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Entropy Solutions of Nonlinear p(x)-Parabolic

Inequalities

Youssef Akdim ∗, Allalou Chakir, Nezha El gorch and Mounir Mekkour

Sidi Mohamed Ben Abdellah University, Laboratory LSI Poly-Disciplinary Faculty of Taza
P.O. Box 1223, Taza Gare, Morocco

Received: July 24, 2017; Revised: March 29, 2018

Abstract: In this paper we prove the existence of entropy solutions for weighted
p(x)-parabolic problem associated with the equation:

∂u

∂t
+Au = g(u)ω(x)

∣∣∣∇u∣∣∣p(x)

+ f in Ω× (0, T ),

where the operator Au = −div
(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)

and on the right-hand side f

belongs to L1(Ω× (0, T )) and ω(x) is a weight function.

Keywords: parabolic problems; entropy solutions; Sobolev space with variable expo-
nent; penalized equations.

Mathematics Subject Classification (2010): 47A15, 46A32, 47D20.

1 Introduction

Let Ω be an open bounded subset of RN , N ≥ 2, T be a positive real number and
Q = Ω × (0, T ), while the variable exponent p : Ω̄ → (1,∞) is a continuous function,
the data f ∈ L1(Q) and u0 ∈ L1(Ω). The objective of this paper is to study the existence
of an entropy solution for the obstacle parabolic problems of the type:

u ≥ ψ, a.e. in Ω× (0, T ),

∂u
∂t − div

(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)

= ω(x)g(u)
∣∣∣∇u∣∣∣p(x)

+ f, in Ω× (0, T ),

u(x, 0) = u0, in Ω,

u = 0, on ∂Ω× (0, T ).

(1)

∗ Corresponding author: mailto:akdimyoussef@yahoo.fr

c© 2018 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua107



108 Y. AKDIM, C. ALLALOU, N. EL GORCH AND M. MEKKOUR

The operator −div
(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)

is a Leray-Lions operator defined on

Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)) which is coercive.

In recent years, the study of partial differential equations and variational problems
with variable exponent has received considerable attention in many models coming from
various branches of mathematical physics, such as elastic mechanics,electro-rheological
fluid dynamics and image processing, etc. We refer the readers to [12, 22]. Degenerate
phenomena appear in the area of oceanography, turbulent fluid flows, induction heating
and electrochemical problems.The notion of entropy solutions has been proposed by
Bènilan et al. in [8] for the nonlinear elliptic problems.

Recently, when ω(x) ≡ 1, the existence and uniqueness of entropy solutions of p(x)-
Laplace equation with L1 data were proved in [24]by Sanchón and Urbano. This notion
was adapted to the study of the entropy solutions for nonlinear elliptic equations with
variable exponents by Chao Zhang in [26] and the existence of solutions of some unilateral
problems in the framework of Orlicz spaces has been established by M. Kbiri Alaoui, D.
Meskine, A. Souissi in [17] in terms of the penalization method. E. Azroul, H. Redwane
and M. Rhoudaf [5] have proved the existence of renormalized solution in Orlicz spaces
in the case where b(u) = u. Fortunately, Kim, Wang and Zhang [18]have shown good
properties of a function space and the so-called weighted variable exponent Lebesque-
Sobolev spaces, and the existence and some properties of solutions for degenerate elliptic
equations with exponent variable have been proved by Ky Ho, Inbo Sim [16].Other work
in this direction can be found in [4] by Y. Akdim, C. Allalou, N. El gorch.

Now we review some definitions and basic properties of the weighted variable ex-
ponent Lebesgue spaces Lp(x)(Ω, ω) and the weighted variable exponent Sobolev spaces
W 1,p(x)(Ω, ω).

Let ω be a mesurable positive and a.e. finite function in RN . Set

C+(Ω) = {h ∈ C(Ω) : min
x∈Ω

h(x) > 1}.

For any h ∈ C+(Ω), we define h+ = maxx∈Ω h(x), h− = minx∈Ω h(x).

For any p ∈ C+(Ω), we introduce the weighted variable exponent Lebesgue space
Lp(x)(Ω, ω) which consists of all measurable real-valued functions u such that∫

Ω

∣∣∣u(x)
∣∣∣p(x)

ω(x)dx <∞,

endowed with the Luxemburg norm

||u||Lp(x)(Ω,ω) = inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)

λ

∣∣∣p(x)

ω(x)dx ≤ 1
}

becomes a normed space. When ω(x) ≡ 1, we have Lp(x)(Ω, ω) ≡ Lp(x)(Ω) and we use
the notation ||u||Lp(x)(Ω) instead of ‖u‖Lp(x)(Ω,w). The following Hölder type inequality is

useful for the next sections. The weighted variable exponent Sobolev space W 1,p(x)(Ω, ω)
is defined by

W 1,p(x)(Ω, ω) =
{
u ∈ Lp(x)(Ω);

∣∣∣∇u∣∣∣ ∈ Lp(x)(Ω, ω)
}

with the norm

‖u‖W 1,p(x)(Ω,ω) = ||u||Lp(x)(Ω) + ||∇u||Lp(x)(Ω,ω) (2)
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or, equivalently

‖u‖W 1,p(x)(Ω,ω) = inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)

λ

∣∣∣p(x)

+ ω(x)
∣∣∣∇u(x)

λ

∣∣∣p(x)

dx ≤ 1
}

for all u ∈W 1,p(x)(Ω, ω).
It is significant that smooth functions are not dense in W 1,p(x)(Ω) without additional

assumptions on the exponent p(x). This feature was observed by Zhikov [27] in connec-
tion with the Lavrentiev phenomenon. However, when the exponent p(x) is log-Hölder
continuous, i.e., there is a constant C such that

|p(x)− p(y)| ≤ C

− log |x− y|
(3)

for every x, y with |x − y| ≤ 1
2 , then smooth functions are dense in variable exponent

Sobolev spaces and there is no confusion in defining the Sobolev space with zero boundary

values, W
1,p(x)
0 (Ω), as the completion of C∞0 (Ω) with respect to the norm ‖u‖W 1,p(x)(Ω)

(see [15]). W
1,p(x)
0 (Ω, ω) is defined as the completion of C∞0 (Ω) in W 1,p(x)(Ω, ω) with

respect to the norm ‖u‖W 1,p(x)(Ω,ω). Throughout the paper, we assume that p ∈ C+(Ω)
and ω is a measurable positive and a.e. finite function in Ω.

The plan of the paper is as follows. Section 2 presents the mathematical preliminaries.
In Section 3 we make precise all the assumptions on A, g, f and u0,and give the definition
of an entropy solution of (P). In Section 4 we establish the existence of such a solution
in Theorem 4.1.

2 Preliminaries

In this section, we state some elementary properties for the weighted variable exponent
Lebesgue-Sobolev spaces which will be used in the next sections. The basic properties
of the variable exponent Lebesgue-Sobolev spaces, that is when ω(x) ≡ 1, can be found
in [13,19].

Lemma 2.1 (See [13, 19])(Generalised Hölder inequality).

i) For any functions u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have∣∣∣ ∫
Ω

uvdx
∣∣∣ ≤ (

1

p−
+

1

p′−
)||u||p(x)||v||p′(x) ≤ 2||u||p(x)||v||p′(x).

ii) For all p, q ∈ C+(Ω̄) such that p(x) ≤ q(x) a.e. in Ω, we have
Lq(.) ↪→ Lp(x) and the embedding is continuous.

Lemma 2.2 (See [18]) Denote ρ(u) =

∫
Ω

ω(x)
∣∣∣u(x)

∣∣∣p(x)

dx for all u ∈ Lp(x)(Ω, ω).

Then

||u||Lp(x)(Ω,ω) < 1(= 1;> 1) if and only if ρ(u) < 1(= 1;> 1), (4)

if ||u||Lp(x)(Ω,ω) > 1 then ||u||p
−

Lp(x)(Ω,ω)
≤ ρ(u) ≤ ||u||p

+

Lp(x)(Ω,ω)
, (5)

if ||u||Lp(x)(Ω,ω) < 1 then ||u||p
+

Lp(x)(Ω,ω)
≤ ρ(u) ≤ ||u||p

−

Lp(x)(Ω,ω)
. (6)
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Remark 2.1 ( [23].) We set

I(u) =

∫
Ω

∣∣∣u(x)
∣∣∣p(x)

+ ω(x)|∇u(x)|p(x)dx.

Then, following the same argumen, we have

min
{
‖u‖p

−

W 1,p(x)(Ω,ω)
, ‖u‖p

+

W 1,p(x)(Ω,ω)

}
≤ I(u) ≤ max

{
‖u‖p

−

W 1,p(x)(Ω,ω)
, ‖u‖p

+

W 1,p(x)(Ω,ω)

}
.

Throughout the paper, we assume that ω is a measurable positive and a.e. finite
function in Ω satisfying the following relations:

(W1) ω ∈ L1
loc(Ω) and ω−

1
(p(x)−1) ∈ L1

loc(Ω);

(W2) ω−s(x) ∈ L1(Ω) with s(x) ∈ ( N
p(x) ,∞) ∩ [ 1

p(x)−1 ,∞).

The reasons why we assume (W1) and (W2) can be found in [18].

Remark 2.2 ( [18].) (i) If ω is a positive measurable and finite function, then
Lp(x)(Ω, ω) is a reflexive Banach space.
(ii) Moreover, if (W1) holds, then W 1,p(x)(Ω, ω) is a reflexive Banach space.

For p, s ∈ C+(Ω), denote

ps(x) =
p(x)s(x)

s(x) + 1
< p(x),

where s(x) is given in (W2). Assume that we fix the variable exponent restrictions

p∗s(x) =

{
p(x)s(x)N

(s(x)+1)N−p(x)s(x) , if N > ps(x),

arbitrary, if N ≤ ps(x),

for almost all x ∈ Ω. These definitions play a key role in our paper. We shall frequently
make use of the following (compact) imbedding lemma for the weighted variable exponent
Lebesgue-Sobolev space in the next sections.

Lemma 2.3 ( [18].) Let p, s ∈ C+(Ω) satisfy the log-Hölder continuity condition
(3), and let (W1) and (W2) be satisfied. If r ∈ C+(Ω)) and 1 < r(x) ≤ p∗s, then we
obtain the continuous imbedding

W 1,p(x)(Ω, ω) ↪→ Lr(x)(Ω).

Moreover, we have the compact imbedding

W 1,p(x)(Ω, ω) ↪→ Lr(x)(Ω),

provided that 1 < r(x) < p∗s(x) for all x ∈ Ω.

From Lemma 2.3, we have Poincaré-type inequality immediately.

Corollary 2.1 ( [18].) Let p ∈ C+(Ω) satisfy the log-Hölder continuity condition
(3). If (W1) and (W2) hold, then the estimate

‖u‖Lp(x)(Ω) ≤ C‖∇u‖Lp(x)(Ω,ω)

holds for every u ∈ C∞0 (Ω) with a positive constant C independent of u.
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Throughout this paper, let p ∈ C+(Ω) satisfy the log-Hölder continuity condition (3)

and X := W
1,p(x)
0 (Ω, ω) be the weighted variable exponent Sobolev space that consists of

all real valued functions u from W 1,p(x)(Ω, ω) which vanish on the boundary ∂Ω, endowed
with the norm

‖u‖X = inf
{
λ > 0 :

∫
Ω

∣∣∣∇u(x)

λ

∣∣∣p(x)

ω(x)dx ≤ 1
}
,

which is equivalent to the norm (2) due to Corollary 2.1. The following proposition gives

the characterization of the dual space (W
k,p(x)
0 (Ω, ω))∗, which is analogous to [ [19],

Theorem 3.16]. We recall that the dual space of weighted Sobolev spaces W
1,p(x)
0 (Ω, ω)

is equivalent to W−1,p′(x)(Ω, ω), where ω∗ = ω1−p′(x).
We will also use the standard notation for Bochner spaces, i.e., if q ≥ 1 and X

is a Banach space, then Lq(0, T ;X) denotes the space of strongly measurable function
u : (0, T ) → X for which t → ‖u(t)‖X ∈ Lq(0, T ) Moreover, C([0;T ];X) denotes the
space of continuous function u : [0;T ] → X endowed with the norm ‖u‖C([0;T ];X) =
maxt∈[0;T ]‖u‖X ,

Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)) =

{
u : (0, T )→W

1,p(x)
0 (Ω, ω) measurable;

(

∫ T

0

‖u(t)‖p
−

W
1,p(x)
0 (Ω,ω)

)1/p−

<∞
}

and we define the space

L∞(0, T ;X) =
{
u : (0, T )→ X measurable; ∃C > 0/‖u(t)‖X ≤ C a.e.

}
,

where the norm is defined by:

‖u‖L∞(0,T ;X) = inf
{
C > 0; ‖u(t)‖X ≤ C a.e.

}
.

We introduce the functional space (see [6])

V =
{
f ∈ Lp

−
(0, T ;W

1,p(x)
0 (Ω, ω)); |∇f | ∈ Lp(x)(Q,ω)

}
, (7)

endowed with the norm

‖f‖V = ‖∇f‖Lp(x)(Q,ω)

or the equivalent norm

‖|f‖|V = ‖f‖
Lp− (0,T ;W

1,p(x)
0 (Ω,ω))

+ ‖∇f‖Lp(x)(Q,ω),

which is a separable and reflexive Banach space. The equivalence of the two norms is an
easy consequence of the continuous embedding Lp(x)(Q) ↪→ Lp

−
(0, T ;Lp(x)(Ω)) and the

Poincaré inequality. We state some further properties of V in the following lemma.

Lemma 2.4 Let V be defined as in (7) and its dual space be denoted by V ∗. Then
i) We have the following continuous dense embeddings:

Lp
+

(0, T ;W
1,p(x)
0 (Ω, ω)) ↪→ V ↪→ Lp

−
(0, T ;W

1,p(x)
0 (Ω, ω)).
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In particular, since D(Q) is dense in Lp
+

(0, T ;W
1,p(x)
0 (Ω, ω), it is dense in V and for

the corresponding dual spaces, we have

L(p−)
′

(0, T ; (W
1,p(x)
0 (Ω, ω))∗) ↪→ V ∗ ↪→ L(p+)

′

(0, T ;W
1,p(x)
0 (Ω, ω))∗).

Note that we have the following continuous dense embeddings

Lp
+

(0, T ;Lp(x)(Ω, ω)) ↪→ Lp(x)(Q,ω) ↪→ Lp
−

(0, T ;Lp(x)(Ω, ω)).

ii) One can represent the elements of V ∗ as follows: if T ∈ V ∗, then there exists F =
(f1, ...., fN ) ∈ (Lp

′(x)(Q))N such that T = divXF and

〈T, ξ〉V ∗,V =

∫ T

0

∫
Ω

F · ∇ξdxdt

for any ξ ∈ V . Moreover, we have

‖T‖V ∗ = max
{
‖fi‖Lp(.)(Q,ω), i = 1, ...., n

}
.

Remark 2.3 The space V ∩ L∞(Q), endowed with the norm

‖v‖V ∩L∞(Q) = max
{
‖v‖V , ‖v‖L∞(Q)

}
, v ∈ V ∩ L∞(Q),

is a Banach space. In fact, it is the dual space of the Banach space V + L1(Q) endowed
with the norm

‖v‖V ∗+L1(Q) := inf
{
‖v1‖V ∗ + ‖v2‖L1(Q)

}
; v = v1 + v2, v1 ∈ V ∗, v2 ∈ L1(Q).

2.1 Some technical results

This subsection introduces some basic technical lemmas and results that will be needed
throughout this paper. For some details concerning the related issues, the reader can
consult papers [7, 9].

Lemma 2.5 (see [3]) Assume (9) and let (un)n be a sequence in

Lp
−

(0, T,W
1,p(x)
0 (Ω, ω)) such that un ⇀ u weakly in Lp

−
(0, T,W

1,p(x)
0 (Ω, ω)) and∫

Q

(
a(x, t, un,∇un)− a(x, t, un,∇u)

)
· ∇(un − u)dxdt→ 0. (8)

Then un → u strongly in Lp
−

(0, T,W
1,p(x)
0 (Ω, ω)).

Besides, a(x, t, u,∇u) =
(∣∣∣∇u∣∣∣p(x)−2

∇u
)

in our case.

Lemma 2.6 ( [6]) Let g ∈ Lp(x)(Q,ω) and let gn ∈ Lp(x)(Q,ω), with
‖gn‖Lp(x)(Q,ω) ≤ c, 1 < r(x) < ∞. If gn(x) → g(x) a.e. in Q, then gn ⇀ g in

Lp(.)(Q,ω), where ⇀ denotes weak convergence and ω is a weight function on Q.

Lemma 2.7 (See [23]) W :=
{
u ∈ V ;ut ∈ V ∗ + L1(Q)

}
↪→ C([0, T ];L1(Ω)) and

W ∩ L∞(Q) ↪→ C([0, T ];L2(Ω)).
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3 Assumptions and Definition

Throughout this paper, we assume that the following assumptions hold true.

