear vector differential equations of third order

X ′′′(t) + Ψ(X ′(t))X ′′(t) + Φ(X(t))X ′(t) + cX(t) = P (t). (2)

The purpose of this paper is to study the uniform asymptotic stability, bounded-
ness and square integrability of solutions of the third order nonlinear vector differential
equations of the form

(Ω(X(t)))X ′(t))′′ + Ψ(X ′(t))X ′′(t) +G(X(t))X ′(t) + cX(t) = P (t), (3)

where X ∈ Rn, t ∈ R and c is a positive constant, Ψ and G are n × n−symetric
and differentiable matrix functions; Ω is an n×n−symetric differentiable and inversible
matrix function. P : R→ Rn is a continuous function with respect to t. Let

Ω′ = Ω′(X(t)) =
d

dt
(µi,j(X(t)), and G′ = G′(X(t)) =

d

dt
(gi,j(X(t)) (i, j = 1, 2, ..., n),

where µi,j(X(t)) and gi,j(X(t)) are the components of Ω(X) and G(X) respectively. On
the other hand X(t), Y (t), Z(t), Ω(X(t))), G(X(t))) and Ψ(X ′(t))) are, respectively,
abbreviated as X,Y , Z, Ω, G and Ψ throughout the paper. Additionally, the symbol
〈X,Y 〉 corresponding to any pair X and Y in Rn stands for the usual scalar product
n∑
i=1

xiyi, that is, 〈X,Y 〉 =
n∑
i=1

xiyi, Thus 〈X,X〉 = ‖X‖2 .

Let us, for convenience, replace (3) by the equivalent differential system X ′ = Ω−1(X)Y,
Y ′ = Z,
Z ′ = −ΨΩ−1(X)Z −ΨθY −GΩ−1(X)Y − cX + P (t),

(4)

which was obtained by setting

X ′ = Ω−1(X)Y,

X ′′ = θ(t)Y + Ω−1(X)Z,

where
θ(t) =

(
Ω−1(X)

)′
= −Ω−1(X)Ω′(X)Ω−1(X). (5)

This paper is organized as follows: in Section 2, we will recall briefly some basic
definitions and preliminary facts which will be used throughout the following sections.
In Section 3 we give stability results. In Section 4 boundedness of solutions is discussed.
Finally, in Section 5 sufficient conditions for the square integrability of solutions are
given.

2 Preliminaries

In order to reach our main results, we dispose some well-known algebraic results which
will be required in the proofs.

Lemma 2.1 [4] Let D be a real symmetric positive definite n×n matrix. Then for
any X in Rn, we have

δd ‖ X ‖2≤ 〈DX,X〉 ≤ ∆d ‖ X ‖2,

where δd, ∆d are the least and the greatest eigenvalues of D, respectively.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (1) (2018) 29–41 31

Lemma 2.2 [4] Let Q,D be any two real n× n commuting matrices. Then

(i) The eigenvalues λi (QD) (i = 1, 2..., n) of the product matrix QD are all real and
satisfy

min
1≤j,k≤n

λj (Q)λk (D) ≤ λi (QD) ≤ max
1≤j,k≤n

λj (Q)λk (D) .

(ii) The eigenvalues λi (Q+D) (i = 1, 2..., n) of the sum of matrix Q and D are all real
and satisfy

min
1≤j≤n

λj (Q) + min
1≤k≤n

λk (D) ≤ λi (Q+D) ≤ max
1≤j≤n

λj (Q) + max
1≤k≤n

λk (D) .

Lemma 2.3 [4] Let H be a continuous matrix function with H(0) = 0. Then

d

dt

∫ 1

0

σ〈H(σX)X,X〉dσ = 〈H(X),
dX

dt
〉.

