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1 Aboudramane Guiro, LAboratoire de Mathématiques et Informatique (LAMI), UFR, Sciences
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1 Introduction

In this paper, we study the following nonlinear discrete anisotropic problem

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1)))

+α(k)|u(k)|p(k)−2u(k) = δ(k)f(k, u(k)), k ∈ Z∗,

u(0) = 0, lim
k→−∞

u(k) = −1, lim
k→+∞

u(k) = 1,

(1)

where ∆u(k) = u(k + 1)− u(k) is the forward difference operator, Z∗ = {k ∈ Z : k 6= 0}
and M,a, α, δ, f, p are functions to be defined later.

∗ Corresponding author: mailto:ouaro@yahoo.fr

c© 2018 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 67

mailto: ouaro@yahoo.fr 
http://e-ndst.kiev.ua


68 A. GUIRO, I. IBRANGO AND S. OUARO

Note that difference equations can be seen as a discrete counterpart of partial differential
equations and are usually studied in connection with numerical analysis. In this way, the
main operator in problem (1)

∆(a(k − 1,∆u(k − 1)))

can be seen as a discrete counterpart of the anisotropic operator

N∑
i=1

∂

∂xi
a

(
x,

∂

∂xi
u

)
.

The first study in this direction for constant exponents was done by Cabada et al. [2] and
for variable exponent by Mihailescu et al. [8] (see also [6]). In [6], the authors studied
the following problem{

−∆
(
a
(
k − 1,∆u(k − 1)

))
+ α(k)g

(
k, u(k)

)
= δ(k)f

(
k, u(k)

)
, k ∈ Z∗,

u(0) = 0, lim
k→−∞

u(k) = −1, lim
k→+∞

u(k) = 1,
(2)

where

g(k, ξ) = |ξ − 1|p(k)−2(ξ − 1)χZ+(k) + |ξ + 1|p(k)−2(ξ + 1)χZ−(k).

The authors in [6] proved an existence result of weak heteroclinic solutions of problem
(2).

In this paper, we consider the same boundary conditions as in [6], but the function

M(A(k − 1,∆u(k − 1)))

which appears in the left-hand side of problem (1) is more general than the one which
appears in [6]. Indeed, if we take M(t) = 1 in the problem (1), we obtain the probem
studied by Guiro et al in [6].

To prove an existence result of problem (1), we define other new spaces and new
associated norms and we adapt the classical minimization methods used for the study of
anisotropic PDEs. The idea is to transfer the problem of the existence of solutions for (1)
into the problem of the existence of a minimizer for some associated energy functional.

The study of heteroclinic connections for boundary value problems got a certain
impulse in recent years, motivated by applications in various biological, physical and
chemical models, such as phase-transition, physical processes in which the variable
transits from an unstable equilibrium to a stable one, or front-propagation in reaction-
diffusion equations. Indeed, heteroclinic solutions are often called transitional solutions
(see [3,7]). Problem (1) involves variable exponents due to their use in image restoration
(see [4]), in electrorheological and thermorheological fluids dynamic (see [5, 9, 10]).

The remaining part of this paper is organized as follows: Section 2 is devoted to
mathematical preliminaries. The main existence result is stated and proved in Section 3.

2 Preliminaries and Assumptions

We use the notations

p+ = sup
k∈Z

p(k), p− = inf
k∈Z

p(k)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (1) (2018) 67–79 69

and we set
Z+ := {k ∈ Z : k ≥ 0}; Z− := {k ∈ Z : k ≤ 0};
Z+
∗ := {k ∈ Z : k > 0}; Z−∗ := {k ∈ Z : k < 0}.