3.1 Basic assumptions

Let Ω be an open bounded subset of RN , N ≥ 2, T > 0 be a positive real number
and let us set Q = Ω × (0, T ) and let p ∈ C+(Ω̄) and assume that p(x) satisfies the
log-Hölder condition (3) with 1 < p− ≤ p(x) ≤ p+ < ∞. The differential operator
A : Ω× [0, T ]× R× RN → R defined by

Au = −div
(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)
, (9)

is a Leray-Lions operator which is coercive and

g : R→ R+ (10)

is a bounded and continuous positive function that belongs to L∞(R),

f is an element of L1(Q), u0 ∈ L1(Ω), u0 ≥ 0 and p ∈ C+(Ω̄). (11)

Let ψ be a measurable function with values in R such that ψ ∈ W 1,p(x)
0 (Ω, ω) ∩ L∞(Ω),

(see [17]), K is defined by: K =
{
u ∈ W 1,p(x)

0 (Ω, ω); u(x) ≥ ψ(x) a.e. in Ω
}

and

consider the convex set
Kψ =

{
u ∈ V, u(t) ∈ K

}
.

We recall that, for k > 0 and s ∈ R, the truncation function Tk(.) is defined by

Tk(s) =

{
s, if |s| ≤ k,
k s
|s| , if |s| ≥ k.

3.2 Definition of entropy solution

Definition 3.1 Let f ∈ L1(Q) and u0 ∈ L1(Ω). A measurable function u defined on
Q is a unilateral entropy solution of problem (P) if

u ≥ ψ a.e. in Q, (12)

Tk(u) ∈ Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)), for all k ≥ 0 and u ∈ C(0, T ;L1(Ω)), (13)∫

Ω

[
Sk(u− v)

]T
0
dx+

∫
Q

∂v

∂t
Tk(u− v)dxdt

+

∫
Q

ω(x)
∣∣∣∇u∣∣∣p(x)−2

∇u∇Tk(u− v)dxdt

≤
∫
Q

ω(x)g(u)
∣∣∣∇u∣∣∣p(x)

Tk(u− v)dxdt (14)

+

∫
Q

fTk(u− v)dxdt,

for all v ∈ Kψ ∩ L∞(Q), ∂v∂t ∈ L(p−)
′

(0, T ; (W
1,p(x)
0 (Ω, ω))∗), where Sk(s) =∫ s

0

Tk(r)dr ∀k > 0.
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4 The Principal Result

The aim of the present work is to prove the following result.

Theorem 4.1 Under assumptions (9)-(11), there exists at least one unilateral en-
tropy solution of problem (1).

Proof of Theoreme 4.1. Existence of entropy solutions.
We first introduce the approximate problems. Find two sequences of functions {fn} ⊂

Lp
′(x)(Q) and {u0n} ⊂ D(Ω) strongly converging with respct to f in L1(Q) and to u0 in

L1(Ω) such that

‖fn‖L1(Q) ≤ ‖f‖L1(Q) and ‖u0n‖L1(Ω) ≤ ‖u0‖L1(Ω). (15)

Then, we consider the approximate problem of

∂un
∂t − div

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
− nTn

(
(un − ψ)−

)
= ω(x)g(un)

∣∣∣∇un∣∣∣p(x)

+ fn, in D′(Q),

un = 0, on ∂Ω× (0, T ),

un(t = 0) = u0n, in Ω.

(16)

Moreover, since fn ∈ L(p−)
′

(0, T ; (W
1,p(x)
0 (Ω, ω))∗), proving the existence of weak solu-

tion un ∈ Lp
−

(0, T ;W
1,p(.)
0 (Ω)) of (16) is an easy task (see [4] ).

Our aim is to prove that a subsequence of these approximate solution un converges
to a measurable function u, which is an entropy solution of the problem.

Step 1: A priori estimates. The estimate derived in this step relies on standard
techniques for problems of the type (16).

Proposition 4.1 Assume that (9)-(11) hold true and let un be a solution of the
approximate problem (16). Then for all k > 0, we have

‖Tk(un)‖
Lp− (0,T,W

1,p(x)
0 (Ω,ω))

≤ C k for all n ∈ N,

where C is a constant independent of n.

Proof. Let h > k > 0 and consider the test function ϕ = Th

(
un −

Tk(un)
)

exp(G(un)) ∈ Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)) ∪ L∞(Q) in the approximate problem

(16), where G(s) =

∫ s

0

g(r)dr, we have

〈〈∂un
∂t

, Th

(
un − Tk(un)

)
exp(G(un))

〉〉
+

∫
{k≤|un|≤k+h}

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇un exp(G(un))dxdt

+

∫
Q

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇unTh

(
un − Tk(un)

)
g(un) exp(G(un))dxdt

−
∫
Q

nTn

(
(un − ψ)−

)
Th

(
un − Tk(un)

)
exp(G(un))dxdt
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=

∫
Q

ω(x)g(un)
∣∣∣∇un∣∣∣p(x)

Th

(
un − Tk(un)

)
exp(G(un))dxdt

+

∫
Q

fnTh

(
un − Tk(un)

)
exp(G(un))dxdt,

then〈〈∂un
∂t

, Th(un − Tk(un)) exp(G(un))
〉〉

+

∫
{k≤|un|≤k+h}

ω(x)
∣∣∣∇un∣∣∣p(x)

exp(G(un))dxdt

−
∫
Q

nTn

(
(un − ψ)−

)
Th(un − Tk(un)) exp(G(un))dxdt

=

∫
Q

fnTh

(
un − Tk(un)

)
exp(G(un))dxdt.

On the one hand, we have〈〈∂un
∂t

, Th

(
un − Tk(un)

)
exp(G(un))

〉〉
=

∫
Ω

Skh(un(T ))dx−
∫

Ω

Skh(u0n)dx,

where Skh(s) =

∫ s

0

Th

(
q − Tk(q)

)
exp(G(q))dq, and by using the fact that∫

Ω

Skh(un(T ))dx ≥ 0 and

∫
Ω

Skh(u0n)dx ≤ h exp(‖g‖L1(R))‖u0n‖L1(Ω), we get

∫
{k≤|un|≤k+h}

ω(x)
∣∣∣∇un∣∣∣p(x)

exp(G(un))dxdt

−
∫
Q

nTn

(
(un − ψ)−

)
Th

(
un − Tk(un)

)
exp(G(un))dxdt

≤ h exp(‖g‖L1(R))
[
‖fn‖L1(Q) + ‖u0n‖L1(Ω)

]
.

We have∫
{k≤|un|≤k+h}

ω(x)
∣∣∣∇un∣∣∣p(x)

exp(G(un))dxdt

−
∫
Q

nTn

(
(un − ψ)−

)
Th

(
un − Tk(un)

)
exp(G(un))dxdt

≤ C1h. (17)

We obtain∫
{k≤|un|≤k+h}

ω(x)
∣∣∣∇un∣∣∣p(x)

exp(G(un))dxdt

≤ C1h+ (h+ k)‖g‖∞ exp(‖g‖L1(R))

∫
Q

nTn

(
(un − ψ)−

)
dxdt,

then ∫
{k≤|un|≤k+h}

ω(x)
∣∣∣∇un∣∣∣p(x)

exp(G(un))dxdt ≤ C2h

∫
Q

nTn

(
(un − ψ)−

)
dxdt.
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Let us take ρ1(un) =

∫ un

0

g(s)χ{|s|≤k}ds exp(G(un)) as a test function of (16) , we obtain

[ ∫
Ω

ϕ2(un)dx
]T

0
+

∫
Q

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))χ{|un|≤k}dxdt

−
∫
Q

nTn

(
(un − ψ)−

)
ρ1(un)dxdt

≤
(∫ ∞

0

g(s)ds
)

exp
(
‖g‖L1(R)

)
‖fn‖L1(Q),

where ϕ2(r) =

∫ r

0

ρ1(s)ds, which implies, in view of ϕ2(r) ≥ 0, that∫
{|un|≤k}

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt

≤ ‖g‖∞ exp
(
‖g‖L1(R)

)[
‖fn‖L1(Q) + ‖u0‖L1(Ω)

]
+(h+ k)‖g‖∞ exp(‖g‖L1(R))

∫
Q

nTn

(
(un − ψ)−

)
dxdt.

Then ∫
{|un|≤k}

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt

≤ hC3

∫
Q

nTn

(
(un − ψ)−

)
dxdt.

Similarly, taking ρ2 =

∫ un

0

g(s)χ{|s|≥k+h}ds exp(G(un)) as a test function of (16) , we

conclude that∫
{|un|≥k+h}

∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt ≤ hC4

∫
Q

nTn((un − ψ)−)dxdt.

Consequently, we have :

∫
Q

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt

≤
∫
{|un|≥k+h}

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt

+

∫
{|un|≤k}

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt

+

∫
{k≤|un|≤k+h}

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt

≤ hC5

∫
Q

nTn((un − ψ)−)dxdt, where C5 = Max(C2, C3, C4).

Using (17), we have∫
Q

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt−
∫
Q

nTn
(

(un−ψ)−
)
Th
(
un−Tk(un)

)
exp(G(un))dxdt

≤ hC5

∫
Q

nTn
(

(un − ψ)−
)
dxdt,
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we obtain

−
∫
Q

nTn
(

(un − ψ)−
)
Th
(
un − Tk(un)

)
exp(G(un))dxdt ≤ hC5

∫
Q

nTn
(

(un − ψ)−
)
dxdt

so that

−
∫
Q

nTn
(

(un − ψ)−
)Th(un − Tk(un)

)
h

exp(G(un))dxdt ≤ C5

∫
Q

nTn
(

(un − ψ)−
)
dxdt.

Let us now fix k > ‖ψ‖∞, by the fact that
nTn((un − ψ)(un − k)χ{un≤ψ;k≤un≤k+h} ≥ 0 and letting h→ 0 , one has∫

Q

nTn

(
(un − ψ)−

)
dxdt ≤ C6. (18)

Let use v = Tk(un) exp(G(un))χ(0, τ) as a test function of (16)[ ∫
Ω

ϕ3(un)dx
]T

0
+

∫
Qτ
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un∇Tk(un) exp(G(un))dxdt

+

∫
Qτ
ω(x)

∣∣∣∇un∣∣∣p(x)

Tk(un)g(un) exp(G(un))dxdt

−
∫
Qτ
nTn

(
(un − ψ)−

)
Tk(un) exp(G(un))dxdt

=

∫
Qτ
ω(x)

∣∣∣∇un∣∣∣p(x)

g(un)Tk(un) exp(G(un))dxdt

+

∫
Qτ
fnTk(un) exp(G(un))dxdt,

where ϕ3(r) =

∫ r

0

Tk(s) exp(G(s))ds. Due to the definition of ϕ3 and the

fact that |G(un)| ≤ exp(‖g‖L1(R))‖u0n‖L1(Ω), we have 0 ≤
∫

Ω

ϕ3(u0n)dx ≤

k exp(‖g‖L1(R))‖u0n‖L1(Ω), and by using (18) we arrive at∫
Qτ
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)

exp(G(un))dxdt

≤ k exp(‖g‖L1(R))
[
‖fn‖L1(Q) + ‖u0‖L1(Ω)+C7

]
.

Let us take ρ4(un) =

∫ un

0

g(s)χ{s≥0}ds exp(G(un)) as a test function of 16, we obtain

[ ∫
Ω

ϕ4(un)dx
]T

0
+

∫
Q

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))χ{un≥0}dxdt

−
∫
Q

nTn

(
(un − ψ)−

)
ρ4(un)dxdt

≤
(∫ ∞

0

g(s)ds
)

exp
(
‖g‖L1(R)

)
‖fn‖L1(Q),
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where ϕ4(r) =

∫ r

0

ρ4(s)ds, which implies, in view of ϕ4(r) ≥ 0, that

∫
{un≥0}

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt

≤ ‖g‖∞ exp
(
‖g‖L1(R)

)[
‖fn‖L1(Q) + ‖u0‖L1(Ω)

]
+ C8,

then ∫
{un≥0}

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt ≤ C9.

Similarly, taking ρ5 =

∫ 0

un

g(s)χ{s≤0}ds exp(G(un)) as a test function of (16), we con-

clude that ∫
{un≤0}

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt ≤ C10.

Consequently, ∫
Q

ω(x)
∣∣∣∇un∣∣∣p(x)

g(un) exp(G(un))dxdt ≤ C11.

As C1, ...., C11 are constants independent of n, we deduce that∫
Q

ω(x)
∣∣∣∇Tk(un)

∣∣∣p(x)

dxdt ≤ k C12

⇒ ‖Tk(un)‖
Lp− (0,T,W

1,p(x)
0 (Ω,ω))

≤ C13 k. (19)

Then, we conclude that Tk(un) is bounded in Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)), independently

of n for any k > 0.
Now we turn to proving that (un)n is a Cauchy sequence in measures. Let k > 0 be

large enough and BR be a ball of Ω. Using (19) and applying Hölder’s inequality and
Poincarè’s inequality, we obtain that

k meas
(
{
∣∣∣un∣∣∣ > k} ∩BR × [0, T ]

)
=

∫ T

0

∫
{|un|>k}∩BR

∣∣∣Tk(un)
∣∣∣dxdt

≤
∫ T

0

∫
BR

∣∣∣Tk(un)
∣∣∣dxdt

≤ C‖∇Tk(un)‖Lp(x)(Ω,ω)

≤ C
(∫

Q

∣∣∣∇Tk(un)
∣∣∣p(x)

wdxdt

) 1
θ

≤ Ck 1
θ ,

where

θ =

{
p−, if ‖Tk(un)‖Lp(x)(Ω,ω) ≤ 1

p+, if ‖Tk(un)‖Lp(x)(Ω,ω) > 1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 107–129 119

This implies that

meas
(
{
∣∣∣un∣∣∣ > k} ∩ (BR × [0, T ]

)
≤ c1

k1− 1
θ

, ∀k ≥ 1. (20)

So, we have

lim
k→+∞

(
meas

(
{
∣∣∣un∣∣∣ > k} ∩ (BR × [0, T ]

))
= 0.

Then, we obtain for all δ > 0

meas
(
{
∣∣∣un − um∣∣∣ > δ} ∩ (BR × [0, T ]

)
≤ meas

(
{
∣∣∣un∣∣∣ > k} ∩ (BR × [0, T ]

)
+meas

(
{
∣∣∣um∣∣∣ > k} ∩ (BR × [0, T ]

)
+meas

(
{
∣∣∣Tk(un)− Tk(um)

∣∣∣ > δ}
)
.

Since Tk(un) is bounded in Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)), it is clear that Tk(un)→ vk strongly

in Lp(x)(Q,ω) and almost everywhere in Q. Hence (Tk(un))n is a Cauchy sequence in
measure in Q.

Let ε > 0, then by (20)), there exists a k(ε) > 0 such that

meas
(
{
∣∣∣un − um∣∣∣ > δ} ∩ (BR × [0, T ]

)
< ε ∀n,m ≥ n0(k(ε), δ, R).

This proves that (un))n is a Cauchy sequence in measures in BR.
Consider a non-decreasing function gk ∈ C2(R) such that

gk(s) =

{
s, if |s| ≤ k

2 ,

k, if |s| ≥ k.

Multiplying the approximate equation by g′k(un), we get

∂gk(un)

∂t
− div

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un)g′k(un)
)

+ ω(x)
∣∣∣∇un∣∣∣p(x)

g′′k (un)

−nTn
(

(un − ψ)−
)
g′k(un) = ω(x)g(un)

∣∣∣∇un∣∣∣p(x)

g′k(un) + fng
′
k(un) (21)

in the sense of distributions. This implies, thanks to the fact that g′k has compact

support, that gk(un) is bounded in Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)), while its time derivative

∂gk(un)
∂t is bounded in L1(Q) + V ∗ Due to the choice of gk, we conclude that for each k,

the sequence Tk(un) converges almost everywhere in Q, which implies that the sequence
un converges almost everywhere to some measurable function v in Q. Thus, by using the
same argument as in [9], [10], [11], we can show the following lemma.