Lemma 2.4 Let H(X) be a continuous vector function with H(0) = 0. Then

δh ‖ X ‖2≤
∫ 1

0

〈H (σX) , X〉 dσ ≤ ∆h ‖ X ‖2,

where δh, ∆h are the least and the greatest eigenvalues of Jh(X) (Jacobian matrix of H),
respectively.

Definition 2.1 We define the spectral radius ρ (A) of a matrix A by

ρ (A) = max {|λ| : λ is the eigenvalue of A} .

Lemma 2.5 For any A ∈ Rn×n, we have the norm ‖A‖ =
√
ρ (ATA). If A is

symmetric, then ‖A‖ = ρ (A) .

We shall note all the equivalent norms by the same notation ‖X‖ for X ∈ Rn and
‖A‖ for a matrix A ∈ Rn×n.

In the sequel we will assume :
H1) There are positive constants ω0, ω1, a0, a1, b0, b1 such that the following conditions
are satisfied

b0 ≤ λi(G) ≤ b1, a0 ≤ λi(Ψ) ≤ a1, ω0 ≤ λi(Ω) ≤ ω1.

H2) The n×n differentiable matrices Ω, Ω−1, Ψ and G are symmetric, associative and
commute pairwise.

3 Stability

Our study of (3) here is concerned primarily with the problems of the stability for the case
P (t) = 0. For the ease of exposition throughout this paper we will adopt the following
notation :

δ(t) =‖ Ω′(X(t)) +G′(X(t)) ‖ . (6)
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Theorem 3.1 In addition to the fundamental assumptions imposed on Ω, Ψ and G,
we suppose there exist positive constants β and δ0 such that

i)
c

a0b0
< β <

1

ω1
,

ii)
∫ +∞
0

δ(s)ds ≤ δ0 <∞.

Then every solution of (4) satisfies

lim
t→∞

X(t) = lim
t→∞

Y (t) = lim
t→∞

Z(t) = 0.

Proof. To prove this theorem, we define a Lyapunov functional W = W (t,X, Y, Z)
as

W = V exp(−µ(t)), (7)

where

µ(t) =
1

d

∫ t

0

δ(s)ds,

V =
1

2
〈cX, cX〉+

1

2
βb0

〈
Y,GΩ−1Y

〉
+ β

b0
2
〈 Z,Z〉+ 〈cΩ−1Y,Z〉

+β〈cX, b0 Y 〉+

∫ 1

0

σ〈cΨ(σΩ−1Y )Ω−1Y,Ω−1Y 〉dσ, (8)

d is some positive constant which will be specified later. It is clear by (8) that
W (t, 0, 0, 0) = 0. Note that ω0 ≤ λi(Ω) ≤ ω1 implies that 1

ω1
≤ λi(Ω−1) ≤ 1

ω0
. Hence by

(H1), Lemma 2.1 and Lemma 2.2, we have

c

∫ 1

0

σ〈Ψ(σΩ−1Y )Ω−1Y,Ω−1Y 〉dσ ≥ ca0
2ω2

1

‖ Y ‖2

and
1

2
βb0

〈
Y,GΩ−1Y

〉
≥ βb20

2ω1
‖ Y ‖2 .

Hence

V ≥ c2

2
‖ X ‖2 +β〈cX, b0Y 〉+ β

b0
2
‖ Z ‖2 +〈cΩ−1Y,Z〉+

(βb20
2ω1

+
ca0
2ω2

1

)
‖ Y ‖2 .

Thus, we clearly have

c2

2
‖ X ‖2 +β〈cX, b0Y 〉 =

1

2
‖cX + βb0Y ‖2 −

β2b20
2
‖ Y ‖2

and

βb0
2
‖ Z ‖2 +〈cΩ−1Y,Z〉 =

βb0
2
‖Z +

c

βb0
Ω−1Y ‖2 − c2

2βb0
〈Ω−1Y,Ω−1Y 〉

≥ βb0
2
‖Z +

c

βb0
Ω−1Y ‖2 − c2

2βω2
1b0
‖ Y ‖2 .
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Combining the preceding estimates, we find

V ≥ 1

2
‖ cX + βb0Y ‖2 +

βb0
2
‖ Z +

c

βb0
Ω−1Y ‖2 +∆ ‖ Y ‖2,

where

∆ =
βb20
2ω1

+
ca0
2ω2

1

− β2b20
2
− c2

2βω2
1b0

.