In order to present the main result, for each p(.) : Z→ (0,+∞) and β ≥ 1, we introduce
the following spaces:

L1 :=

{
u : Z→ R;

∑
k∈Z
|u(k)| < +∞

}
,

L∞ :=

{
u : Z→ R; sup

k∈Z
|u(k)| < +∞

}
,

Lp(.)0 :=

{
u : Z→ R; u(0) = 0 and ρp(.)(u) :=

∑
k∈Z
|u(k)|p(k) < +∞

}
,

Lp(.)0,+ :=

{
u : Z→ R; u(0) = 0 and ρp+(.)(u) :=

∑
k∈Z+

|u(k)|p(k) < +∞
}
,

Lp(.)0,− :=

{
u : Z→ R; u(0) = 0 and ρp−(.)(u) :=

∑
k∈Z−

|u(k)|p(k) < +∞
}
,

Lp(.)0,α(.) :=

{
u : Z→ R; u(0) = 0 and ρα(.),p(.)(u) :=

∑
k∈Z

α(k)|u(k)|p(k) < +∞
}
,

Lp(.)0,+,α(.) :=

{
u : Z→ R; u(0) = 0 and ρα(.),p+(.)(u) :=

∑
k∈Z+

α(k)|u(k)|p(k) < +∞
}
,

Lp(.)0,−,α(.) :=

{
u : Z→ R; u(0) = 0 and ρα(.),p−(.)(u) :=

∑
k∈Z−

α(k)|u(k)|p(k) < +∞
}
,

W1,p(.)
0,α(.) :=

{
u : Z→ R; u(0) = 0, ρ1,α(.),p(.)(u) :=

∑
k∈Z

α(k)|u(k)|p(k)

+

(∑
k∈Z
|∆u(k)|p(k)

)β
< +∞

}
,

W1,p(.)
0,+,α(.) :=

{
u : Z→ R; u(0) = 0, ρ1,α(.),p+(.)(u) :=

∑
k∈Z+

α(k)|u(k)|p(k)

+

( ∑
k∈Z+

|∆u(k)|p(k)

)β
< +∞

}
and

W1,p(.)
0,−,α(.) :=

{
u : Z→ R; u(0) = 0, ρ1,α(.),p−(.)(u) :=

∑
k∈Z−

α(k)|u(k)|p(k)

+

( ∑
k∈Z−

|∆u(k)|p(k)

)β
< +∞

}
.
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For the data a, f, α and δ, we assume the following.

(H1) :

{
a(k, .) : R→ R, k ∈ Z and there exists a mapping A(., .) : Z× R→ R which

satisfies a(k, ξ) = ∂
∂ξA(k, ξ) and A(k, 0) = 0, for all k ∈ Z.

(H2) : |ξ|p(k) ≤ a(k, ξ)ξ ≤ p(k)A(k, ξ), for all k ∈ Z and ξ ∈ R.

(H3): There exists a positive constant C1 such that |a(k, ξ)| ≤ C1(j(k) + |ξ|p(k)−1), for
all

k ∈ Z and ξ ∈ R, with j ∈ Lq(.)0,α(.), where 1
p(k) + 1

q(k) = 1.

(H4) :
(
ai(x, ξ) − ai(x, η)

)
(ξ − η) > 0 for all k ∈ Z and ξ, η ∈ R such that

ξ 6= η.

(H5) : f : Z× R −→ R and there exists a constant C2 > 0 such that

|f(k, t)| ≤ C2

(
1 + |t− 1|p(k)−1

)
χZ+(k) + C2

(
1 + |t+ 1|p(k)−1

)
χZ−

∗
(k),

for all k ∈ Z, t ∈ R, where χA(k) = 1 if k ∈ A and χA(k) = 0 if k /∈ A.

Assumption (H5) implies that{
|f(k, t+ 1)| ≤ C2(1 + |t|p(k)−1) if k ≥ 0,

|f(k, t− 1)| ≤ C2(1 + |t|p(k)−1) if k < 0.
(3)

So by denoting

F (k, t) =

∫ t

0

f(k, s)ds for k ∈ Z, t ∈ R,

we deduce that there exists a positive constant C3 > 1 such that{
|F (k, t+ 1)| ≤ C3(1 + |t|p(k)) if k ≥ 0,

|F (k, t− 1)| ≤ C3(1 + |t|p(k)) if k < 0.
(4)

(H6) :

α : Z→ R and δ : Z→ R are such that α(k) ≥ α0 > 0 for all k ∈ Z,
0 < δ(k) ≤ δ̄ = sup

k∈Z
|δ(k)| < +∞ and δ ∈ L1.