Lemma 4.1 Let un be a solution of (16). Then

un → u a.e. in Q. (22)

We can deduce from (19) that

Tk(un) ⇀ Tk(u) in Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)). (23)
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Lemma 4.2 [2] Let un be a solution of (16). Then

lim
m→∞

lim sup
n→∞

∫
{m≤|un|≤m+1}

a(x, t, un,∇(un))∇undxdt = 0. (24)

Step 3: Almost everywhere convergence of the gradients. This step is devoted
to introducing, for a fixed k ≥ 0, a time regularization of the function Tk(u) in order
to apply the monotonicity method. This specific time regularization of Tk(u) (for fixed
k ≥ 0) is defined as follows. Let (υµ0 )µ be a sequence of functions defined on Ω such that

υµ0 ∈ L∞(Ω) ∩W 1,p(x)
0 (Ω, ω) for all µ > 0, (25)

‖υµ0 ‖L∞(Ω) ≤ k for all µ > 0, (26)

υµ0 → Tk(u0) a.e. in Ω and
1

µ
‖υµ0 ‖Lp(x)(Ω,ω) → 0, as µ→∞. (27)

For fixed k, µ > 0, let us consider the unique solution (Tk(u))µ ∈ L∞(Q) ∩
Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)) of the monotone problem:

∂(Tk(u))µ
∂t

+ µ
(

(Tk(u))µ − Tk(u)
)

= 0 in D′(Q), (28)

(Tk(u))µ(t = 0) = υµ0 in Ω. (29)

Note that due to (28), we have for µ > 0 and k ≥ 0

∂(Tk(u))µ
∂t

∈ Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)). (30)

We just recall here that (28)–(29) imply that

(Tk(u))µ → Tk(u) a.e. in Q, (31)

as well as weakly in L∞(Q) and strongly in Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)) as µ → ∞. Note

that for any µ and any k ≥ 0, we have

‖(Tk(u))µ‖L∞(Q,ω) ≤ max
(
‖Tk(u)‖L∞(Q,ω); ‖υµ0 ‖L∞(Ω,ω)

)
≤ k. (32)

We introduce a sequence of increasing C∞(R)–functions Sm such that

Sm(r) = r for |r| ≤ m, supp(S′m) ⊂ [−(m+ 1),m+ 1], ‖S′′m‖L∞(R) ≤ 1,

for any m ≥ 1, and we denote by ω(n, µ, η,m) the quantities such that

lim
m→∞

lim
η→0

lim
µ→∞

lim
n→∞

ω(n, µ, η,m) = 0.

Lemma 4.3 ( [2, 11]). We have∫ T

0

〈
∂un
∂t

, Tη

(
un − (Tk(u))µ

)+

exp(G(un))S′m(un)

〉
dt ≥ ω(n, µ, η) ∀m ≥ 1. (33)
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Taking now v = Tη

(
un − (Tk(u))µ

)+

S′m(un) exp(G(un)) of (16), we get∫ T

0

〈
∂un
∂t

, Tη
(
un − (Tk(u))µ)

)+

exp(G(un))S′m(un)

〉
dt

+

∫
Q

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇
(
Tη
(
un − (Tk(u))µ

)+)
exp(G(un))S′m(un)dxdt

+

∫
{m≤|un|≤m+1}

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
Tη(un − (Tk(u))µ)+ exp(G(un))S′′m(un)∇undxdt

+

∫
Q

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
g(un)∇un exp(G(un))Tη

(
un − (Tk(u))µ)

)+

S′m(un)dxdt

−n
∫
Q

Tn
(

(un − ψ)−
)
Tη
(
un − (Tk(u))µ

)+

exp(G(un))S′m(un)dxdt (34)

=

∫
Q

ω(x)g(un)
∣∣∣∇un∣∣∣p(x)

Tη
(
un − (Tk(u))µ

)+

S′m(un) exp(G(un))dxdt

+

∫
Q

fnTη
(
un − (Tk(u))µ

)+

S′m(un) exp(G(un))dxdt.

From (19),(24),(33),(34) it follows that∫
Q

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇
(
Tη
(
un − (Tk(u))µ

)+)
exp(G(un))S′m(un)dxdt

≤ Cη + ω(n, µ, η,m), (35)

where C is a constant independent of n and m. On the other hand, let
A = {0 ≤ Tk(un)− (Tk(u))µ < η} and B = {0 ≤ un − (Tk(u))µ < η}. Then, we have∫
Q

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇
(
Tη
(
un − (Tk(u))µ

)+)
exp(G(un))S′m(un)dxdt

=

∫
B

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un)
(
∇un −∇(Tk(u))µ

)
exp(G(un))S′m(un)dxdt (36)

=

∫
A

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un)
)(
∇Tk(un)−∇(Tk(u))µ

)
exp(G(un))S′m(un)dxdt

+

∫
{|un|>k}∩B

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un)
(
∇un −∇(Tk(u))µ

)
exp(G(un))S′m(un)dxdt.

Given the definition of S′m[S′m(un) = 1 a.e. in {|un| ≤ k} if k ≤ m], it is possible to
obtain from (35) and (36), that∫

A

(
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un))
(
∇Tk(un)−∇(Tk(u))µ

)
exp(G(un)S′m(un)dxdt

≤
∫
{|un|>k}∩B

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un)∇(Tk(u))µ exp(G(un))S′m(un)dxdt

+Cη + ω(n, µ, η,m). (37)

Since ∇Tk+η(un) is bounded in (Lp
′(x)(Q,ω))N and un → u a.e. in Q,one has

∇Tk+η(un) ⇀ ∇Tk+η(u) weakly in (Lp
′(x)(Q,ω))N . Consequently,∫

{|un|>k}∩B
ω(x)

∣∣∣∇Tk+η(un)
∣∣∣p(x)−2

∇Tk+η(un)|∇(Tk(u))µ| exp(G(un))S′m(un)dxdt

=

∫
{|u|>k}∩{0≤u−(Tk(u))µ<η}

ω(x)
∣∣∣∇Tk+η(un)

∣∣∣p(x)−2

∇(Tk(u))µ exp(G(u))S′m(u)dxdt+ ω(n).
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Thanks to (31) one easily has∫
{|u|>k}∩{0≤u−(Tk(u))µ<η}

ω(x)
∣∣∣∇Tk+η(u)

∣∣∣p(x)−2

∇(Tk(u))µ exp(G(u))S′m(u)dxdt = ω(µ).

Hence, ∫
A

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇
(
Tη
(
un − (Tk(u))µ

)+)
exp(G(un))S′m(un)dxdt

≤ Cη + ω(n, µ, η,m). (38)

On the other hand, note that∫
A

(
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un)
)(
∇Tk(un)−∇(Tk(u))µ

)
exp(G(un))dxdt

=

∫
A

(
ω(x)

∣∣∣∇Tk(un)|p(x)−2∇Tk(un)
)(
∇Tk(un)−∇Tk(u)

)
exp(G(un))dxdt

+

∫
A

(
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un)
)(
∇Tk(u)−∇(Tk(u))µ

)
exp(G(un))dxdt, (39)

and the last integral tends to 0 as n→∞ and µ→∞. Indeed, we have that∫
A

(
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un))
(
∇Tk(u)−∇(Tk(u))µ

)
exp(G(un))dxdt

→
∫
{0≤Tk(u)−(Tk(u))µ<η}

(
ω(x)

∣∣∣∇Tk(u)
∣∣∣p(x)−2

∇Tk(u))
(
∇Tk(u)−∇(Tk(u))µ

)
exp(G(u))dxdt

as n→∞.
Using (31) and Lebesgue’s theorem, we have∫
{0≤Tk(u)−(Tk(u))µ<η}

(
ω(x)

∣∣∣∇Tk(u)
∣∣∣p(x)−2

∇Tk(u))
(
∇Tk(u)−∇(Tk(u))µ

)
exp(G(u))dxdt→ 0

as µ→∞. We deduce then that∫
A

(
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un))
(
∇Tk(un)−∇Tk(u)

)
exp(G(un)dxdt

≤ Cη + ω(n, µ, η,m). (40)

Let Mn =
([(

ω(x)
∣∣∣∇Tk(un)

∣∣∣p(x)−2

∇Tk(un)
][
∇Tk(un) − ∇Tk(u)

])
×
(

exp(G(un))
)
.

Then, for any 0 < θ < 1, we write

In =

∫
{|un−(Tk(u))µ|≥0}

Mθ
ndxdt =

∫
{|Tk(un)−(Tk(u))µ|≤η, un−Tk(u)µ≥0}

Mθ
ndxdt

+

∫
{|Tk(un)−(Tk(u))µ|>η, un−(Tk(u))µ≥0}

Mθ
ndxdt.

Since ∇Tk(un) is bounded in (Lp(x)(Q,ω))N , we obtain by applying Hölder’s inequality
that

In ≤ C1

(∫
{0≤Tk(un)−(Tk(u))µ<η}

Mndxdt
)θ

(41)

+C2 meas
{

(x, t) ∈ Q :
∣∣∣Tk(un)− (Tk(u))µ

∣∣∣ > η , un − (Tk(u))µ ≥ 0
}1−θ

.
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On the other hand, we have∫
{0≤Tk(un)−(Tk(u))µ)<η}

Mn dx dt

=

∫
{0≤Tk(un)−(Tk(u))µ)<η}

(
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un)
)
×

×
(
∇Tk(un)−∇Tk(u)

)
exp(G(un)) dx dt

−
∫
{0≤Tk(un)−(Tk(u))µ)<η}

(
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(u)
)
×

×
(
∇Tk(un)−∇Tk(u)

)
exp(G(un)) dx dt

= I1
n + I2

n.

(42)

Using (40), we have
I1
n ≤ C η + w(n, µ, η,m). (43)

Concerning I2
n, that is the second term of the right-hand side of the (42), it is easy to

see that
I2
n = w(n, µ). (44)

Therefore, for all i = 1, ..., N , we have ∂Tk(un)
∂xi

⇀ ∂Tk(u)
∂xi

in Lp(x)(Q,ω). Combining (41),
(42), (43) and (44), we get

In ≤ C1

(
C η + w(n, µ, η,m)

)θ
+ C2

(
w(n, µ)

)1−θ

and by passing to the limit sup over n, µ and η∫
{un−(Tk(u))µ≥0}

(
ω(x)

[∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un))−
∣∣∣∇Tk(un)

∣∣∣p(x)−2

∇Tk(u))
]
×

×
[
∇Tk(un)−∇Tk(u)

])θ
dx dt = w(n). (45)

On the other hand, we choose v = Tη

(
un− (Tk(u))µ

)−
exp(−G(un)) in (16) and obtain:∫

{un−Tk(u)µ≤0}

([
ω(x)

∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un))−
∣∣∣∇Tk(un)

∣∣∣p(x)−2

∇Tk(u))
]
×

×
[
∇Tk(un)−∇Tk(u)

])θ
dx dt = w(n). (46)

Moreover, (45) and (46) imply that∫
Q

(
ω(x)

[∣∣∣∇Tk(un)
∣∣∣p(x)−2

∇Tk(un))−
∣∣∣∇Tk(un)

∣∣∣p(x)−2

∇Tk(u))
]
×

×
[
∇Tk(un)−∇Tk(u)

])θ
dx dt = w(n), (47)

which implies that

Tk(un)→ Tk(u) in Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)) ∀ k ≥ 0. (48)

According to [9, 10], there exists a subsequence also denoted by un such that

∇un → ∇u a.e. in Q. (49)



124 Y. AKDIM, C. ALLALOU, N. EL GORCH AND M. MEKKOUR

Proposition 4.2 Let un be a solution of (16). Then u ≥ ψ a.e. in Q.

Proof. Thanks to (18), we can write
∫
Q
Tn

(
(un − ψ)−

)
dxdt ≤ C

n . So, by using

Fatou’s lemma as n→∞,we infer that
∫
Q

(u−ψ)−dxdt = 0 ,which implies that (u−ψ)− =
0 a.e. in Q. Consequently, we conclude that u ≥ ψ a.e. in Q.

Step 4: Passing to the limit

a) we claim that u ∈ C(0, T ;L1(Ω)) .We will show that

un → u in C(0, T ;L1(Ω)).

Since Tk(u) ∈ Kψ, for every k ≥ ‖ψ‖L∞ there exists a sequence vj ∈ Kψ ∩ D(Q̄) such
that

vj → Tk(u) in Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω))

for the modular convergence.
Let ωi,lj,µ = (Tl(vj))µ+e−µtTl(ηi) with ηi ≥ 0 converge to u0 in L1(Ω), where (Tl(vj))µ

is the mollification of Tl(vj) with respect to time. Note that ωi,lj,µ is a smooth function
having the following properties:

∂ωi,lj,µ
∂t

= µ(Tl(vj)− ωi,lj,µ), ωi,lj,µ(0) = Tl(ηi), |ωi,lj,µ| ≤ l, (50)

ωi,lj,µ → Tl(vj) in Lp
−

(0, T ;W
1,p(x)
0 (Ω, ω)) as µ→∞. (51)

Choosing now v = Tk(un − ωi,lj,µ)χ(0,τ) as a test function of (16), we get〈∂un
∂t

, Tk(un − ωi,lj,µ)
〉
Qτ

+

∫
Qτ
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un∇Tk(un − ωi,lj,µ)dxdt

−
∫
Qτ
nTn

(
(un − ψ)−

)
Tk(un − ωi,lj,µ)dxdt (52)

=

∫
Qτ
ω(x)g(un)

∣∣∣∇un∣∣∣p(x)

Tk(un − ωi,lj,µ)dxdt+

∫
Qτ
fnTk(un − ωi,lj,µ)dxdt.

By using the fact that −
∫
Qτ
nTn(un − ψ)−Tk(un − ωi,lj,µ)dxdt ≥ 0, we deduce that:

〈∂un
∂t

, Tk(un − ωi,lj,µ)
〉
Qτ

+

∫
Qτ
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un∇Tk(un − ωi,lj,µ)dxdt

=

∫
Qτ
ω(x)g(un)

∣∣∣∇un∣∣∣p(x)

Tk(un − ωi,lj,µ)dxdt+

∫
Qτ
fnTk(un − ωi,lj,µ)dxdt.

• On the one hand, we have

I =

∫
Qτ
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un∇Tk(un − ωi,lj,µ)dxdt

=

∫
{|Tk(un)−ωi,lj,µ|≤k}

ω(x)
∣∣∣∇un∣∣∣p(x)−2

∇un[∇Tk(un)−∇ωi,lj,µ]dxdt. (53)
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In the following, we pass to the limit in (53): By letting n and µ to infinity and by using
Lebesgue theorem, we have

I =

∫
{|Tk(u)−Tl(vj)|≤k}

ω(x)
∣∣∣∇Tk(u)

∣∣∣p(x)−2

∇Tk(u)
[
∇Tk(u)−∇Tl(vj)

]
dxdt+ ε(n, µ),

consequently, by taking the limit as j →∞, we deduce that

I = ε(n, µ, j, l).

• On the other hand, we have

J =

∫
Qτ
ω(x)g(un)

∣∣∣∇un∣∣∣p(x)

Tk(un − ωi,lj,µ)dxdt. (54)

In the following, we pass to the limit in (54): Taking the limit as n→∞ in (54) and since
ω(x)g(un)|∇un|p(x) → ω(x)g(u)|∇u|p(x) in L1(Q), and by using Lebesque theorem, we

obtain J =

∫
Qτ
g(u)|∇u|p(x)Tk(u − ωi,lj,µ)dxdt + ε(n) and by letting µ and j to infinity,

we have
J = ε(n, µ, j, l).

• Due to (15) , un → u0 and letting n , µ and j to infinity, we have∫
Qτ
fn

[
Tk(un − ωi,lj,µ)

]
dxdt = ε(n, µ, j, l)

and by using Vitali’s theorem, we get

lim sup
k→∞

lim sup
i→0

lim sup
j→∞

lim sup
µ→∞

lim
n→∞

〈∂un
∂t

, Tk(un − ωi,lj,µ)
〉
Qτ
≤ 0. (55)

We have (see( [1]))〈∂ωi,lj,µ
∂t

, Tk(un − ωi,lj,µ)
〉
Qτ

= µ

∫
Qτ

(Tk(vj)− ωi,lj,µ))Tk(un − ωi,lj,µ) ≥ ε(n, j, µ, l) (56)

uniformly on τ . Therefore, by writing∫
Ω

Sk

(
un(τ)− ωi,lj,µ(τ)

)
dx =

〈∂un
∂t

, Tk(un − ωi,lj,µ)
〉
Qτ

−
〈∂ωi,lj,µ

∂t
, Tk(un − ωi,lj,µ)

〉
Qτ

+

∫
Ω

Sk

(
un(0)− Tl(ηi)

)
dx (57)

and using (55) and (56)) and (57), we see that∫
Ω

Sk

(
un(τ)− ωi,lj,µ(τ)

)
dx ≤ ε(n, j, µ, l), (58)

which implies, by writing∫
Ω

Sk
(un(τ)− um(τ)

2

)
dx ≤ 1

2

(∫
Ω

Sk(un(τ)− ωi,lj,µ(τ)
)
dx

+

∫
Ω

Sk
(
um(τ)− ωi,lj,µ(τ))dx

)
, (59)
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that ∫
Ω

Sk
(un(τ)− um(τ)

2

)
dx ≤ ε1(n,m).

We deduce then that∫
Ω

|un(τ)− um(τ)|dx ≤ ε2(n,m), independently of τ (60)

and thus (un) is a Cauchy sequence in C(0, T ;L1(Ω)), and since un → u, a.e. in Q, we deduce
that

un → u in C(0, T ;L1(Ω)). (61)

b) We prove that u satisfies (14)

Indeed, let v ∈ Kψ ∩ L∞(Q), ∂v
∂t
∈ L(p−)

′
(0, T ; (W

1,p(x)
0 (Ω, ω))∗). By the pointwise multiplica-

tion of (16) by Tk(un − v), we get∫
Ω

Sk
(
un(T )− v(T )

)
dx−

∫
Ω

Sk
(
u0n − v(0)

)
dx

+

∫
Q

∂v

∂t
Tk(un − v)dxdt+

∫
Q

(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)
∇Tk(un − v)dxdt

−
∫
Q

nTn
(

(un − ψ)−
)
Tk(un − v)dxdt

=

∫
Q

ω(x)g(un)
∣∣∣∇un∣∣∣p(x)

Tk(un − v)dxdt

+

∫
Q

fnTk(un − v)dxdt,

where Sk(s) =

∫ s

0

Tk(r)dr.