Condition (i) implies

∆ = c
β a0b0 − c

2βb0ω2
1

+ βb20(
1

2ω1
− β

2
) ≥ c

2βb0ω2
1

(β a0b0 − c) > 0.

It is evident, from the terms included in the last inequality, that there exists a sufficiently
small positive constant k0 such that

V ≥ k0
(
‖ X ‖2 + ‖ Y ‖2 + ‖ Z ‖2

)
. (9)

Finally, by condition (ii) and (7) we get

W ≥ K0

(
‖ X ‖2 + ‖ Y ‖2 + ‖ Z ‖2, (10)

where K0 = k0 exp(−δ0
d

).

Now, we show that W ′(4) is negative definite function.

First, by Lemma 2.3, from the integral term in (8) we have the following derivative

d

dt

∫ 1

0

σ〈cΨ(σΩ−1Y )Ω−1Y,Ω−1Y 〉dσ = c〈ΨΩ−1Y, θY + Ω−1Z〉.

Hence, the time derivative of functional V along the system (4) leads to

V ′(4) = V1 + V2 + V3,

where

V1 = βcb0〈Ω−1Y, Y 〉 − c
〈
Y,GΩ−2Y

〉
,

V2 = c
〈
Ω−1Z,Z

〉
− βb0〈Z,ΨΩ−1Z〉,

V3 = c 〈θY, Z〉 − βb0〈Z,ΨθY 〉+
1

2
βb0 〈Y,GθY 〉+

1

2
βb0

〈
Y,G′Ω−1Y

〉
.

By virtue of (H1), Lemma 2.1 and Lemma 2.2 it follows

V1 =
〈
Y, (βcb0I − cGΩ−1)Ω−1Y

〉
≤ −cb0

ω0
(

1

ω1
− β) ‖ Y ‖2,

V2 =
〈
Z, (cI − βb0Ψ)Ω−1Z

〉
≤ − 1

ω0
(βa0b0 − c) ‖ Z ‖2 .

Finally, by (5), Lemma 2.5 and the inequality 2 ‖ UV ‖≤‖ U ‖2 + ‖ V ‖2 we get

‖ θ(t) ‖ = ‖ Ω−1(X)Ω′(X)Ω−1(X) ‖≤ 1

ω2
0

‖ Ω′(X) ‖, (11)

V3 = c 〈θY, Z〉 − βb0〈Z,ΨθY 〉+
1

2
βb0 〈Y,GθY 〉+

1

2
βb0

〈
Y,G′Ω−1Y

〉
≤

[ 1

ω2
0

(
c

2k0
+
βb0a1
2k0

+
1

2k0
βb0b1

)
‖ Ω′ ‖ +

1

2k0
βb0 ‖ G′ ‖

]
V

≤ K1δ(t)V,
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where K1 = max

{
1

2k0ω2
0

(
c+ βb0a1 + βb0b1

)
;
βb0
2k0

}
. Hence, we conclude that

V ′(4) ≤ −M ‖ Z ‖
2 −N ‖ Y ‖2 + K1δ(t)V. (12)

Clearly, from condition (i) of Theorem 3.1 we have

N =
cb0
ω0

(
1

ω1
− β) > 0 and M =

1

ω0
(βa0b0 − c) > 0.

Now, from (7) and (12) we obtain

W ′(4) =

[
V ′ − 1

d
δ(t)V

]
exp(−µ(t))

≤
[
−M ‖ Z ‖2 −N ‖ Y ‖2 +(K1 −

1

d
)δ(t)V

]
exp(−µ(t)).