(H7) : α0 > δ̄p+C3.
This condition means that the parameter α(.) should be bigger than the parameter

δ̄ and is called the competition phenomenon between α(.) and δ(.).
We also assume that

(H8) : p : Z −→ (1,+∞) with 1 < p− ≤ p+ < +∞.

(H9) : M : (0,+∞) −→ (0,+∞) is continuous, nondecreasing and there exist
three positive real numbers B1, B2, β with B1 ≤ B2, and β ≥ 1 such that

B1t
β−1 ≤M(t) ≤ B2t

β−1, for all t > 0.

Example 2.1 We can give the following functions which satisfy assumptions (H1)−
(H4):
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• A(k, ξ) =
1

p(k)
|ξ|p(k), where a(k, ξ) = |ξ|p(k)−2ξ, ∀k ∈ Z and ξ ∈ R.

• A(k, ξ) =
1

p(k)

((
1+ |ξ|2

)p(k)/2−1

)
, where a(k, ξ) =

(
1+ |ξ|2

)(p(k)−2)/2
ξ, ∀ k ∈ Z

and ξ ∈ R.

We introduce on Lp(.)0,+ and Lp(.)0,+,α(.) the Luxemburg norms

||u||p+(.) := inf

{
λ > 0;

∑
k∈Z+

∣∣∣∣u(k)

λ

∣∣∣∣p(k)

≤ 1

}
,

||u||α(.),p+(.) := inf

{
λ > 0;

∑
k∈Z+

α(k)

∣∣∣∣u(k)

λ

∣∣∣∣p(k)

≤ 1

}
and we define, on the space W1,p(.)

0,+,α(.), the norm

||u||1,α(.),p+(.) := inf

{
λ > 0;

∑
k∈Z+

α(k)

∣∣∣∣u(k)

λ

∣∣∣∣p(k)

+

( ∑
k∈Z+

∣∣∣∣∆u(k)

λ

∣∣∣∣p(k))β
≤ 1

}
.

We replace Z+ by Z− to get the norms on Lp(.)0,−, L
p(.)
0,−,α(.) and W1,p(.)

0,−,α(.).

Remark 2.1 We have the following:

Lp(.)0,+,α(.) ⊃ L
p(.)
0,α(.), L

p(.)
0,−,α(.) ⊃ L

p(.)
0,α(.), W

1,p(.)
0,+,α(.) ⊃ W

1,p(.)
0,α(.) and W1,p(.)

0,−,α(.) ⊃ W
1,p(.)
0,α(.).

Indeed, α(k)|u(k)|p(k) is nonnegative for all k ∈ Z. Therefore, if
∑
k∈Z

α(k)|u(k)|p(k) <

+∞, then
∑
k∈Z+

α(k)|u(k)|p(k) < +∞.

In the sequel, we will use the following result.

Proposition 2.1 ( [6], Proposition 2.5). If u ∈ Lp(.)0,+,α(.) and p+ < ∞, then the

following properties hold:

1. ||u||α(.),p+(.) < 1 =⇒ ||u||p+α(.),p+(.) ≤ ρα(.),p+(.)(u) ≤ ||u||p
−

α(.),p+(.);

2. ||u||α(.),p+(.) > 1 =⇒ ||u||p−α(.),p+(.) ≤ ρα(.),p+(.)(u) ≤ ||u||p
+

α(.),p+(.);

3. ||u||α(.),p+(.) < 1 (= 1;> 1) ⇐⇒ ρα(.),p+(.)(u) < 1 (= 1;> 1);

4. ||u||α(.),p+(.) −→ 0 ⇐⇒ ρα(.),p+(.)(u) −→ 0.

Lemma 2.1 ( [6], Lemma 2.8)(discrete Hölder type inequality). Let u ∈ Lp(.)0,+,α(.)

and v ∈ Lq(.)0,+,α(.) with 1
p(k) + 1

q(k) for any k in Z. Then

∑
k∈Z+

|uv| ≤
(

1

p−
+

1

q−

)
||u||α(.),p+(.)||v||α(.),q+(.). (5)
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As in [6], we have the following results.