Since v ∈ Kψ ∩ L∞(Q), we have −
∫
Q

nTn(un − ψ)−Tk(un − v)dxdt ≥ 0, we deduce that

∫
Ω

Sk
(
un(T )− v(T )

)
dx−

∫
Ω

Sk
(
u0n − v(0)

)
dx+

∫
Q

∂v

∂t
Tk(un − v)dxdt

+

∫
Q

(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)
∇Tk(un − v)dxdt

≤
∫
Q

ω(x)g(un)
∣∣∣∇un∣∣∣p(x)

Tk(un − v)dxdt (62)

+

∫
Q

fnTk(un − v)dxdt.

• Let us pass to the limit with n → ∞ in each term in (62). We saw that un → u in
C(0, T, L1(Ω)). Therefore un(t)→ u(t) in L1(Ω) for all t ≤ T .

As Sk is Lipschitz of coefficient k, when n→∞, we have∫
Ω

Sk(un − v)(T )dx→
∫

Ω

Sk(u− v)(T )dx

and

∫
Ω

Sk(un − v)(0)dx =

∫
Ω

Sk(u0n − v(0))dx→
∫

Ω

Sk(u0 − v(0))dx.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 107–129 127

• Since ∂v
∂t
∈ L(p−)

′
(0, T ; (W

1,p(x)
0 (Ω, ω))∗), one has∫ T

0

〈∂v
∂t
, Tk(un − v)

〉
dt→

∫ T

0

〈∂v
∂t
Tk(u− v)

〉
dt.

• On the other hand, we note M = ‖v‖∞. Then, we get∫
Q

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇Tk(un − v)dxdt

=

∫ T

0

∫
Ω

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇Tk

(
Tk+M (un)− v

)
dxdt

=

∫ T

0

∫
Ω

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇Tk+M (un))1{|Tk+M (un)−v|≤k}dxdt

−
∫ T

0

∫
Ω

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇v1{|Tk+M (un)−v|≤k}dxdt.

As Tk+M (un) is bounded in Lp
−

(0, T ;W
1,p(x)
0 (Ω)) and ∇un → ∇u a.e. in Q, then

∇Tk+M (un)→ ∇Tk+M (u) almost everywhere,

and by using Lebesgue theorem, we deduce that∫
Q

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇Tk+M (un))1{|Tk+M (un)−v|≤k}dxdt

→
∫
Q

(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)
1{|Tk+M (u−v)|≤k}dxdt

and ∫ T

0

∫
Ω

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un
)
∇v1{|Tk+M (un)−v|≤k}dxdt→∫ T

0

∫
Ω

(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)
∇v1{|Tk+M (u−v)|≤k}dxdt,

then ∫
Q

(
ω(x)

∣∣∣∇un∣∣∣p(x)−2

∇un)Tk(un − v)dxdt→
∫
Q

(
ω(x)

∣∣∣∇u∣∣∣p(x)−2

∇u
)
Tk(u− v)dxdt.

• Let us pass to the limit for other term. Due to (15) , Tk(un) → Tk(u) in V ∀ k ≥ 0 and
un → u a.e. in Q, we have

fnTk(un − v)→ fTk(u− v) strongly in L1(Q)

and by Lebesgue theorem, we have∫
Q

fnTk(un − v)→
∫
Q

fTk(u− v) strongly in L1(Q).

• Similarly, since g is a bounded and continuous function belonging to L1(R) and un → u a.e.
in Q, we obtain∫

Q

ω(x)g(un)
∣∣∣∇un∣∣∣p(x)−2

Tk(un − v)→
∫
Q

ω(x)g(u)
∣∣∣∇u∣∣∣p(x)−2

Tk(u− v) strongly in L1(Q).

Then, we conclude that u satisfies (14).
As a conclusion of Step 1 to Step 4, the proof of Theorem 4.1 is complete. 2
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Abstract: In this paper we develop the monotone method for nonlinear finite N -
systems of Riemann-Liouville integro-differential equations of order 0 < q < 1. The
iterative technique approximates maximal and minimal coupled quasisolutions to the
nonlinear system using sequences of linear systems that are constructed via coupled
lower and upper solutions of varying types. Preliminary existence and comparison
theorems are presented and proven where appropriate. Finally, we present a numerical
example.
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1 Introduction

Fractional differential equations have various applications in widespread fields of science,
such as engineering [5], chemistry [14,15], physics [1,8], and others [9,10]. Despite there
being a number of existence theorems for nonlinear fractional differential equations, much
as in the integer order case, this does not necessarily imply that calculating a solution
explicitly will be routine, or even possible. Therefore, it may be necessary to employ
an iterative technique to numerically approximate a needed solution. In this paper we
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construct such a method. For some existence results on fractional differential equations
we refer the reader to the papers [6,7] and the books [9,16] along with references therein.

The iterative technique we construct in this paper is a generalization of the monotone
method. Put simply, this method constructs two sequences from upper and lower solu-
tions that converge monotonically and uniformly to maximal and minimal solutions. The
advantage of the monotone method is that solutions of nonlinear differential equations
are approximated by solutions of linear differential equations. Further, the interval of
existence for the solution is guaranteed due to the nature of the upper and lower solutions
and the method is valid whether the original DE has a unique solution or not. There are
complications that arise when developing the monotone method for Riemann-Liouville
equations. A major wrinkle comes from the fact that the constructed sequences do not
converge uniformly themselves, but instead the weighted sequences {t1−qvn}, {t1−qwn}
converge uniformly to weighted maximal and minimal solutions, where q is the order of
the system.

The monotone method has been constructed for various forms of differential equa-
tions, in this paper we extend the method to approximate Riemann-Liouville fractional
integro-differential systems. Integro-differential equations generalize the problem by in-
corporating an integral transformation within the forcing function of the problem, e.g.
f(t, x,

∫ t
0
K(x, s)x(s)ds), and therefore generalize the possibilities of models, see [13]. A

generalized monotone method for the scalar form of this problem was constructed in [2],
and in this paper we extend the problem to an N -system of these equations. Moving
to finite systems allows for generalizations that include many combinations of mono-
tone properties along with upper and lower solution constructions. For example, we
can reorder the variables within f for each iterate so that it increases in some variables
and decreases in others, e.g. fi(t, x) = fi(t, [x]si , [x]ri) where fi increases in [x]si and
decreases in [x]ri . When combined with an integral transformation T we establish the
generalized system of the form

Dqxi = fi(t, xi, [x]ri , [x]si , [Tx]ρi , [Tx]σi),

where fi is split into components where it is increasing and decreasing respectively.
There is more nuance to these generalizations than described here, and we will go into

more detail in Sections 2 and 3. In the final section we will develop numerical examples
which exemplify our main results. The monotone method for more standard Riemann-
Liouville fractional differential systems and multi-order systems was established in [3,4],
and more information on the monotone method for ordinary differential equations and
systems can be found in [11].

2 Preliminary Results

In this section, we will first consider basic results regarding scalar Riemann-Liouville
(R-L) differential equations of order q, 0 < q < 1. We will recall basic definitions and
results in this case for simplicity, and we note that many of these results carry over
naturally to finite systems. In the next section, we will apply these preliminary results to
develop the monotone method for nonlinear fractional integro-differential systems. Note,
for simplicity we only consider results on the interval J = (0, T ], where T > 0. Further,
we will let J0 = [0, T ], that is J0 = J̄ .

Definition 2.1 Let p = 1− q, a function φ(t) ∈ C(J,R) is a Cp continuous function
if tpφ(t) ∈ C(J0, R). The set of Cp continuous functions is denoted Cp(J,R). Further,
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given a function φ(t) ∈ Cp(J,R), we call the function tpφ(t) the continuous extension of
φ(t).

Now we define the R-L integral and derivative of order q on the interval J .

Definition 2.2 Let φ ∈ Cp(J,R), then Dq
tφ(t) is the q-th R-L derivative of φ with

respect to t ∈ J defined as

Dq
tφ(t) =

1

Γ(1− q)
d

dt

∫ t

0

(t− s)−qφ(s)ds,

and Iqt φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

Iqt φ(t) =
1

Γ(q)

∫ t

0

(t− s)q−1φ(s)ds.

Note that in cases where the initial value may be different or ambiguous, we will write
out the definition explicitly. The next definition is related to the solution of linear R-L
fractional differential equations and is also of great importance in the study of the R-L
derivative.

Definition 2.3 The Mittag-Leffler function with parameters α, β ∈ R, denoted Eα,β ,
is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.

For fractional differential equations we utilize the weighted Cp version of the Mittag-
Leffler function tq−1Eq,q(t

q), since it is its own q-th derivative. Further, it attains a
convergence result we mention in the following remark.

Remark 2.1 The Cp weighted Mittag-Leffler function

tq−1Eq,q(λt
q) =

∞∑
k=0

λktkq+q−1

Γ(kq + q)
,

where λ is a constant, converges uniformly on compacta of J . Further

Dq
[
tq−1Eq,q(λt

q)
]

= λtq−1Eq,q(λt
q),

and
Iq
[
tq−1Eq,q(λt

q)
]

= 1
λ t
q−1Eq,q(λt

q)− 1
λΓ(q) t

q−1.

The next result gives us that the q-th R-L integral of a Cp continuous function is also
a Cp continuous function. This result will give us that the solutions of R-L differential
equations are also Cp continuous.

Lemma 2.1 Let f ∈ Cp(J,R), then Iqf(t) ∈ Cp(J,R), i.e. the q-th integral of a Cp
continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R+ can be found in [4].
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Remark 2.2 In [9] and [12] it was proven that if 0 < q < 1, G ⊂ R is an open
set, and f : J × G → R is such that for any x ∈ G, f ∈ Cp (J,G), then x satisfies the
fractional differential equation

Dqx = f(t, x), with initial condition tpx
∣∣
t=0

= x0, (1)

if and only if it satisfies the Volterra fractional integral equation

x(t) = x0t
q−1 +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x)ds. (2)

This relationship is especially true if f : [0, T ]×G→ R is continuous.

Now we consider results for the nonhomogeneous linear R-L differential equation,

Dq
tx(t) = λx(t) + z(t), tpx(t)

∣∣
t=0

= x0, (3)

where x0 is a constant and x, z ∈ Cp(J,R), which has unique solution

x(t) = x0Γ(q)tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

Next, we recall a result we will utilize extensively in our proceeding comparison and
existence results, and likewise in the construction of the monotone method. We note that
this result is similar to the well known comparison result found in literature, as in [12],
but we do not require the function to be Hölder continuous of order λ > q.

Lemma 2.2 Let m ∈ Cp(J,R) be such that for some t1 ∈ J we have m(t1) = 0 and
m(t) ≤ 0 for t ∈ (0, t1]. Then

Dq
tm(t)

∣∣
t=t1
≥ 0.

The proof of this lemma can be found in [4], along with further discussion as to why
and how we weaken the Hölder continuous requirement. We use this lemma in the proof
of the later main comparison result, which will be critical in the construction of the
monotone method.

Now we will consider results for finite N -systems of R-L integro-differential equations.
For simplicity, we will henceforth assume that i ∈ {1, 2, 3, . . . , N}, and that for any N
element vectors x, y, x ≤ y implies xi ≤ yi for all i. We extend the concept of Cp
continuous functions to RN in the natural way

Cp(J,R
N ) = {φ ∈ C(J,RN ) | tpφi ∈ C(J0, R), 1 ≤ i ≤ N}.

For simplicity we introduce the following notation for the scalar multiplication form of
the continuous extension xp(t) = tpx(t), so that tpx

∣∣
t=0

becomes xp(0). The system we
consider is

Dqxi = fi(t, x, Tx), xpi(0) = x0
i , (4)

where each x0
i is a constant, and Tx is a simplified notation for

Tx = {T1x1, T2x2, T3x3, . . . TNxN}, Tixi =

∫ t

0

Ki(s, t)xi(s)ds,

and where Ki is continuous and positive on J0 for each i.
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Remark 2.3 Notice that each Ki is bounded on J0 so letting K̂ be a bound for each
Ki, and using Remark 2.1, for each i we have

Tit
q−1Eq,q(λt

q) ≤ K̂

Γ(q)

∫ t

0

Γ(q)(t− s)p

(t− s)p
sq−1Eq,q(λs

q)ds

≤ K̂T p 1

Γ(q)

∫ t

0

(t− s)q−1sq−1Eq,q(λs
q)ds < K̂T pΓ(q) 1

λ t
q−1Eq,q(λt

q).

Now, we introduce the concept of quasimonotonicity, which will be a generalization
of monotonicity for our main results.

Definition 2.4 A function φ : RN → RN is said to be quasimonotone increasing
if for each i, x ≤ y and xi = yi implies φi(x) ≤ φi(y). Naturally, φ is quasimonotone
decreasing if we reverse the inequalities.

From now on, if we wish to designate standard monotonicity we will state that a
function increases or decreases traditionally. In our main result, we construct our iterative
technique from lower and upper solutions. Further, many of our preliminary results stem
from these solutions which we define below.

Definition 2.5 Let v, w ∈ Cp(J,RN ), then v, w are lower and upper solutions of (4)
respectively if

Dqvi ≤ fi(t, v, Tv), Dqwi ≥ fi(t, w, Tw), vpi(0) ≤ x0
i ≤ wpi(0).

Now we present the main comparison theorem that will form the base of our remaining
results. This result gives us conditions for when lower and upper solutions behave in a
natural way, i.e. when v ≤ w on J . Specifically, if f is quasimonotone in x and monotone
in Tx and satisfies a one-sided Lipschitz condition, then v ≤ w. The result is given below.

Theorem 2.1 Let v, w ∈ Cp(J,R
N ) be lower and upper solutions of (4). If f is

quasimonotone increasing in x and traditionally increasing in Tx, and satisfies the Lip-
schitz condition:

fi(t, x, Tx)− fi(t, y, Ty) ≤
N∑
k=1

Li(xk − yk) +MiTk(xk − yk),

then v ≤ w on J .

Proof. We start by assuming that one of the inequalities is strict, Dqvi < fi(t, v, Tv)
for each i, and vp(0) < wp(0), and we will show that v < w on J . Suppose to the contrary
that our claim is not true, then the set

Z =

N⋃
i=1

{t ∈ J : vi(t) = wi(t)}

is nonempty. So let τ = inf Z, and suppose without loss of generality, via reordering
if necessary, that v1(τ) = w1(τ). Now by the continuity of vp and wp on J0 and since
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vp(0) < wp(0), we have that vp < wp on [0, τ), and thus giving us that v ≤ w on (0, τ ].
This also gives us that Tivi(τ) ≤ Tiwi(τ) for each i.

Letting m = v − w we have by Lemma 2.2 that Dqm|t=τ ≥ 0. Now, using this and
the quasimonotone and traditional monotone properties of f we obtain:

f1(τ, v(τ), T v(τ)) > Dqvj
∣∣
t=τ
≥ Dqwj

∣∣
t=τ
≥ f1(τ, w(τ), Tw(τ))

= f1(τ, v1(τ), w2(τ), w3(τ), . . . wN (τ), Tw(τ)) ≥ f1(τ, v(τ), T v(τ)),

which is a contradiction. Therefore, v < w on J .

Now, to prove the theorem as given we will use the strict inequality case. To do so
let ε > 0, and construct functions

vεi = vi − εϕ, wεi = wi + εϕ,

where ϕ(t) = tq−1Eq,q((N + 1)Ltq) and L is defined as

L = max
1≤i≤N

{
K̂T pΓ(q), Li,Mi

}
,

where K̂ is defined as in Remark 2.3. Note that by definition vε < v and wε > w on J
since ϕ > 0 on J . To start with, note that for each i

v0
ε i = tpvεi

∣∣
t=0

= v0
i − εEq,q(0) = v0

i −
ε

Γ(q)
< v0

i ,

so v0
ε < v0. Then, for each i, we have

Dqvεi ≤ fi(t, v, Tv)− ε(N + 1)Lϕ
= fi(t, vε, T vε) + fi(t, v, Tv)− fi(t, vε, T vε)− ε(N + 1)Lϕ

≤ fi(t, vε, T vε) +

N∑
k=1

[
Lk(vk − vεk) +MkT (vk − vεk)

]
− ε(N + 1)Lϕ

≤ fi(t, vε, T vε) +NLεϕ+NLTεϕ− ε(N + 1)Lϕ

< fi(t, vε, T vε) +
NL

(N + 1)
εϕ− εLϕ < fi(t, vε, T vε).