Choosing K1 −
1

d
= 0, the last inequality becomes

W ′(4) ≤ −C(‖ Z ‖2 + ‖ Y ‖2), (13)

where C = exp(− δ0d ) min
{
M, N

}
. In view of (10) and (13), it follows that the

solution
(
X(t), Y (t), Z(t)

)
of (4) is uniformly stable.

Now E = {(X,Y, Z) : W ′(4)(X,Y, Z) = 0} = {(X, 0, 0) : X ∈ Rn} and the largest

invariant set contained in E is F = {(0, 0, 0)}. By LaSalle’s invariance principe

lim
t→∞

X(t) = lim
t→∞

Y (t) = lim
t→∞

Z(t) = 0.

This fact completes the proof of Theorem 3.1.

4 Boundedness

Our main theorem in this section is stated with respect to P (t) 6= 0 as follows :

Theorem 4.1 Assume that all the conditions of Theorem 3.1 are satisfied and there
exist positive constants d1 and D1 such that :

I1) ‖ P (t) ‖≤ λ(t) < d1,

I2)
∫ t
0
λ(s)ds < D1,

I3) lim
t→∞

‖ Ω′(X(t)) ‖ exists.

Then there exists a positive constant D5 such that any solution X(t) of (3) and their
derivatives X ′(t), and X ′′(t) satisfy

‖ X(t) ‖≤ D5, ‖ X ′(t) ‖≤ D5, ‖ X ′′(t) ‖≤ D5. (14)

Proof. For the case P (t) 6= 0, on differentiating (8) along the system (4) we obtain

V ′(4) ≤ −J +K1δ(t)V + c〈Ω−1Y, P (t)〉+ 〈βb0Z,P (t)〉

≤ −J +K1δ(t)V + λ(t)
(
c ‖ Ω−1 ‖ ‖ Y ‖ +βb0 ‖ Z ‖

)
.
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Using Lemma 2.5 we get

V ′(4) ≤ −J +K1δ(t)V +K2λ(t)(‖ Y ‖ + ‖ Z ‖),

where K2 = max

{
c

ω0
, βb0

}
and J = M ‖ Z ‖2 +N ‖ Y ‖2 .

Now, the inequalities ‖ Y ‖ ≤ ‖ Y ‖2 +1 and ‖ Z ‖ ≤ ‖ Z ‖2 +1 lead to

V ′(4) ≤ −J +K1δ(t)V +K2λ(t)(‖ Y ‖2 + ‖ Z ‖2 +2). (15)

From (7) we have

W ′(4) =

[
V ′ − 1

d
δ(t)V

]
exp(−µ(t)). (16)

Since K1 −
1

d
= 0, it follows that

W ′(4) ≤
[
−J +K2λ(t)(‖ Y ‖2 + ‖ Z ‖2 +2)

]
exp(−µ(t)).

In view of (13) and ( 10), the above estimates imply that

W ′(4) ≤ −C(‖ Y ‖2 + ‖ Z ‖2) +
K2

K0
λ(t) W +K3λ(t), (17)

with K3 = 2K2. Integrating both sides (17) from 0 to t, one can easily obtain

W (t)−W (0) ≤ K3

∫ t

0

λ(s)ds+
K2

K0

∫ t

0

W (s)λ(s)ds.

Let
D2 = W (0) +K3D1. (18)

Thus

W (t) ≤ D2 +
K2

K0

∫ t

0

W (s)λ(s)ds.

By the Gronwall inequality it follows

W (t) ≤ D2 exp
(K2

K0

∫ t

0

λ(s)ds
)
≤ D3, (19)

where D3 = D2 exp
(
K2

K0
D1

)
. This result implies that there exists a constant D4 such

that
‖ X(t) ‖≤ D4, ‖ Y (t) ‖≤ D4, ‖ Z(t) ‖≤ D4.