Proposition 2.2

1. ρ1,α(.),p+(.)(u+ v) ≤ 2βp
+−1

(
ρ1,α(.),p+(.)(u) + ρ1,α(.),p+(.)(v)

)
, ∀ u, v ∈ W1,p(.)

0,+,α(.).

2. Let u ∈ W1,p(.)
0,+,α(.). Then:

i) if λ > 1, we have

λp
−
ρ1,α(.),p+(.)(u) ≤ ρ1,α(.),p+(.)(λu) ≤ λβp

+

ρ1,α(.),p+(.)(u); (6)

ii) if 0 < λ < 1, we have

λβp
+

ρ1,α(.),p+(.)(u) ≤ ρ1,α(.),p+(.)(λu) ≤ λp
−
ρ1,α(.),p+(.)(u). (7)

Theorem 2.1 Let u ∈ W1,p(.)
0,+,α(.) \ {0}. Then

||u||1,α(.),p+(.) = a if and only if ρ1,α(.),p+(.)(u/a) = 1.

Proposition 2.3 If u ∈ W1,p(.)
0,+,α(.) and p+ <∞, then the following properties hold:

1. ||u||1,α(.),p+(.) < 1 =⇒ ||u||βp
+

1,α(.),p+(.) ≤ ρ1,α(.),p+(.)(u) ≤ ||u||p
−

1,α(.),p+(.);

2. ||u||1,α(.),p+(.) > 1 =⇒ ||u||p−1,α(.),p+(.) ≤ ρ1,α(.),p+(.)(u) ≤ ||u||βp
+

1,α(.),p+(.);

3. ||u||1,α(.),p+(.) < 1 (= 1;> 1) ⇐⇒ ρ1,α(.),p+(.)(u) < 1 (= 1;> 1);

4. ||u||1,α(.),p+(.) −→ 0 ⇐⇒ ρ1,α(.),p+(.)(u) −→ 0.

3 Existence of Weak Heteroclinic Solutions

In this section we investigate the existence of weak heteroclinic solutions of problem (1)
in the following sense.

Definition 3.1 A weak heteroclinic solution of problem (1) is a function u ∈ W1,p(.)
0,α(.)

such that 
M

(∑
k∈Z

A
(
k − 1,∆u(k − 1)

))∑
k∈Z

a(k − 1,∆u(k − 1))∆v(k − 1)

+
∑
k∈Z

α(k)|u(k)|p(k)−2u(k)v(k) =
∑
k∈Z

δ(k)f
(
k, u(k)

)
v(k),

(8)

for any v ∈ W1,p(.)
0,α(.), with u(0) = 0, lim

k→−∞
u(k) = −1 and lim

k→+∞
u(k) = 1.

The main result is the following.

Theorem 3.1 Assume that assumptions (H1)-(H9) hold true. Then, there exists at
least one weak heteroclinic solution of problem (1).
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Proof. We first consider the following problem

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1)))

+α(k)|u(k)|p(k)−2u(k) = δ(k)f
(
k, u(k) + 1

)
, k ∈ Z+

∗ ,

u(0) = 0, lim
k→+∞

u(k) = 0.

(9)

Definition 3.2 A weak solution of problem (9) is a function u ∈ W1,p(.)
0,+,α(.) such that

M

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

)) +∞∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+

+∞∑
k=1

α(k)|u(k)|p(k)−2u(k)v(k) =

+∞∑
k=1

δ(k)f
(
k, u(k) + 1

)
v(k),

(10)

for any v ∈ W1,p(.)
0,+,α(.).

Theorem 3.2 Assume that hypotheses (H1)-(H9) hold. Then, there exists at least
one weak solution of problem (9).