We note that the penultimate inequality came from the application of Remark 2.3.
Further, we can similarly show that Dqwεi > fi(t, wε, Twε). Therefore, by the previous
work involving strict inequalities we have that vε < wε on J . Then letting ε → 0 we
obtain v ≤ w on J , which completes the proof. This result can be extended to linear
systems utilizing the following corrolary, the result follows from the Lipschitz nature of
linear systems.

Corollary 2.1 If g is a continuous function and v, w ∈ Cp satisfy the following
properties

Dqvi ≤ λvi + gi(t), Dqwi ≥ λwi + gi(t), vpi(0) ≤ wpi(0),

then v ≤ w on J .
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3 Monotone Method

For this section we expand our general system to cover more cases. To do so we split {xi}
and {Tixi} within each fi to isolate variables where each fi is increasing or decreasing
in each i. So, for each i, let ri, si, ρi, σi be such that ri + si = N − 1 and ρi + σi = N .
Then, for each i, reorder x and Tx, using the following notation

x ={x1, x2, x3, . . . , xN} = {xi, [x]ri , [x]si},
Tx ={T1x1, T2x2, T3x3, . . . , TNxN} = {[Tx]ρi , [Tx]σi

}.

This reordering allows us to isolate the variables where each fi increases or decreases,
and each ri, si, ρi, σi represents the number of x terms with each monotone property, and
yields the following definition regarding f .

Definition 3.1 We say f possesses the mixed quasimonotonicity property if for each
i

fi(t, x, Tx) = fi(t, xi, [x]ri , [x]si , [Tx]ρi , [Tx]σi
),

and where fi is quasimonotone increasing in [x]ri , quasimonotone decreasing in [x]si ,
traditionally increasing in [Tx]ρi , and traditionally decreasing in [Tx]σi

.

Remark 3.1 Definition 3.1 generalizes standard monotone cases for system (4), since
if si = σi = 0, Definition 3.1 reduces down to f(t, x, Tx) which is quasimonotone in-
creasing in x and traditionally increasing in Tx. Similarly, Definition 3.1 reduces to
quasimonotone decreasing in x and traditionally decreasing in Tx when ri = ρi = 0.

Now, the final fractional integro-differential system we construct the monotone
method for is:

Dqxi = fi(t, xi, [x]ri , [x]si , [Tx]ρi , [Tx]σi
), xpi(0) = x0

i , (5)

where f has the mixed quasimonotonicity property. This new formulation allows us
to define new types of coupled upper and lower quasisolutions. We still have natural
upper and lower solutions as defined in Definition 2.5, but in the following definition we
introduce coupled, i.e. mixed, forms of the lower and upper solutions.

Definition 3.2 v, w ∈ Cp are Type I coupled lower and upper quasisolutions of (5)
if

Dqvi ≤ fi(t, vi, [v]ri , [w]si , [Tv]ρi , [Tw]σi), vpi(0) = v0
i ≤ x0

i

Dqwi ≥ fi(t, wi, [w]ri , [v]si , [Tw]ρi , [Tv]σi
), wpi(0) = w0

i ≥ x0
i .

v, w ∈ Cp are Type II coupled lower and upper quasisolutions of (5) if

Dqvi ≤ fi(t, wi, [w]ri , [v]si , [Tw]ρi , [Tv]σi
), vpi(0) = v0

i ≤ x0
i

Dqwi ≥ fi(t, vi, [v]ri , [w]si , [Tv]ρi , [Tw]σi
), wpi(0) = w0

i ≥ x0
i .

If the inequalities in above definitions are replaced with equal signs, then they become
coupled Type I or II quasisolutions of (5) and minimal and maximal coupled Type I or
II quasisolutions are defined in the natural way given these definitions.
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In an effort to simplify our manuscript and make it more readable we introduce the
following notation, for each i, let [v, w]i be such that

fi(t, xi, [v, w]i) = fi(t, xi, [v]ri , [w]si , [Tv]ρi , [Tw]σi
).

Thus the first component of [v, w]i corresponds with the “increasing” portion of f and
the second component corresponds with the “decreasing” portion of f . So for example,
the above coupled lower and upper quasisolutions can be rewritten as

Type I: Dqvi ≤ fi(t, vi, [v, w]i), Dqwi ≥ fi(t, wi, [w, v]i),

Type II: Dqvi ≤ fi(t, wi, [w, v]i), Dqwi ≥ fi(t, vi, [v, w]i).

Now, if we know of the existence of lower and upper solutions v and w such that
v ≤ w, we can prove the existence of a solution in the set

Ω = {(t, y) : v(t) ≤ y ≤ w(t), t ∈ J}.

We consider this result in the following theorem.

Theorem 3.1 Let v, w ∈ Cp(J,RN ) be Type I lower and upper solutions of (5) such
that v ≤ w on J and let f ∈ C(Ω, RN ), where Ω is defined as above. Then there exists a
solution x ∈ Cp(J,RN ) of (4) such that v ≤ x ≤ w on J .

This theorem is proved in the same way as seen in [4], with only minor additions
to incorporate the transformation T . In the next theorem we establish our main result.
Essentially, if there are Type I lower and upper quasisolutions that satisfy their natural
inequalities, that is v ≤ w on J , and if f satisfies the described conditions, then we can
construct sequences of linear R-L systems, where the Cp continuous extensions converge
uniformly and monotonically to maximal and minimal Type I quasisolutions.

Theorem 3.2 Let f possess the mixed quasimonotone property. Let v0, w0 ∈
Cp(J,R

N ) be Type I coupled lower and upper quasisolutions of (5) such that v0 ≤ w0

on J . For each i suppose fi satisfies the following one-sided Lipschitz condition in the
xi component:

fi(t, xi, [x, x]i)− fi(t, yi, [x, x]i) ≥ −Mi(xi − yi),

whenever v0 ≤ x ≤ w0, and v0i ≤ yi ≤ xi ≤ w0i on J and Mi ≥ 0. Then there exist
monotone sequences {vn} and {wn} such that

tpvn → tpv, tpwn → tpw,

uniformly and monotonically on J0, where v and w are Type I coupled minimal and
maximal quasisolutions of (5) on J for solutions v0 ≤ x ≤ w0.

Proof. For the construction of the sequences let η, ξ ∈ Cp(J,RN ) with v0 ≤ η, ξ ≤ w0

on J , then we start by considering the system

Dqxi = fi(t, ηi, [η, ξ]i)−Mi(xi − ηi), xpi(0) = x0
i . (6)

We note that this system is an uncoupled linear system, therefore for each η, ξ the system
has a unique solution x. Thus we can define a transformation A that yields the unique
solution of (6) for each η, ξ, that is A[η, ξ] = x. We will construct our monotone sequences
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using this transformation, so we wish to show that A has a mixed monotone property.
A is increasing in its first component and decreasing in its second component. To prove
this, let η, η̂, ξ ∈ Cp such that v0 ≤ η, η̂, ξ ≤ w0 and η ≥ η̂ on J . Now suppose xa, xb ∈ Cp
such that A[η, ξ] = xa and A[η̂, ξ] = xb.

Now, since η ≥ η̂, we have that Tη ≥ T η̂, and then by the mixed quasimonotone
property of f we have that

fi(t, η̂i, [η, ξ]i) ≥ fi(t, η̂i, [η̂, ξ]i).

So, using this, the definition of xa and the Lipschitz condition of f we obtain

Dqxai = fi(t, η̂i, [η, ξ]i) + fi(t, ηi, [η, ξ]i)− fi(t, η̂i, [η, ξ]i)−Mi(xai − ηi)
≥ fi(t, η̂i, [η, ξ]i)−Mi(xai − η̂i) ≥ fi(t, η̂i, [η̂, ξ]i)−Mi(xai − η̂i),

and by definition of xb

Dqxbi = fi(t, η̂i, [η̂, ξ]i)−Mi(xbi − η̂i).

Thus, by Theorem 2.1 we have that xb ≤ xa, i.e. A[η̂, ξ] ≤ A[η, ξ] on J . Since η, η̂ were
arbitrary, we have that A is increasing in its first component. Similarly, we can show that
A is decreasing in its second component. Therefore A has a mixed monotone property,
and with it we obtain the property that A[η, ξ] ≤ A[ξ, η] when v0 ≤ η ≤ ξ ≤ w0 on J .

The sequences {vn} and {wn} we construct are unique solutions of the fractional
systems

Dqvn+1i = fi(t, vni, [vn, wn]i)−Mi(vn+1i − vni), v0
n+1i

= x0
i ,

Dqwn+1i = fi(t, wni, [wn, vn]i)−Mi(wn+1i − wni), w0
n+1i

= x0
i ,

where v0 and w0 are as defined in the hypothesis. That is, the sequences are defined as

vn+1 = A[vn, wn], wn+1 = A[wn, vn].

With the transformation A it is far more efficient to prove that the sequences are mono-
tonic inductively, since if

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vk−1 ≤ vk ≤ wk ≤ wk−1 ≤ · · · ≤ w2 ≤ w1 ≤ w0

up to some k, then

A[vk−1, wk−1] ≤ A[vk, wk] ≤ A[wk, vk] ≤ A[wk−1, vk−1],

implying vk ≤ vk+1 ≤ wk+1 ≤ wk on J , and giving us the monotonicity of the constructed
sequences.

Now we will prove that the weighted sequences {tpvn}, {tpwn} converge uniformly,
to do so we will invoke the Arzela-Ascoli theorem. To begin, note that for all i we have
that

|tp(vi)| ≤ |tp(vi − v0)|+ |tpv0| ≤ |tp(w0 − v0)|+ |tpv0|,

giving us that {tpvn} is uniformly bounded. Now we wish to show that the weighted
sequence is uniformly continuous. For simplicity, for each i and n, let

Fi(vn+1) = fi(t, vni, [vn, wn]i)−Mi(vn+1i − vni),
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then since each vn is Cp continuous, f is continuous over J0, and since {tpvn} is uniformly
bounded, we can choose µ > 0 such that |tpFi(vn)| ≤ µ for all i and all n. Also, our
preceding argument requires analysis of the function

ϕ(t) = tp(t− s)−p,

for 0 ≤ s ≤ t ≤ T , specifically we note that ϕ is decreasing in t, to show why consider

d
dtϕ = ptp−1(t− s)−p−1(−s) ≤ 0.

Now, let ε > 0, and let t, τ ∈ (0, T ] such that, without loss of generality, 0 < t ≤ τ
and τ − t < ε1/q. Further, suppose ε is sufficiently small enough such that 1 ≤ τ

t < 2.
Then via Remark 2.2, utilizing that ϕ(τ) ≤ ϕ(t), we have for each i and n,

|τpvni(τ)− tpvni(t)|

=
∣∣∣ 1

Γ(q)

∫ τ

0

ϕ(τ)Fi(vn)ds− 1

Γ(q)

∫ t

0

ϕ(t)Fi(vn)ds
∣∣∣

≤ 1

Γ(q)

∫ τ

t

ϕ(τ)|Fi(vn)|ds+
1

Γ(q)

∫ t

0

|ϕ(τ)− ϕ(t)||Fi(vn)|ds

≤ µ

Γ(q)
τptq−1

∫ τ

t

(τ − s)q−1ds+
µ

Γ(q)

∫ t

0

(ϕ(t)− ϕ(τ))sq−1ds.

=
µ

Γ(q + 1)

(τ
t

)p
(τ − t)q +

µΓ(q)

Γ(2q)
tq − µτp

Γ(q)

∫ t

0

(τ − s)q−1sq−1ds. (7)

From here we will evaluate the third term from (7) individually, and for simplicity without
the constant µ

Γ(q) . To do so we will use the integral form of the beta funtion B(q, q),

B(q, q) =
Γ(q)Γ(q)

Γ(2q)
=

∫ 1

0

(1− α)q−1αq−1dα.

Then we will apply the transformation s = tα to obtain

−τp
∫ t

0

(τ − s)q−1sq−1ds = −τ qB(q, q) + τ qB(q, q)− τ q
∫ t/τ

0

(1− α)q−1αq−1dα

= −τ qB(q, q) + τ q
∫ 1

t/τ

(1− α)q−1αq−1dα

≤ −τ qB(q, q) + τ q(t/τ)q−1

∫ 1

t/τ

(1− α)q−1dα

= −τ qB(q, q) +
1

q

(τ
t

)p
(τ − t)q.

Putting this result back into (7) we obtain

|τpvni(τ)− tpvni(t)| <
2p+1µ

Γ(q + 1)
(τ − t)q +

µΓ(q)

Γ(2q)
(tq − τ q) < 2p+1µ

Γ(q + 1)
ε.

Thus tpvni(t) is continuous at t > 0 since the case when t ≥ τ will follow in a similar
manner. For the case when t = 0, consider

|τpvni(τ)− x0
i | ≤

µτp

Γ(q)

∫ τ

0

(τ − s)q−1sq−1ds =
µΓ(q)

Γ(2q)
τ q <

µΓ(q)

Γ(2q)
ε,
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so tpvni(t) is continuous at t = 0. Further, since ε did not depend on the arbitrary
choices of n or i, we have that the weighted sequence {tpvn} is equicontinuous on J0.

Now, since {tpvn} is monotonic, uniformly bounded, and equicontinuous on J0, by
the Arzela-Ascoli theorem we have that {tpvn} converges uniformly on J0. Note we
can prove the same result for {tpwn}, thus both weighted sequences converge uniformly.
Now, suppose that v, w ∈ Cp(J,RN ) such that tpvn → tpv and tpwn → tpw uniformly
on J0. We wish to show that Tvn → Tv and Twn → Tw uniformly on J0. To do so, let
ε > 0 and choose M such that for n ≥M, |tp(vn − v)| < εq

K̂T q
, where K̂ is defined as in

Remark 2.3. Then for all t ∈ J0 and for all n ≥M

|Tvn − Tv| ≤ K̂
∫ t

0

|vn − v|ds <
εq

T q

∫ t

0

sq−1ds =
εtq

T q
≤ ε.

Therefore Tvn → Tv uniformly on J0, similarly Twn → Tw uniformly on J0.
Now, due to the fact that fi is continuous and bounded on J0 and the nature of Cp

continuous functions, for each i there exists a function F such that

Fi(t, tpxi, [tpx]ri , [t
px]si , [Tx]ρi , [Tx]σi

) = fi(t, xi, [x]ri , [x]si , [Tx]ρi , [Tx]σi
).

So, due to all of the convergence properties we have that

tpvn+1i = 1
Γ(q) + tpFi(t, tpvni, [tpvn]ri , [t

pwn]si , [Tvn]ρi , [Twn]σi)−Mit
p(vn+1i − vni)

converges uniformly to

tpvi = 1
Γ(q) + tpFi(t, tpvi, [tpv]ri , [t

pw]si , [Tv]ρi , [Tw]σi
)

on J0, giving us that

vi = 1
Γ(q) t

q−1 + fi(t, vi, [v]ri , [w]si , [Tv]ρi , [Tw]σi
)

on J and implying that v is a coupled quasisolution of (5), and we have the similar result
for w as well.

Finally, we wish to prove that v, w are minimal and maximal coupled quasisolutions
of (5). To do so, let x be any solution of (5) with v0 ≤ x ≤ w0, we know such a solution
exists thanks to Theorem 3.1. Then note that

v1 = A[v0, w0] ≤ A[x, x] ≤ A[w0, v0] = w1,

giving us that v1 ≤ x ≤ w1, and continuing this process inductively we can show that
vn ≤ x ≤ wn for all n, which implies that v ≤ x ≤ w on J . Therefore, v, w are minimal
and maximal mixed quasisolutions of (5), which completes the proof.

Note that in the case that (5) has a unique solution, e.g. f is fully Lipschitz, then
v = x = w on J . Further, this acts as a generalization for the monotone method
constructed with natural upper and lower solutions to the system (4) where f(t, x, Tx) is
quasimonotone increasing in x and traditionally increasing in Tx. This follows directly
from considering the previous theorem where si = σi = 0.

We can also construct the monotone method beginning with Type II coupled lower
and upper quasisolutions. To do so requires a further assumption that v0 ≤ w1 and
v1 ≤ w0, further we get intertwined montone sequences that still converge to minimal
and maximal quasisolutions.
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Theorem 3.3 Suppose f satisfies the same properties as in Theorem 3.2. Let
v0, w0 ∈ Cp(J,RN ) be Type II lower and upper quasisolutions of (5) such that v0 ≤ w0.
Let {vn} and {wn} be sequences defined by

Dqvn+1i = fi(t, wni, [wn, vn]i)−Mi(vn+1i − wni), vn+1
0
i = x0

i ,

Dqwn+1i = fi(t, vni, [vn, wn]i)−Mi(wn+1i − vni), wn+1
0
i = x0

i ,

for n ≥ 1 and where v0, w0 are the given lower and upper solutions. If v0 ≤ w1 and
v1 ≤ w0, then the sequences have the following intertwined monotonic property

v0 ≤ w1 ≤ v2 ≤ . . . v2n ≤ w2n+1 ≤ v2n+1 ≤ w2n ≤ · · · ≤ w2 ≤ v1 ≤ w0,

and the weighted sequences

tpv2n, t
pw2n+1 → tpα, tpv2n+1, t

pw2n → tpβ

uniformly on J0, where α and β are Type II coupled minimal and maximal quasisolutions
of (5) on J for solutions v0 ≤ x ≤ w0.