From (4) we have

‖ X ′(t) ‖ = ‖ Ω−1Y (t) ‖
≤

∥∥Ω−1
∥∥ ‖ Y (t) ‖

≤ D4

ω0
.
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Since lim
t→∞

‖ Ω′(X(t)) ‖ exists, we have

‖ Ω′
(
X(t)

)
‖< q1, (20)

for some positive constant q1. So, from (11) we get

‖ θ(t) ‖≤ q1
ω2
0

. (21)

Hence

‖ X
′′
(t) ‖ = ‖ θ(t)Y (t) + Ω−1Z(t) ‖

≤ ‖ θ(t)Y (t) ‖ + ‖ Ω−1Z(t) ‖

≤
( q1
ω2
0

+
1

ω0

)
D4.

Therefore, there exists a positive constant D5 such that

‖ X(t) ‖≤ D5, ‖ X ′(t) ‖≤ D5, ‖ X ′′(t) ‖≤ D5, (22)

for all t ≥ 0, where D5 = max
{( q1
ω2
0

+
1

ω0

)
D4, D4

}
. This completes the proof of

Theorem 4.1.

5 Square Integrability

Our next result concerns the square integrability of solutions of equation (3).

Theorem 5.1 In addition to the assumptions of Theorem 4.1, we assume that

I4) c− (
a1 + b1

2
) > 0.

Then all the solutions of (3) and their derivatives are elements of L2[0,+∞).

Proof. Define H(t) as

H(t) = W (t) + ε

∫ t

0

(‖ Z(s) ‖2 + ‖ Y (s) ‖2)ds, (23)

where ε > 0 is a constant to be specified later. By differentiating H(t) and using (17) we
obtain

H ′(t) ≤ (ε− C)(‖ Z(t) ‖2 + ‖ Y (t) ‖2) +
(
K2W +K3

)
λ(t).

If we choose ε− C < 0, then from (19) we get

H ′(t) ≤ K4λ(t), (24)

where K4 = K2D3 + K3. Integrating (24) from 0 to t, t ≥ 0, and using condition (I2)
of Theorem 4.1 we obtain

H(t)−H(0) =

∫ t

0

H ′(s)ds ≤ K4D1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (1) (2018) 29–41 37

Using (18) and equality H(0) = W (0) we get

H(t) ≤ K4D1 +D2 −K3D1.

We can conclude by (23) that∫ t

0

(‖ Z(s) ‖2 + ‖ Y (s) ‖2)ds <
K4D1 +D2 −K3D1

ε
,

which implies the existence of positive constants σ1 and σ2 such that∫ t

0

‖ Z(s) ‖2 ds ≤ σ2 and

∫ t

0

‖ Y (s) ‖2 ds ≤ σ1.

From (4) we have ∫ t

0

‖ X ′(s) ‖2 ds =

∫
‖ Ω−1Y (s) ‖2 ds

≤
∫ ∥∥Ω−1

∥∥2 ‖ Y (s) ‖2 ds

≤ σ1
ω2
0

= β1. (25)

Also ∫ t

0

‖ X
′′
(s) ‖2 ds =

∫ t

0

(
‖ θ(s)Y (s) + Ω−1Z(s) ‖2

)
ds

≤
∫ t

0

(
‖ θ(s) ‖2 + ‖ θ(s) ‖ ‖ Ω−1 ‖

)
‖ Y (s) ‖2 ds

+

∫ t

0

(
‖ Ω−1 ‖2 + ‖ θ(s) ‖ ‖ Ω−1 ‖

)
‖ Z(s) ‖2 ds.