To prove Theorem 3.2, we consider the energy functional corresponding to problem

(9) defined by J :W1,p(.)
0,+,α(.) −→ R such that

J(u) = M̂

( +∞∑
k=1

A
(
k−1,∆u(k−1)

))
+

+∞∑
k=1

α(k)

p(k)
|u(k)|p(k)−

+∞∑
k=1

δ(k)F
(
k, u(k)+1

)
, (11)

where M̂(t) =

∫ t

0

M(s) ds and we present some basic properties of the functional J .

Proposition 3.1 The functional J is well defined on W1,p(.)
0,+,α(.) and is of class

C1
(
W1,p(.)

0,+,α(.),R
)

with the derivative given by

〈J ′(u), v〉 = M

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

)) +∞∑
k=1

a(k − 1,∆u(k − 1))∆v(k − 1)

+

+∞∑
k=1

α(k)|u(k)|p(k)−2u(k)v(k)−
+∞∑
k=1

δ(k)f
(
k, u(k) + 1

)
v(k),

(12)

for all u, v ∈ W1,p(.)
0,+,α(.).

Indeed, we denote

I(u) = M̂

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

))
, L(u) =

+∞∑
k=1

α(k)

p(k)
|u(k)|p(k)
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and

Λ(u) =

+∞∑
k=1

δ(k)F
(
k, u(k) + 1

)
.

We have, by using (H9), that

|I(u)| =

∣∣∣∣ ∫
+∞∑
k=1

A
(
k − 1,∆u(k − 1)

)
0

M(t)dt

∣∣∣∣
≤ B2

∣∣∣∣ ∫
+∞∑
k=1

A
(
k − 1,∆u(k − 1)

)
0

tβ−1dt

∣∣∣∣
≤ B2

β

( +∞∑
k=1

∣∣A(k − 1,∆u(k − 1))
∣∣)β .

According to (H1), (H3) and the discrete Hölder type inequality, we write

+∞∑
k=1

∣∣A(k − 1,∆u(k − 1))
∣∣ ≤

+∞∑
k=1

∫ ∆u(k−1)

0

|a(k − 1, t)|dt

≤ C1

+∞∑
k=1

(
j(k − 1) +

1

p(k − 1)
|∆u(k − 1)|p(k−1)−1

)
∆u(k − 1)

≤ C1

+∞∑
k=1

j(k − 1)|∆u(k − 1)|+ C1

p−

+∞∑
k=1

|∆u(k − 1)|p(k−1)

≤ C1

(
1

q−
+

1

p−

)
||j||q+(.)||∆u||p+(.) +

C1

p−
||∆u||p+(.)

< +∞

and we deduce that |I(u)| < +∞. We have

|L(u)| =
∣∣∣∣ +∞∑
k=1

α(k)

p(k)
|u(k)|p(k)

∣∣∣∣ ≤ 1

p−

∣∣∣∣ +∞∑
k=1

α(k)|u(k)|p(k)

∣∣∣∣ < +∞

and

|Λ(u)| =

∣∣∣∣ +∞∑
k=1

δ(k)F
(
k, u(k) + 1

)∣∣∣∣
≤

+∞∑
k=1

|δ(k)||F
(
k, u(k) + 1

)
|

≤
+∞∑
k=1

C3|δ(k)|
(
1 + |u(k)|p(k)

)
≤ C3

+∞∑
k=1

|δ(k)|+ C3δ̄

+∞∑
k=1

|u(k)|p(k)

< +∞.
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Hence, J is well-defined. Clearly, the functionals I, L and Λ are in C1
(
W1,p(.)

0,+,α(.),R
)
.

In what follows we prove (12). Let u, v ∈ W1,p(.)
0,+,α(.). Since

lim
λ→0+

I(u+ λv)− I(u)

λ

= lim
λ→0+

M̂

(+∞∑
k=1

A
(
k−1,∆u(k−1)+λ∆v(k−1)

))
−M̂

(+∞∑
k=1

A
(
k−1,∆u(k−1)

))
λ

= M

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

)) +∞∑
k=1

a
(
k − 1,∆u(k − 1)

)
∆v(k − 1),

lim
λ→0+

L(u+ λv)− L(u)