The proof of this theorem follows in a similar manner as that of Theorem 3.2, even
with the intertwined nature the proof only requires minor adjustments for incorporating
the Type II sequences. This theorem is also a generalization for the monotone method
constructed with natural upper and lower solutions to the system (4) where f(t, x, Tx) is
quasimonotone decreasing in x and traditionally decreasing in Tx. As before, this follows
directly from considering si = σi = 0.

In the next section we will construct a numerical example that will exemplify our
results. In the example we will look at a system when N = 2 and q = 1/2.

4 Numerical Example

We finish this work by illustrating the result of Theorem 3.2 with an example. Consider
the fractional system of the form (5) with q = 1

2 ,

D1/2x1 = 1
2 + 5

8 t+ 1
32

(
x2

1 − 1
4x2

)
+ 1

16

∫ t
0
(1 + s)x1ds, xp1(0) = 0,

D1/2x2 = 1
6 + 1

5 t+ 1
20 (x1 − x2)− 1

20

∫ t
0
(1 + s)x2ds, xp2(0) = 0,

(8)

where p = 1
2 , and for simplicity we will consider the same transformation

Txi(t) =

∫ t

0

(1 + s)xi(s)ds

for i = 1, 2, and further for simplicity call

f1(t, x1, x2, Tx1, Tx2) = 1
2 + 5

8 t+ 1
32x

2
1 + 1

16Tx1, f2(t, x1, x2, Tx1, Tx2) = 1
6 + 1

5 t+ 1
20x1,

g1(t, x1, x2, Tx1, Tx2)− 1
128x2, g2(t, x1, x2, Tx1, Tx2) = − 1

20x2 − 1
20Tx2.

If J = (0, 1] and J0 = [0, 1], then fi(t, x, Tx) + gi(t, x, Tx) together, where i = 1, 2,

satisfy the mixed quasimonotonicity property. Now let v01(t) =
√
t

2 , v02(t) = 0, w01(t) =
3 and w02(t) = 3− t.
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We will illustrate graphically in Figures 1–4 that v0i(t) and w0i(t) are Type I coupled
lower and upper quasisolutions.

First note,
v0pi(0) = w0pi(0) = 0 for i = 1, 2.

Since D1/2v01 =
√
π

4 , we have

D1/2v01 =
√
π

4 ≤
1
2 + 5

8 t+ 1
32

(
v2

01 −
1
4w02

)
+ 1

16Tv01 = f1(t, v0, T v0) + g1(t, w0, Tw0).

Similarly,

D1/2w01 = 3√
πt
≥ 1

2 + 5
8 t+ 1

32

(
w2

01 −
1
4v02

)
+ 1

16Tw01 = f1(t, w0, Tw0) + g1(t, v0, T v0),

D1/2v02 = 0 ≤ 1
6 + 1

5 t+ 1
20

(
v01 − w02

)
− 1

20Tw02 = f2(t, v0, T v0) + g2(t, w0, Tw0),

D1/2w02 = 3−2t√
πt
≥ 1

6 + 1
5 t+

1
20

(
w01−v02

)
− 1

20Tv02 = f2(t, w0, Tw01, Tw0)+g2(t, v0, T v0).

We now show the graphs of these lower and upper quasisolutions in Figures 1–4.

Figure 1: Dqv01 ≤ f1 + g1. Figure 2: Dqw01 ≥ f1 + g1. Figure 3: Dqv02 ≤ f2 + g2.

After verifying that we have indeed Type I coupled lower and upper quasisolutions
we computed four iterates of {t1/2vn} and {t1/2wn}, for i = 1, 2, according to Theorem
3.2 for t ∈ J0 = [0, 1]. The results are given in Figures 5 and 6 for 0 ≤ n ≤ 4.

Finally we show a table of ten values of {t1/2v4} and {t1/2w4}, for i = 1, 2, on the
interval [0, 1].

t t1/2v41 t1/2w41 t1/2v42 t1/2w42 t t1/2v41 t1/2w41 t1/2v42 t1/2w42
0.1 0.0612153 0.0612154 0.0208512 0.0208514 0.2 0.1322313 0.1322315 0.0452015 0.0452027
0.3 0.2132962 0.2132970 0.0729141 0.0729180 0.4 0.3046777 0.3046800 0.1039346 0.1039439
0.5 0.4066788 0.4066841 0.1382209 0.1382401 0.6 0.5196440 0.1757330 0.5196553 0.1757683
0.7 0.6439644 0.6439867 0.2164287 0.5702515 0.8 0.7800823 0.7801239 0.2602622 0.2603606
0.9 0.9284960 0.9285705 0.3071838 0.3073374 1.0 1.0897658 1.0898941 0.3571390 0.3573711

We used Mathematica to compute the iterates, the graphs and the tables.

Figure 4: Dqw02 ≥ f2 + g2. Figure 5: tpvn1 ≤ tpwn1. Figure 6: tpvn2 ≤ tpwn2.
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Abstract: This paper deals with the local existence and uniqueness results for
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1 Introduction

Fractional differential equations (FDEs) occur in control of dynamical systems, physical
and biological sciences, see for details [14, 19, 23] and references therein. Nowadays,
many people have given attention to the existence theory of nonlinear FDEs of various
types [2–13,15–18,21,22]. Recently, existence and uniqueness of weak solutions for some
class of Hilfer-Hadamard and Hilfer fractional differential equations are obtained in [1].
Further, some attractivity and Ulam stability results are obtained [1] by applying the
fixed point theory, also one can see [12,20].

Kassim and Tatar [16] obtained the well-posedness of Cauchy-type problem{
HD

α,β
a+ x(t) = f(t, x), t > a > 0,

HI
1−γ
a+ x(a) = c, γ = α+ β(1− α),

(1)
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where c ∈ R and HD
α,β
a+ is the Hilfer-Hadamard fractional derivative [15] of order

α(0 < α < 1) and type β(0 ≤ β ≤ 1), in the weighted space of continuous functions

Cα,β1−γ [a, b] defined by

Cα,β1−γ,µ[a, b] =
{
x ∈ C1−γ,log[a, b]|HD

α,β
a+ x ∈ Cµ,log[a, b]

}
, 0 ≤ µ < 1, γ = α+ β(1− α),

(2)
where

Cγ,log[a, b] =

{
g : (a, b]→ R|

(
log

t

a

)γ
g(t) ∈ C[a, b]

}
, 0 ≤ γ < 1. (3)

They obtained the equivalence of initial value problem (IVP) (1) and integral equation

x(t) =
c

Γ(γ)

(
log

t

a

)γ−1
+

1

Γ(α)

∫ t

a

(
log

t

s

)α−1
f(s, x(s))

ds

s
, t > a, c ∈ R. (4)

Existence result for IVP (1) is proved in [16] using Banach fixed point theorem.
Motivated by these works, to avoid ambiguity of fixed point theory, we adopted the

method of successive approximations. In this paper, we study the IVP for fractional
differential equation involving Hilfer-Hadamard fractional derivative{

HD
α,β
1 x(t) = f(t, x), 0 < α < 1, 0 ≤ β ≤ 1,

lim
t→1

(
log t

)1−γ
x(t) = x0, γ = α+ β(1− α).

(5)

In this paper we prove the existence and uniqueness results for IVP (5), using some well-
known convergence criterion and Picard sequence functions [18, 24]. The computable
iterative scheme as well as the uniform convergence criterion for solution are also devel-
oped.

The rest of the paper is organised as follows. The next section covers the useful
prerequisites which include definitions and lemmas. The main results are proved in
Section 3 with the supporting illustrative example.

2 Preliminaries

We need the following basic definitions and properties from fractional calculus [19].

Definition 2.1 [19] Let (1, b), 1 < b ≤ ∞, be a finite or infinite interval of the half-
axis R+ and let α > 0. The left-sided Hadamard fractional integral HIα1 f of order α > 0
is defined by

(HIα1 f)(t) =
1

Γ(α)

∫ t

1

(log t)α−1 f(s)ds

s
, 1 < t < b, (6)

provided that the integral exists. When α = 0, we set HI0
1f = f.

Definition 2.2 [17, 19] The left-sided Hadamard fractional derivative of order
α(0 ≤ α < 1) on (1, b) is defined by

(HDα
1 f)(t) = δ(HI1−α

1 f)(t), 1 < t < b, (7)

where δ = t(d/dt). In particular, when α = 0 we have HD0
1f = f.
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Definition 2.3 [16] The left-sided Hilfer-Hadamard fractional derivative of order
α(0 < α < 1) and type β(0 ≤ β ≤ 1) with respect to t is defined by

(HD
α,β
1 f)(t) = (HI

β(1−α)
1 HD

α+β(1−α)
1 f)(t), (8)

of function f for which the expression on the right-hand side exists, where HD
α+β(1−α)
1

is the Hadamard fractional derivative.

Lemma 2.1 [19] If α > 0, β > 0 and 1 < b <∞, then

(
HIα1

(
log s

)β−1)
(t) =

Γ(β)

Γ(α+ β)

(
log t

)β+α−1
, (9)

(
HDα

1

(
log s

)β−1)
(t) =

Γ(β)

Γ(β − α)

(
log t

)β−α−1
. (10)

The following lemma plays a vital role in the proof of main results.

Lemma 2.2 [23] Suppose that x > 0. Then Γ(x) = limm→+∞
mxm!

x(x+1)(x+2)···(x+m) .

We denote D = [1, 1 + h], Dh = (1, 1 + h], I = (1, 1 + l] and J = [1, 1 + l], for h > 0.
Here we choose

l = min

{
h,
(
b
M

Γ(α+k+1)
Γ(k+1)

) 1
µ+k

}
, µ = 1− β(1− α).

Further E = {x : |x(log t)1−γ − x0| ≤ b} for b > 0 and t ∈ Dh. A function x(t) is said to
be a solution of IVP (5) if there exists l > 0 such that x ∈ C0(I) satisfies the differential

equation HD
α,β
1 x(t) = f(t, x) almost everywhere on I along with the condition

lim
t→1

(log t)
1−γ

x(t) = x0.

To prove our main results, we assume the following hypotheses:

(H1) (t, x)→ f(t, (log t)γ−1x(t)) is defined on Dh × E and satisfies:

(i) x→ f(t, (log t)γ−1x(t)) is continuous on E for all t ∈ Dh,
t→ f(t, (log t)γ−1x(t)) is measurable on Dh for all x ∈ E;

(ii) there exist k > (β(1 − α) − 1) and M ≥ 0 such that the relation
|f(t, (log t)γ−1x(t))| ≤M(log t)k holds for all t ∈ Dh and x ∈ E.

(H2) There exist A > 0 and x1, x2 ∈ E such that

|f(t, (log t)γ−1x1(t))− f(t, (log t)γ−1x2(t))| ≤ A(log t)k|x1 − x2|, for all t ∈ I.

3 Main Results

In this section, we state and prove the existence and uniqueness results for IVP (5)
for Hilfer-Hadamard FDEs. We present the iterative scheme for approximating such a
unique solution.
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Lemma 3.1 Suppose that (H1) holds. Then x : J → R is the solution of IVP (5) if
and only if x : I → R is the solution of the Volterra integral equation of second kind:

x(t) = x0

(
log t

)γ−1
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s))
ds

s
, t > 1. (11)

Proof. First we suppose that x : I → R is the solution of IVP (5). Then

|
(

log t
)1−γ

x(t) − x0| ≤ b for all t ∈ I. From (H1), there exist a k > (β(1 − α) − 1)
and M ≥ 0 such that

|f(t, x(t))| = |f(t, (log t)
γ−1

(log t)
1−γ

x(t))| ≤M(log t)
k
, for all t ∈ I.

We have ∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s))
ds

s

∣∣∣∣ ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

M(log s)
k ds

s

= M(log t)
α+k Γ(k + 1)

Γ(α+ k + 1)
.

Clearly,

lim
t→1

(
log t

)1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s))
ds

s
= 0.

It follows that

x(t) = x0

(
log t

)γ−1
+

1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, x(s))
ds

s
, t ∈ I.

Since k > (β(1− α)− 1), we see that x ∈ C0(I) is a solution of integral equation (11).
Conversely, it is easy to see the fact that x : I → R is the solution of integral equation

(11) implies that x is the solution of IVP (5) defined on J. This completes the proof.
To prove our main results, we choose a Picard function sequence as follows:

φ0(t) = x0(log t)
γ−1

, t ∈ I,

φn(t) = φ0(t)+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φn−1(s))
ds

s
, t ∈ I, n = 1, 2, · · · .

(12)

Lemma 3.2 Suppose that (H1) holds. Then φn is continuous on I and satisfies

|(log t)
1−γ

φn(t)− x0| ≤ b.

Proof. From (H1), clearly |f(t, (log t)
γ−1

x)| ≤ M(log t)
k

for all t ∈ Dh and

|x(log t)
1−γ − x0| ≤ b. For n = 1, we have

φ1(t) = x0(log t)
γ−1

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φ0(s))
ds

s
. (13)

Then ∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φ0(s))
ds

s

∣∣∣∣ ≤ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

M(log s
)k ds

s

= M(log t
)α+k Γ(k + 1)

Γ(α+ k + 1)
.
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This implies φ1 ∈ C0(I) and from equation (13), we get

|(log t)
1−γ

φ1(t)− x0| ≤ (log t)
1−γ

M(log t)
α+k Γ(k + 1)

Γ(α+ k + 1)

≤Mlα+k+1−γ Γ(k + 1)

Γ(α+ k + 1)
. (14)

Now by the induction hypothesis for n = m, suppose that φm ∈ C0(J) and for all

t ∈ J, |(log t)
1−γ

φm(t)− x0| ≤ b. We have

φm+1(t) = x0(log t)
γ−1

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φm(s))
ds

s
. (15)

From the above discussion, we obtain φm+1(t) ∈ C0(I) and from equation (15), we have

|(log t
)1−γ

φm+1(t)− x0| ≤ (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

M(log s
)k ds

s

= M(log t)
α+k+1−γ Γ(k + 1)

Γ(α+ k + 1)

≤Mlα+k+1−γ Γ(k + 1)

Γ(α+ k + 1)
≤ b.

Thus, the result is true for n = m+ 1. By the principle of mathematical induction, the
result is true for all n. The proof is complete.

Theorem 3.1 Suppose that (H1) and (H2) hold. Consider the Picard function φn
given in (12). Then the sequence {(log t)

1−γ
φn(t)} is uniformly convergent on J.

Proof. Consider the series

(log t)
1−γ

φ0(t)+(log t)
1−γ

[φ1(t)− φ0(t)]+ · · ·+(log t)
1−γ

[φn(t)− φn−1(t)]+ · · · , t ∈ J.

By relation (14) driven in the proof of Lemma 3.2 above, we get

(log t)
1−γ |φ1(t)− φ0(t)| ≤M(log t)

α+k+1−γ Γ(k + 1)

Γ(α+ k + 1)
, t ∈ J.

From Lemma 3.2, we have

(log t)
1−γ |φ2(t)− φ1(t)| ≤ (log t)

1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

|f(s, φ1(s))− f(s, φ0(s))|ds
s

=(log t
)1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1∣∣f(s, (log s)
γ−1

(log s)
1−γ

φ1(s)
)
−

f
(
s, (log s)

γ−1
(log s)

1−γ
φ0(s)

)∣∣ds
s

≤(log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

A(log s)
k∣∣(log s)

1−γ
φ1(s)−

(log s)
1−γ

φ0(s)
∣∣ds
s

≤(log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

A(log s)
k[

(log s)
1−γ |φ1(s)− φ0(s)|

]ds
s

≤(log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

A(log s)
k[
M(log s)

α+k+1−γ Γ(k+1)

Γ(α+k+1)

]ds
s
.
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Thus

(log t)
1−γ |φ2(t)− φ1(t)| ≤ AM Γ(k + 1)

Γ(α+ k + 1)

Γ(α+ 2k + 2− γ)

Γ(2α+ 2k + 2− γ)
(log t)

2(α+k+1−γ)
.

Now suppose that for n = m

(log t)
1−γ |φm+1(t)− φm(t)| ≤

AmM(log t)
(m+1)(α+k+1−γ)

m∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

We have

(log t)
1−γ |φm+2(t)− φm+1(t)| ≤ (log t)

1−γ

Γ(α)

∫ t

1

(
log

t

s

)α−1

|f(s, φm+1(s))−f(s, φm(s))|ds
s

= (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1∣∣f(s, (log s)
γ−1

(log s)
1−γ

φm+1(s)
)
−

f
(
s, (log s)

γ−1
(log s)

1−γ
φm(s)

)∣∣ds
s

≤ (log t)
1−γ 1

(Γ(α))

∫ t

1

(
log

t

s

)α−1

A(log s)
k[

(log s)
1−γ |φm+1(s)− φm(s)|

]ds
s

≤ (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

A(log s)
k

[
AmM(log s)

(m+1)(α+k+1−γ)

×
m∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ)− 1)

]
ds

s

= Am+1M(log t)
(m+2)(α+k+1−γ)

m+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

Thus
(log t)

1−γ |φm+2(t)− φm+1(t)| ≤

Am+1Ml(m+2)(α+k+1−γ)
m+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

The result is true for n = m + 1. By the principle of mathematical induction the result
is true for all n.