From (21) and (20) we have∫ t

0

(
‖ θ(s) ‖2 + ‖ θ(s) ‖ ‖ Ω−1 ‖

)
‖ Y (s) ‖2 ds ≤ q1

ω2
0

( q1
ω2
0

+
1

ω0

) ∫ t

0

‖ Y (s) ‖2 ds

≤ q1
ω2
0

( q1
ω2
0

+
1

ω0

)
σ1,

and∫ t

0

(
‖ Ω−1 ‖2 + ‖ θ(s) ‖ ‖ Ω−1 ‖

)
‖ Z(s) ‖2 ds ≤ 1

ω0

( 1

ω0
+
q1
ω2
0

) ∫ t

0

‖ Y (s) ‖2 ds

≤ 1

ω0

( 1

ω0
+
q1
ω2
0

)
σ2.

It follows ∫ t

0

‖ X
′′
(s) ‖2 ds ≤ q1

ω2
0

( q1
ω2
0

+
1

ω0

)
σ1 +

1

ω0

( 1

ω0
+
q1
ω2
0

)
σ2 = β2. (26)
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Next, multiplying (3) by X(t), we obtain〈(
Ω(X)X ′

)′′
, X
〉

+ 〈Ψ(X ′)X ′′, X〉+ 〈G(X)X ′, X〉+ c ‖ X ‖2= 〈X,P (t)〉. (27)

Integrating (27) from 0 to t we have

c

∫ t

0

‖ X(s) ‖2 ds = L1(t) + L2(t) + L3(t), (28)

where

L1(t) = −
∫ t

0

〈(
Ω(X(s))X ′(s)

)′′
, X(s)

〉
ds,

L2(t) = −
∫ t

0

〈(
Ψ(X ′(s))X ′′(s) +G(X(s))X ′(s)

)
, X(s)

〉
ds,

L3(t) =

∫ t

0

〈X(s), P (s)〉ds.

Integrating by parts and using (25) and (26), we obtain

L1(t) = −〈Ω′X ′(t), X(t)〉 − 〈ΩX ′′(t), X(t)〉

+ 〈ΩX ′(t), X ′(t)〉 −
∫ t

0

〈ΩX ′(s), X ′′(s)〉 ds

≤ | − 〈Ω′X ′(t), X(t)〉 − 〈ΩX ′′(t), X(t)〉+ 〈ΩX ′(t), X ′(t)〉 |

+

∫ t

0

ω1

2

(
‖ X ′(s) ‖2 + ‖ X ′′(s) ‖2

)
ds

≤ | − 〈Ω′X ′(t), X(t)〉 − 〈ΩX ′′(t), X(t)〉+ 〈ΩX ′(t), X ′(t)〉 | +ω1

2
(β1 + β2).

In view of (20) and (22) we get

|− 〈Ω′X ′(t), X(t)〉 − 〈ΩX ′′(t), X(t)〉+ 〈ΩX ′(t), X ′(t)〉| ≤ D2
5

(
q1 + 2ω1

)
,

for all t ≥ 0. Consequently, there exists a constant l1 such that L1(t) < l1, with
l1 = D2

5

(
q1 + 2ω1

)
+ ω1

2 (β1 + β2). Similarly we have

L2(t) = −
∫ t

0

〈(
ΨX ′′(s)−GX ′(s)

)
, X(s)

〉
ds

≤
∫ t

0

(
‖ Ψ ‖ ‖ X ′′(s) ‖ + ‖ G ‖ ‖ X ′(s) ‖

)
‖ X(s) ‖ ds

≤
∫ t

0

‖ Ψ ‖ ‖ X ′′(s) ‖ ‖ X(s) ‖ ds+

∫ t

0

‖ G ‖ ‖ X ′(s) ‖ ‖ X(s) ‖ ds

≤ a1
2

∫ t

0

‖ X ′′(s) ‖2 ds+ (
a1 + b1

2
)

∫ t

0

‖ X(s) ‖2 ds+
b1
2

∫ t

0

‖ X ′(s) ‖2 ds

≤ a1
2
β2 +

b1
2
β1 + (

a1 + b1
2

)

∫ t

0

‖ X(s) ‖2 ds.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (1) (2018) 29–41 39

Next

L3(t) ≤
∫ t

0

‖ X(s) ‖ ‖ P (s) ‖ ds

≤ D5

∫ t

0

λ(s)ds

≤ D1D5.