λ
= lim
λ→0+

+∞∑
k=1

|u(k) + λv(k)|p(k) − |u(k)|p(k)

p(k)λ

=

+∞∑
k=1

lim
λ→0+

|u(k) + λv(k)|p(k) − |u(k)|p(k)

p(k)λ

=

+∞∑
k=1

|u(k)|p(k)−2u(k)v(k)

and

lim
λ→0+

Λ(u+ λv)− Λ(u)

λ
= lim
λ→0+

+∞∑
k=1

δ(k)
F
(
k, u(k) + λv(k) + 1

)
− F

(
k, u(k) + 1

)
λ

=

+∞∑
k=1

δ(k) lim
λ→0+

F
(
k, u(k) + λv(k) + 1

)
− F

(
k, u(k) + 1

)
λ

=

+∞∑
k=1

δ(k)f
(
k, u(k) + 1

)
v(k),

we obtain the relation (12). �

Proposition 3.2 The functional J is weakly lower semi-continuous.

Indeed, by (H1), (H4) and (H9) we have that J is convex. Thus, it is enough to show

that J is lower semi-continuous. For this, we fix u ∈ W1,p(.)
0,+,α(.) and ε > 0. Since J is

convex, we deduce that for any v ∈ W1,p(.)
0,+,α(.),

J(v) ≥ J(u) + 〈J ′(u), v − u〉
≥ J(u) +R(u, v) + S(u, v) + T (u, v),

with

R(u, v) = M

( +∞∑
k=1

A
(
k− 1,∆u(k− 1)

)) +∞∑
k=1

a(k− 1,∆u(k− 1))
(
∆v(k− 1)−∆u(k− 1)

)
,
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S(u, v) =

+∞∑
k=1

|u(k)|p(k)−2u(k)
(
v(k)− u(k)

)
and

T (u, v) =

+∞∑
k=1

δ(k)f
(
k, u(k) + 1

)(
u(k)− v(k)

)
.

Using the discrete Hölder type inequality, there exists three nonnegative constants C4, C5

and C6 such that

R(u, v)≥ −M
( +∞∑
k=1

A
(
k−1,∆u(k−1)

))+∞∑
k=1

|a(k−1,∆u(k−1))||∆v(k−1)−∆u(k−1)|

≥ −C ′4||∆u−∆v||α(.),p+(.)

≥ −C4||u− v||1,α(.),p+(.), (13)

T (u, v) ≥ −C5||u− v||1,α(.),p+(.) (14)

and

S(u, v) ≥ −
+∞∑
k=1

|u(k)|p(k)−1|v(k)− u(k)|

≥ −
(

1

p−
+

1

q−

)∣∣∣∣|u|p(.)−1
∣∣∣∣
α(.),q+(.)

||u− v||α(.),p+(.)

≥ −C6||u− v||1,α(.),p+(.). (15)

Then, combining (13), (14) and (15), we get

J(v) ≥ J(u)−K||u− v||1,α(.),p+(.), (16)

with K = C4 + C5 + C6. Finally, for all v ∈ W1,p(.)
0,+,α(.) with ||v − u||1,α(.),p+(.) < τ =

ε

K
,

we get

J(v) ≥ J(u)− ε.

Then J is lower semi-continuous and by [1], Corollary III.8, J is weakly lower semi-
continuous. �

Proposition 3.3 The functional J is coercive and bounded from below.
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Indeed, according to (H2), (H5)− (H9) , we have

J(u) = M̂

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

))
+

+∞∑
k=1

α(k)

p(k)
|u(k)|p(k) −

+∞∑
k=1

δ(k)F
(
k, u(k) + 1

)
≥ B1

β

( +∞∑
k=1

A
(
k − 1,∆u(k − 1)

))β
+

1

p+

+∞∑
k=1

α(k)|u(k)|p(k)

−C3

+∞∑
k=1

δ(k)|u(k)|p(k) − C7

≥ B1

β

( +∞∑
k=1

1

p(k − 1)

∣∣∆u(k − 1)
∣∣p(k−1)

)β
+

1

p+

+∞∑
k=1

α(k)|u(k)|p(k)

−C3δ̄

α0

+∞∑
k=1

α(k)|u(k)|p(k)

≥ B1

β(p+)β

( +∞∑
k=1

∣∣∆u(k − 1)
∣∣p(k−1)

)β
+

(
1

p+
− C3δ̄

α0

) +∞∑
k=1

α(k)|u(k)|p(k) − C7

≥ min

{
B1

β(p+)β
;

1

p+
− C3δ̄

α0

}
ρ1,α(.),p+(.)(u)− C7.