Consider

∞∑
n=1

un =

∞∑
n=1

MAn+1l(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

We have

un+1

un
=
MAn+2l(n+3)(α+k+1−γ)

∏n+2
i=0

Γ((i+1)k+i(α+1−γ)+1)
Γ((i+1)(α+k)+i(1−γ)+1)

MAn+1l(n+2)(α+k+1−γ)
∏n+1
i=0

Γ((i+1)k+i(α+1−γ)+1)
Γ((i+1)(α+k)+i(1−γ)+1)

= Alα+k+1−γ Γ((n+ 3)k + (n+ 2)(α+ 1− γ) + 1)

Γ((n+ 3)(k + α) + (n+ 2)(1− γ) + 1)
.



150 D.B. DHAIGUDE AND SANDEEP P. BHAIRAT

Using Lemma 2.2, we have

un+1

un
= Alα+k+1−γ

limm→∞
m(n+3)k+(n+2)(α+1−γ)+1m!

((n+3)k+(n+2)(α+1−γ)+1)···((n+3)k+(n+2)(α+1−γ)+m+1)

limm→∞
m(n+3)(k+α)+(n+2)(1−γ)+1m!

((n+3)(k+α)+(n+2)(1−γ)+1)···((n+3)(k+α)+(n+2)(1−γ)+m+1)

= Alα+k+1−γ [limm→∞m−α ((n+3)(k+α)+(n+2)(1−γ)+1)···((n+3)(k+α)+(n+2)(1−γ)+m+1)
((n+3)k+(n+2)(α+1−γ)+1)···((n+3)k+(n+2)(α+1−γ)+m+1) ].

It is easy to see that

((n+ 3)(k + α) + (n+ 2)(1− γ) + 1) · · · ((n+ 3)(k + α) + (n+ 2)(1− γ) +m+ 1)

((n+ 3)k + (n+ 2)(α+ 1− γ) + 1) · · · ((n+ 3)k + (n+ 2)(α+ 1− γ) +m+ 1)

is bounded for all m,n. Thus lim
n→∞

un+1

un
= 0 implies

∞∑
n=1

un is convergent. Hence

(log t
)1−γ

φ0(t) + (log t)
1−γ

[φ1(t)− φ0(t)] + · · ·+ (log t)
1−γ

[φn(t)− φn−1(t)] + · · ·

is uniformly convergent for t ∈ J. Hence {(log t)
1−γ

φn(t)} is uniformly convergent on J.

Theorem 3.2 Suppose that (H1) and (H2) hold. Then the solution

φ(t) = (log t)
γ−1

lim
n→∞

(log t)
1−γ

φn(t)

is a unique continuous solution of the integral equation (11) defined on J.

Proof. Since φ(t) = (log t)
γ−1

lim
n→∞

(log t)
1−γ

φn(t) on J, and by Lemma 3.2, we have

(log t)
1−γ |φ(t)− x0| ≤ b. Then

|f(t, φn(t))− f(t, φ(t))| ≤ A(log t)
k|φn(t)− φ(t)|, t ∈ I.

Clearly, (log t)
−k|f(t, φn(t))− f(t, φ(t))| ≤ A|φn(t)− φ(t)| → 0 uniformly as n → ∞ on

I. Therefore

(log t)
1−γ

φ(t) = lim
n→∞

φn(t)

= x0 + (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

(log s)
k

lim
n→∞

(
(log s)

−k
f(s, φn−1(s))

)ds
s

= x0 + (log t)
1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φ(s))
ds

s
.

Then φ(t) is a continuous solution of integral equation (11) defined on J.
Now we prove uniqueness of solution φ(t). Suppose that ψ(t) is a solution of integral

equation (11). Then (log t)
1−γ |ψ(t)| ≤ b for all t ∈ I and

ψ(t) = x0(log t)
γ−1

+
1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, φ(s))
ds

s
, t ∈ I.

We prove φ(t) ≡ ψ(t) on I. From (H1), there exist a k > (β(1−α)− 1) and M ≥ 0 such
that

|f(t, ψ(t))| =
∣∣f(t, (log t)

γ−1
(log t)

1−γ
ψ(t)

)∣∣ ≤M(log t)
k
, for all t ∈ I.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 144–153 151

Therefore

(log t)
1−γ |φ0(t)− ψ(t)| =(log t)

1−γ
∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

f(s, ψ(s))
ds

s

∣∣∣∣
≤ (log t)

1−γ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

M(log s)
k ds

s

= M(log t)
α+k+1−γ Γ(k + 1)

Γ(α+ k + 1)
.

Furthermore

(log t)
1−γ |φ1(t)− ψ(t)| =(log t)

1−γ
∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

[f(s, φ0(s))− f(s, ψ(s))]
ds

s

∣∣∣∣
≤ AM Γ(k + 1)

Γ(α+ k + 1)

Γ(α+ 2k + 2− γ)

Γ(2α+ 2k + 2− γ)
(log t)

2(α+k+1−γ)
.

By the induction hypothesis, we suppose that

(log t)
1−γ |φn(t)−ψ(t)| ≤ AnM(log t)

(n+1)(α+k+1−γ)
n∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

Then

(log t)
1−γ |φn+1(t)− ψ(t)| ≤ (log t)

1−γ
∣∣∣∣ 1

Γ(α)

∫ t

1

(
log

t

s

)α−1

[f(s, φn(s))− f(s, ψ(s))]
ds

s

∣∣∣∣
≤An+1M(log t)

(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)

≤An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
.

Using the same arguments as in Theorem 3.1, we obtain the series

∞∑
n=1

An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
,

which is convergent. Therefore

An+1Ml(n+2)(α+k+1−γ)
n+1∏
i=0

Γ((i+ 1)k + i(α+ 1− γ) + 1)

Γ((i+ 1)(α+ k) + i(1− γ) + 1)
→ 0 as n→∞.

Also we observe that lim
n→∞

(log t)
1−γ

φn(t) = (log t)
1−γ

ψ(t) uniformly on J . Thus

φ(t) ≡ ψ(t) on I. The proof is complete.

Theorem 3.3 Suppose that (H1) and (H2) hold. Then the IVP (5) has a unique

continuous solution φ(t) = (log t)
γ−1

lim
n→∞

(log t)
1−γ

φn(t) on I.

Proof. From Lemma 3.1 and Theorem 3.1, we can easily obtain that the solution

φ(t) = (log t)
γ−1

lim
n→∞

(log t)
1−γ

φn(t)

is a unique continuous solution of IVP (5) defined on I. The proof is complete.
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Example 3.1 We consider the Hilfer-Hadamard fractional differential problem HD
1
2 ,

1
2

1 x(t) = f(t, x), α = 1
2 , β = 1

2 ,

lim
t→1

(
log t

) 1
4x(t) = x0, γ =

3

4
,

(16)

where f(t, x(t)) = (log t)−
1
4 sin (log t)

8(1+
√

(log t))(1+| sin (log t)|)
, for t ∈ (1, e], x ∈ R,

f(1, x(1)) = 0, for x ∈ R.

It is easy to see that f is singular at t = 1, and is a continuous function for t ∈ (1, e]. We

choose µ = 3
4 , b = 4, k = − 1

4 > −
3
4 . Thus l = min

{
1.7182,

(
4
M

Γ( 5
4 )

Γ( 3
4 )

)2}
, where

M = max
t∈[1,e]

sin (log t)

8(1 +
√

log t)(1 + | sin(log t)|)
≈ 32

with

φ0(t) = x0(log t)
− 1

4 , t ∈ (1, e],

φn(t) = φ0(t)+
1

Γ( 1
2 )

∫ t

1

(
log

t

s

)− 1
2

f(s, φn−1(s))
ds

s
, n = 1, 2, · · · .

Clearly, all the conditions of Theorem 3.3 hold. Therefore IVP (16) has the unique
continuous solution

φ(t) = (log t)−
1
4 lim
n→∞

(log t)
1
4φn(t) on [1, e].

Remark 3.1 The initial value considered in IVP (5) is more suitable than that con-
sidered in IVP (1) and nonlinear function f may be singular at t = 1.

Remark 3.2 In hypothesis (H1), if (log t)−kf(t, (log t)γ−1x(t)) is continuous on
D × E, one may choose M = maxt∈J(log t)−kf(t, (log t)γ−1x(t)) continuous on Dh × E
for all x ∈ E.
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Abstract: This paper presents new synchronization schemes, which assure the co-
existence of the full-state hybrid function projective synchronization (FSHFPS) and
the inverse full-state hybrid function projective synchronization (IFSHFPS) between
wide classes of three-dimensional master systems and four-dimensional slave systems.
In order to show the capability of co-existence approaches, numerical examples are
reported, which illustrate the co-existence of FSHFPS and IFSHFPS between 3D
chaotic system and 4D hyperchaotic system in different dimension.

Keywords: chaos; full-state hybrid function projective synchronization; inverse full-
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1 Introduction

Synchronization refers to a process wherein two dynamical systems (master and
slave systems, respectively) adjust their motion to achieve a common behavior, mainly
due to a control input [1]. The issue of synchronization of chaotic dynamical systems
was first studied by Pecora and Carroll [2]. By considering the historical timeline of
the topic, it can be observed that a large variety of synchronization types has been
proposed such as matrix projective synchronization [3], generalized synchronization [4],
inverse generalized synchronization [5], Λ−φ generalized synchronization [6,7] and Φ−Θ
synchronization [8, 9] and so on. Among the different types, full state hybrid projective
synchronization (FSHPS) has been introduced, wherein each slave system variable syn-
chronizes with a linear combination of master system variables [10]. Different types
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of synchronization such as complete synchronization, anti-synchronization, projective
synchronization and hybrid synchronization can be achieved from the FSHPS scheme
depending on the choice of scaling functions. On the other hand, when the inverted
scheme is implemented, i.e., each master system state synchronizes with a linear com-
bination of slave system states, the inverse full-state hybrid projective synchronization
(IFSHPS) is obtained [11]. Moreover, when the scaling factors are replaced by scaling
functions, function-based hybrid synchronization schemes are obtained, i.e., the full-state
hybrid function projective synchronization (FSHFPS) [12] and the inverse full-state hy-
brid function projective synchronization (IFSHFPS) [13], respectively.

Recently, the topic of coexistence of several synchronization types between chaotic
systems has recently started to attract increasing attention. In fact, very recent papers
have investigated the co-existence of different types of synchronization when synchroniz-
ing two chaotic systems. For example, the approach developed in [14,15] has illustrated a
rigorous study to prove the co-existence of some synchronization types between discrete-
time chaotic (hyperchaotic) systems. Referring to integer-order chaotic systems, in [16]
two synchronization schemes of co-existence have been proposed. The problem of coex-
istence of some types of synchronization between different dimensional fractional order
chaotic systems has been studied [17, 18]. New approaches to study the co-existence of
some types of synchronization between integer order and fractional order chaotic systems
with different dimensions have been introduced in [19]. Meanwhile, to the best of our
knowledge, the investigation of coexistence of FSHFPS and IFSHFPS for integer-order
differential dynamical systems with different dimensions is not yet explored. The present
research work focuses on coexistence of FSHFPS and IFSHFPS between chaotic and
hyperchaotic systems.

Based on these considerations, this paper aims to give a further contribution to the
topic by considering the co-existence of FSHFPS and IFSHFPS between non-identical and
different dimensions chaotic and hyperchaotic systems. Specifically, the paper illustrates
new schemes, which prove the co-existence of the full-state hybrid function projective
synchronization (FSHFPS) and the inverse full-state hybrid function projective synchro-
nization (IFSHFPS) between a three-dimensional master system and a four-dimensional
slave system in 4D and 3D, respectively. These master-slave systems belong to general
classes, which include several chaotic (hyperchaotic) systems characterized by different
dimensions. The conceived schemes are general approches and the only restriction on
the scaling functions is that they must be differentiable and bouned functions.

The paper is organized as follow: Section 2 gives some definitions related to FSHFPS
and IFSHFPS. Sections 3 and 4 give the basic mathematical background of the coex-
istence of FSHFPS and IFSHFPS in 4D and 3D respectively. Section 5 presents some
numerical examples of co-existence of synchronization types with the aim to show the
effectiveness of the approach developed herein. Section 6 concludes the paper.

2 Definition of FSHFPS and IFSHFPS

We consider the following master and slave systems

Ẋ(t) = F (X(t)), (1)

Ẏ (t) = G(Y (t)) + U, (2)

where X(t) = (xi(t))1≤i≤n , Y (t) = (yi(t))1≤i≤m are the states of the master system and
the slave system, respectively, F : Rn → Rn, G : Rm → Rm and U = (ui)1≤i≤m is a
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vector controller.

Definition 2.1 The master systems (1) and the slave system (2) are said to be
full state hybrid function projective synchronized (FSHFPS), if there exist a controller
U = (ui)1≤i≤m and differentiable functions αij (t) : R+ → R, i = 1, 2, ...,m; j = 1, 2, ..., n,
such that the synchronization errors

ei (t) = yi(t)−
n∑

j=1

αij (t)xj (t) , i = 1, 2, ...,m, (3)

satisfy limt→∞ ei (t) = 0.

Definition 2.2 The master systems (1) and the slave system (2) are said to be
inverse full state hybrid function projective synchronized (IFSHFPS), if there exist a
controller U = (ui)1≤i≤m and differentiable functions βij (t) : R+ → R, i = 1, 2, ..., n;
j = 1, 2, ...,m, such that the synchronization errors

ei (t) = xi(t)−
m∑
j=1

βij (t) yj (t) , i = 1, 2, ..., n, (4)

satisfy limt→∞ ei (t) = 0.

3 Scheme 1

Here, we assume that the master system can be considered as

ẋi(t) = fi(X(t)), i = 1, 2, 3, (5)

where X(t) = (xi(t))1≤i≤3 is the state vector of the master system (5), fi : R3 → R,
i = 1, 2, 3. Also, consider the slave system as

ẏi(t) =

4∑
j=1

bijyj (t) + gi(Y (t)) + ui, i = 1, 2, 3, 4, (6)

where Y (t) = (yi)1≤i≤4 is the state vector of the slave system (6), (bij) ∈ R4×4, gi : R4 →
R are nonlinear functions and ui, i = 1, 2, 3, 4, are controllers to be designed.

Definition 3.1 Let (αj (t))1≤j≤4 , (βj (t))1≤j≤3 , (γj (t))1≤j≤4 and (θj (t))1≤j≤3 be
continuously differentiable and boundary functions, it is said that IFSHFPS and FSHFPS
coexist in the synchronization of the master system (5) and the slave system (6), if there
exist controllers ui, = 1, 2, 3, 4, such that the synchronization errors

e1(t) = x1 (t)−
4∑

j=1

αj (t) yj (t) , (7)

e2(t) = y2 (t)−
3∑

j=1

βj (t)xj (t) ,

e3(t) = x3 (t)−
4∑

j=1

γj (t) yj (t) ,

e4(t) = y4 (t)−
3∑

j=1

θj (t)xj (t) ,
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satisfy lim t−→+∞ei (t) = 0, i = 1, 2, 3, 4.

Sufficient conditions for co-existence of IFSHFPS and FSHFPS between systems (5)
and (6) are given by the following theorem.

Theorem 3.1 The coexistence of IFSHFPS and FSHFPS between the master system
(5) and the slave system (6) will occur if α3 (t) γ1 (t) − α1 (t) γ3 (t) 6= 0 and the control
law is designed as follows:

u1 =

4∑
i=1

Pi

 4∑
j=1

(bij − cij) ej(t)−Ri

 , (8)

u2 =

4∑
j=1

(b2j − c2j) ej(t)−R2,

u3 =

4∑
i=1

Qi

 4∑
j=1

(bij − cij) ej(t)−Ri

 ,

u4 =

4∑
j=1

(b4j − c4j) ej(t)−R4,

where (cij)4×4 are control constants to be selected and

P1 =
γ3 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
, (9)

P2 =
γ3 (t)α2 (t)− α3 (t) γ2 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

P3 =
−α3 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

P4 =
γ3 (t)α4 (t)− α3 (t) γ4 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

Q1 =
−γ1 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

Q2 =
α1 (t) γ2 (t)− α2 (t) γ1 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

Q3 =
α1 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

Q4 =
α1 (t) γ4 (t)− α4 (t) γ1 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

and

R1 = f1(X(t))−
4∑

j=1

α̇j (t) yj (t)−
4∑

i=1

αi (t)

 4∑
j=1

bijyj (t) + gi(Y (t))

 , (10)

R2 =

4∑
j=1

b2jyj (t) + g2(Y (t))−
3∑

j=1

β̇j (t)xj (t)−
3∑

j=1

βj (t) ẋj (t) , (11)
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R3 = f3(X(t))−
4∑

j=1

γ̇j (t) yj (t)−
4∑

i=1

γi (t)

 4∑
j=1

bijyj (t) + gi(Y (t))

 ,

R4 =

4∑
j=1

b4jyj (t) + g4(Y (t))−
3∑

j=1

θ̇j (t)xj (t)−
3∑

j=1

θj (t) ẋj (t) .