By (28) and condition (I4) of the Theorem 5.1 we obtain(
c− (

a1 + b1
2

)
)∫ t

0

‖ X(s) ‖2 ds ≤ K,

where K = l1 +
a1
2
β2 +

b1
2
β1 +D1D5. This fact completes the proof of theorem.

Example 5.1 As a special case consider the following equation

(Ω(X(t))X ′(t))′′ + Ψ(X ′)X ′′(t) +G(X)X ′(t) + cX(t) = P (t), (29)

where

Ω
(
X
)

=

( sin x
1+x2 + 2 0

0 2
10

cos y
1+y2 + 2

)
, Ψ(Y ) =

(
9 + 1

1+y2 1

1 9 + 1
1+y2

)
,

G(X) =

(
1

3+x2 + 2 0

0 2

)
, P (t) =

(
sin t
1+t2
cos t
1+t2

)
, c = 7 .

Clearly, Ψ (Y ) , G(X) and Ω(X) are symmetric matrices and commute pairwise. Then,
by an easy calculation, we obtain eigenvalues of the matrices Ψ (Y ) , G(X) and Ω(X) as
follows:

ω0 = 1 ≤ λi (Ω(X)) ≤ 2.2 = ω1,

a0 = 8 ≤ λi (Ψ(Y )) ≤ 11 = a1,

b0 = 2 ≤ λi (G(X)) ≤ 7

3
= b1,

for i ∈ {1, 2}. For t ∈ [0,+∞) a straightforward calculation gives∫ t

0

‖ Ω′(X(s)) ‖ du =

∫ t

0

∣∣∣∣∣( cosx

1 + x2
− 2x sinx

(1 + x2)
2

)
x′(s)

∣∣∣∣∣ ds
+

∫ t

0

∣∣∣∣∣(− sin y

1 + y2
− 2y cos y

(1 + y2)
2

)
y′(s)

∣∣∣∣∣ ds
≤

∫ θ2(t)

θ1(t)

∣∣∣∣∣( cosu

1 + u2
− 2u sinu

(1 + u2)
2 )

∣∣∣∣∣ du
+

∫ ϕ2(t)

ϕ1(t)

∣∣∣∣∣(− sin v

1 + v2
− 2v cos v

(1 + v2)
2 )

∣∣∣∣∣ dv
<

(∫ +∞

−∞

∣∣∣∣∣1 + u2 + 2u

(1 + u2)
2

∣∣∣∣∣ du+

∫ +∞

−∞

∣∣∣∣∣1 + u2 + 2u

(1 + u2)
2

∣∣∣∣∣ du
)

= (π + 2),
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where
θ1(t) = min{x(0), x(t)}, θ2(t) = max{x(0), x(t)},

ϕ1(t) = min{y(0), y(t)}, ϕ2(t) = max{y(0), y(t)}.

Similarly ∫ +∞

−∞
‖G′(X(s))‖ds =

∫ +∞

−∞

∣∣∣∣ −2u

(3 + u2)2

∣∣∣∣ du =
2

3
.

Now, we have

‖ P (t) ‖=

√
sin2 t

1 + t2
+

cos2 t

1 + t2
=

1

1 + t2
<

2

1 + t2
= λ(t) < 2 = d1.

So, ∫ t

0

‖ λ(s) ‖ ds =

∫ t

0

2

1 + s2
ds <

∫ +∞

0

2

1 + s2
ds = π = D1.

By taking β = 0.44, it follows easily that

0.4375 =
7

16
=

c

a0b0
< β <

1

ω1
= 0.45455.

We have also

c− a1 + b1
2

=
1

3
> 0.

Thus, all the conditions of Theorem 5.1 are satisfied.
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