To prove the coerciveness of the functional J , we may assume that ||u||1,α(.),p+(.) > 1
and, using Proposition 2.3, we deduce from the above inequality that

J(u) ≥ min

{
B1

β(p+)β
;

1

p+
− C3δ̄

α0

}
||u||p

−

1,α(.),p+(.) − C7.

Thus, by assumption (H7),

J(u) −→ +∞ as ||u||1,α(.),p+(.) −→ +∞,

namely J is coercive. Besides, for ||u||1,α(.),p+(.) ≤ 1, we have

J(u) ≥ min

{
B1

β(p+)β
;

1

p+
− C3δ̄

α0

}
ρ1,α(.),p+(.)(u)− C7.

≥ −C7 > −∞.

Thus J is bounded from below. �
Since J is weakly lower semi-continuous, bounded from below and coercive on

W1,p(.)
0,+,α(.), using the relation between critical points of J and problem (9), we deduce

that J has a minimizer which is a weak solution of (9).

We will show that every weak solution u of (9) is such that u(k)→ 0 as k → +∞. Let

u be a weak solution of problem (9). Since u ∈ W1,p(.)
0,+,α(.), we have

+∞∑
k=1

|u(k)|p(k) < +∞.

Denote

S1 = {k ∈ Z+
∗ ; |u(k)| < 1} and S2 = {k ∈ Z+

∗ ; |u(k)| ≥ 1}.
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Since u ∈ W1,p(.)
0,+,α(.), S2 is necessary a finite set and |u(k)| < +∞ for any k ∈ S2.

As S2 is a finite set, then
∑
k∈S2

|u(k)|p
+

< +∞.

On the other hand, we have
∑
k∈S1

|u(k)|p
+

≤
∑
k∈S1

|u(k)|p(k) ≤
+∞∑
k=1

|u(k)|p(k) < +∞.

Therefore,
+∞∑
k=1

|u(k)|p
+

=
∑
k∈S1

|u(k)|p
+

+
∑
k∈S2

|u(k)|p
+

< +∞.

Thus, lim
k→+∞

|u(k)| = 0, which completes the proof of Theorem 3.2. �

To end the proof of Theorem 3.1, let us consider the following problem

−M(A(k − 1,∆u(k − 1)))∆(a(k − 1,∆u(k − 1)))

+α(k)|u(k)|p(k)−2u(k) = δ(k)f
(
k, u(k)− 1

)
, k ∈ Z−∗ ,

u(0) = 0, lim
k→−∞

u(k) = 0.

(17)

Definition 3.3 A weak solution of problem (17) is a function u ∈ W1,p(.)
0,−,α(.) such

that 

M

( 0∑
k=−∞

A
(
k − 1,∆u(k − 1)

)) 0∑
k=−∞

a(k − 1,∆u(k − 1))∆v(k − 1)

+

0∑
k=−∞

α(k)|u(k)|p(k)−2u(k)v(k) =

0∑
k=−∞

δ(k)f
(
k, u(k)− 1

)
v(k),

(18)

for any v ∈ W1,p(.)
0,−,α(.).

By mimicking the proof of Theorem 3.2, we prove the following result.

Theorem 3.3 Assume that assumptions (H1)-(H9) hold true. Then, there exists at
least one weak solution of (17).

Now, we end the proof of Theorem 3.1. For this, we define v1 = u1 + 1, where u1 is
a weak solution of problem (9) and v2 = u2 − 1, where u2 is a weak solution of problem
(17). Therefore, according to (H5), we deduce that

u = v1χZ+ + v2χZ− (19)

is a weak heteroclinic solution of problem (1). �
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