Proof. The error system (7) can be differentiated as follows:

ė1(t) = ẋ1 (t)−
4∑

j=1

α̇j (t) yj (t)−
4∑

j=1

αj (t) ẏj (t) , (12)

ė2(t) = ẏ2 (t)−
3∑

j=1

β̇j (t)xj (t)−
3∑

j=1

βj (t) ẋj (t) ,

ė3(t) = ẋ3 (t)−
4∑

j=1

γ̇j (t) yj (t)−
4∑

j=1

γj (t) ẏj (t) ,

ė4(t) = ẏ4 (t)−
3∑

j=1

θ̇j (t)xj (t)−
3∑

j=1

θj (t) ẋj (t) .

Furthermore, the error system (12) can be written as

ė1(t) =

4∑
j=1

αj (t)uj +R1, (13)

ė2(t) = u2 +R2,

ė3(t) =

4∑
j=1

γj (t)uj +R3,

ė4(t) = u4 +R4,

where Ri, i = 1, 2, 3, 4, were described by (10). By substituting the control law (8) into
(13), the error system can be described as

ėi(t) =

4∑
j=1

(bij − cij) ej(t), i = 1, 2, 3, 4, (14)

or in the compact form
ė(t) = (B − C) e(t), (15)

where B = (bij)4×4 and C = (cij)4×4 is the control matrix. If we select the control
matrix C such that all the eigenvalues of B − C are strictly negative, it is immediate
that all solutions of the error system (15) go to zero as t → ∞. Therefore, the systems
(5) and (6) are globally synchronized in 4D.

4 Scheme 2

Now, the master and the slave systems can be described in the following forms

ẋi(t) =
∑3

j=1 aijxj(t) + fi(X(t)), i = 1, 2, 3, (16)

ẏi(t) = gi(Y (t)) + ui, i = 1, 2, 3, 4, (17)
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where X(t) = (xi)1≤i≤3 , Y (t) = (yi)1≤i≤4 are the states of the master system and the

slave system, respectively, (aij) ∈ R3×3, fi : R3 → R are nolinear functions, gi : R4 → R
and ui, = 1, 2, 3, 4, are controllers to be constructed.

Definition 4.1 Let (λj (t))1≤j≤3 , (µj (t))1≤j≤4 and (σj (t))1≤j≤3 be continuously
differentiable and boundary functions, it is said that IFSHFPS and FSHFPS coexist in
the synchronization of the master system (16) and the slave system (17), if there exist
controllers ui, = 1, 2, 3, such that the synchronization errors

e1(t) = y1 (t)−
3∑

j=1

λj (t)xj (t) , (18)

e2(t) = x2 (t)−
4∑

j=1

µj (t) yj (t) ,

e3(t) = y3 (t)−
3∑

j=1

σj (t)xj (t) ,

satisfy lim t−→+∞ei (t) = 0, i = 1, 2, 3.

Hence, we have the following result.

Theorem 4.1 To achieve the coexistence of IFSHFPS and FSHFPS between the
master system (16) and the slave system (17), we assume that µ2 (t) 6= 0 and the control
law is constructed as follows:

u1 =

3∑
j=1

(a1j − l1j) ej(t)−R1, (19)

u2 = −µ1 (t)

µ2 (t)

 3∑
j=1

(a1j − l1j) ej(t)−R1

− 1

µ2 (t)

 3∑
j=1

(a2j − l2j) ej(t)−R2


−µ3 (t)

µ2 (t)

 3∑
j=1

(a3j − l3j) ej(t)−R3

 ,

u3 =

3∑
j=1

(a3j − l3j) ej(t)−R3,

u4 = 0,

where (lij)3×3 are control constants to be determined, whereas R1, R2 and R3 are chosen
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as follows

R1 = g1(Y (t))−
3∑

j=1

(a1j − l1j) ej(t)−
3∑

j=1

λ̇j (t)xj (t) (20)

−
3∑

i=1

λi (t)

 3∑
j=1

aijxj(t) + fi(X(t))

 , (21)

R2 =

3∑
j=1

a2jxj(t) + f2(X(t))−
3∑

j=1

(a2j − l2j) ej(t) (22)

−
4∑

j=1

µ̇j (t) yj (t)−
4∑

j=1

µj (t) gj(Y (t)),

R3 = g3(Y (t))−
3∑

j=1

(a3j − l3j) ej(t)−
3∑

j=1

σ̇j (t)xj (t) (23)

−
3∑

i=1

σi (t)

 3∑
j=1

aijxj(t) + fi(X(t))

 .

Proof. Error system (18), between master system (16) and the slave system (17),
can be derived as

ė1(t) = ẏ1 (t)−
3∑

j=1

λ̇j (t)xj (t)−
3∑

j=1

λj (t) ẋj (t) , (24)

ė2(t) = ẋ2 (t)−
4∑

j=1

µ̇j (t) yj (t)−
4∑

j=1

µj (t) ẏj (t) ,

ė3(t) = ẏ3 (t)−
3∑

j=1

σ̇j (t)xj (t)−
3∑

j=1

σj (t) ẋj (t) .

Error system (24), after some algebraic manipulations, becomes

ė1(t) =

3∑
j=1

(a1j − l1j) ej(t) + u1 +R1, (25)

ė2(t) =

3∑
j=1

(a2j − l2j) ej(t)−
4∑

j=1

µj (t)uj +R2,

ė3(t) =

3∑
j=1

(a3j − l3j) ej(t) + u3 +R3,

where Ri, i = 1, 2, 3, were given by (21). By considering the control law (19), it follows
that the error dynamics between systems (16) and (17) are described by

ėi(t) =

4∑
j=1

(bij − lij) ej(t), i = 1, 2, 3, (26)
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or in the compact form
ė(t) = (A− L) e(t), (27)

where e(t) = (ei(t))1≤i≤3 , A = (aij)3×3 , L = (lij)3×3. Construct the candidate Lya-

punov function in the form: V (e(t)) = eT (t)e(t), we obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)
= eT (t)(A− L)T e(t) + eT (t) (A− L) e (t)
= eT (t)

[
(A− L)T + (A− L)

]
e(t).

If the control matrix L is chosen such that (A − L)T + (A − L) is a negative definite
matrix, we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability theory, the zero solution
of the error system (27) is globally asymptotically stable, i.e,

lim
t→∞

ei(t) = 0, i = 1, 2, 3. (28)

Therefore, systems (16) and (17) are globally synchronized in 3D.

5 Numerical Examples

This section provides several examples of coexistence of FSHFPS and IFSHFPS between
3D chaotic systems and 4D hyperchaotic systems in 4D and 3D, respectively. Each
numerical example is related to one of the theorems developed in previous sections.

5.1 Example 1

In this example, the master system is defined by the following new 3D system [20]

ẋ1 = a1 (x2 − x1) , (29)

ẋ2 = x1x3,

ẋ3 = 50− a2x21 − a3x3.

When a1 = 2.9, a2 = 0.7, a3 = 0.6 and the initial conditions are taken as
(x1 (0) , x2 (0) , x3 (0)) = (0.6, 0.5, 0.4), system (29) exhibits chaotic attractors as shown
in Figures 1 and 2.

The salve system is described by

ẏ1 = b1 (y2 − y1) + y2y3 + y4 + u1, (30)

ẏ2 = b2y1 + y4 − b3y1y3 + u2,

ẏ3 = −b4y3 + b5y1y2 + u3,

ẏ4 = −y1 − y2 + u4.

When the controllers u1 = u2 = u3 = u4 = 0, (b1,b2,b3,b4, b5) = (18,40,5,−3, 4)
and the initial conditions are given as (y1 (0) , y2 (0) , y3 (0) , y4 (0)) = (0.5, 0.8, 0.2, 1.3) ,
system (30) exhibits hyperchaotic attractors as shown in Figure 2 [21].

Based on the notations used in Section 3, the linear part B and the nonlinear part g
of the slave system (30) are given as follows

B =


−18 18 0 1
40 0 0 1
0 0 −3 0
−1 −1 0 0

 and g =


y2y3
−5y1y3
4y1y2

0

 .
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Figure 1: Phase portraits of the master system (25) in 2D.

Figure 2: Phase portraits of the slave system without control (26) in 3D.
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According to the approach developed in Section 3, the synchronization errors between
the master system (29) and the slave system (30) are defined as:

e1 = x1 − α1 (t) y1 − α2 (t) y2 − α3 (t) y3 − α4 (t) y4, (31)

e2 = y2 − β1 (t)x1 − β2 (t)x2 − β3 (t)x3,

e3 = x3 − γ1 (t) y1 − γ2 (t) y2 − γ3 (t) y3 − γ4 (t) y4,

e4 = y4 − θ1 (t)x1 − θ2 (t)x2 − θ3 (t)x3,

where α1 (t) = sin t, α2 (t) = 1, α3 (t) = 1
t+1 , α4 (t) = 2, β1 (t) = 3, β2 (t) = cos t,

β3 (t) = 4, γ1 (t) = e − t, γ2 (t) = 2, γ3 (t) = 0, γ4 (t) = 1
t2+1 , θ1 (t) = t

t+1 , θ2 (t) = 0,
θ3 (t) = sin 3t. So,

α3 (t) γ1 (t)− α1 (t) γ3 (t) =
1

et (t+ 1)
6= 0. (32)

The coexistence of IFSHFPS and FSHFPS, in this example, is achieved when the
control matrix C is selected as

C =


0 18 0 1
40 1 0 1
0 0 0 0
−1 −1 0 1

 , (33)

and the controllers ui, 1 ≤ i ≤ 4, are constructed according to (8) as follows:

u1 = −2et (−e2 −R2) + et (−3e3 −R3)− et

t2 + 1
(−e4 −R4) , (34)

u2 = −e2 + 5y1y3 − 40y1 − y4 −R2,

u3 = − (t+ 1) (−18e1 −R1) + et (t+ 1) (35)[
− (2 + 2e2 + 2R2 + 3e3 +R3) sin t+

(
sin t

t2 + 1
− e−t

)
(−e4 −R4)

]
,

u4 = −e4 + y1 + y2 −R4,

where

R1 = 2.9 (x2 − x1)− y1 cos t+
1

(t+ 1)
2 y3 − sin t (18 (y2 − y1) + y2y3) (36)

+
1

t+ 1
(4y1y2 − 3y3)− y1 − y2, (37)

R2 = −5y1y3 + 40y1 + y4 + x2 sin t− 8.7 (x2 − x1)− x1x3 cos t,

R3 = 50− 0.7x21 − 0.6x3 + e−ty1 +
2t

(t2 + 1)
2 y4 − e

−t (18 (y2 − y1) + y2y3) (38)

+10y1y3 + 80y1 − 2y4 +
1

t2 + 1
(y1 + y2) ,

R4 = −y1 − y2 −
t+ 1− t2

(t+ 1)
2 x1 − 3x3 cos 3t− 2.9t

t+ 1
(x2 − x1) (39)

−
(
50− 0.7x21 − 0.6x3

)
sin 3t.
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Figure 3: Time evolution of the errors e1, e2, e3 and e4.

We can show that all eigenvalues of B − C have negative real parts. It can be seen
that all conditions of Theorem 1 are satisfied. Consequently, the error functions between
systems (29) and (30) are described by

ė1 = −18e1, (40)

ė2 = −e2,
ė3 = −3e3,

ė4 = −e4.

Numerical results plotted in Figure 3 are obtained, indicating that the coexistence of
IFSHFPS and FSHFPS is effectively achieved in 4D.

5.2 Example 2

Herein, the master system is selected as a 3D chaotic system proposed in [22] by the
following ODE system

ẋ1 = x2, (41)

ẋ2 = x3,

ẋ3 = −c1x1 (1− x1)− x2 + c2x
2
2.

System (41), when (c1, c2) = (0.2, 0.01) and (x1 (0) , x2 (0) , x3 (0)) =
(0.0.1,−0.0.1, 0.0.1), possesses chaotic attractors plotted in Figures 4.

Using the notations presented in Section 4, the linear part A and the nonlinear part
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Figure 4: Phase portraits of the master system (33) in 2D.

f of the master system (41) are given as follows

A = (aij)3×3 =

 0 1 0
0 0 1
−0.2 −1 0

 and f =

 0
2

0.2x21 + 0.01x21

 .

As the slave master system, we consider a novel 4D hyperchaotic system introduced
in [23] by the following ODE system

ẏ1 = d1 (y2 − y1) + y2y3 − y4 + u1, (42)

ẏ2 = d2y2 − y1y3 + y4 + u2,

ẏ3 = y1y2 − d3y3 + u3,

ẏ4 = −d4 (y1 + y2) + u4.

System (42), when u1 = u2 = u3 = u4 = 0, (d1, d2, d3, d4) = (40, 20.5, 5, 2.5) and
(y1 (0) , y2 (0) , y3 (0) , y4 (0)) = (0.5, 0.8, 0.6, 0.2) , displays hyperchaotic attractors shown
in Figure 5.

In this example, according to the control scheme presented in Section 4, the synchro-
nization errors are given as

e1 = y1 − λ1 (t)x1 − λ1 (t)x1 − λ1 (t)x1, (43)

e2 = µ1 (t) y1 + µ2 (t) y2 + µ3 (t) y3 + µ4 (t) y4 − x2,
e3 = y3 − σ1 (t)x1 − σ2 (t)x2 − σ3 (t)x3,

where λ1 (t) = e−t, λ2 (t) = sin 2t, λ3 (t) = 0, µ1 (t) = 0, µ2 (t) = 1√
t+1

, µ3 (t) = 1
1+cos2 t ,

µ4 (t) = 4, σ1 (t) = 1
lin(t+1) , σ2 (t) = 1

1+sin2 t
and σ3 (t) = 0.
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Figure 5: Phase portraits of the slave system (34) without control in 3D.

We selecte the control matrix L as

L =

 1 0 0
0 2 0
0 0 3

 , (44)

and by using (19), the controllers u1, u2, u3 and u4 are designed as follows

u1 = −e1 −R1, (45)

u2 = −
(√

t+ 1
)

(−2e2 −R2)−
√
t+ 1

1 + cos2 t
(−3e3 −R3) ,

u3 = −3e3 −R3,

u4 = 0,

where

R1 = 40 (y2 − y1) + y2y3 − y4 + e1 + e−tx1 − 2x2 cos 2t− x2e−t − x3 sin 2t, (46)

R2 = x3 + 2e2 −
y2

2
√
t
(√
t+ 1

)2 − y3 2 sin t cos t

(1 + cos2 t)
− 1√

t+ 1
(47)

(20.5y2 − y1y3 + y4)− 1

1 + cos2 t
(y1y2 − 5.5y3) + 10 (y1 + y2) ,

R3 = y1y2 − 5.5y3 + 3e3 +
1

(t+ 1) lin2 (t+ 1)
x1 +

2 sin t cos t(
1 + sin2 t

)x2 (48)

− x2
lin (t+ 1)

− x3

1 + sin2 t
.

It is easy to see that (A−L)T +(A−L) is a negative definite matrix. It can be readily
shown that all conditions of Theorem 2 are satisfied. Consequently, the error functions
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Figure 6: Time evolution of the errors e1, e2 and e3.

between systems (41) and (42) are described by

ė1 = −0.1e1, (49)

ė2 = −2e2,

ė3 = −3e2.

According to numerical results obtained in Figure 6, it can be concluded that the
coexistence of FSHFPS and IFSHFPS synchronization is effectively achieved in 3D.

6 Conclusion

When analyzing the synchronization of chaotic systems, an interesting phenomenon that
may occur is the co-existence of some synchronization types. Based on these consid-
erations, this paper has presented new results related to the co-existence of FSHFPS
and IFSHFPS between non-identical and different dimensions chaotic systems charac-
terized. Specifically, the manuscript has proposed new schemes, which assures the co-
existence of FSHFPS and IFSHFPS between a three-dimensional master system and a
four-dimensional slave system. Note that the approach developed herein enables to prove
the co-existence of FSHFPS and IFSHFPS in several cases. Specifically, the approach
can be applied to: i) wide classes of chaotic (hyperchaotic) master-slave systems; ii) non-
identical systems with different dimensions; iii) schemes wherein the scaling factor of the
linear combination can be any arbitrary differentiable function. Numerical examples,
describing the co-existence of FSHFPS and IFSHFPS between chaotic and hyperchaotic
systems, have clearly highlighted the effectiveness of the approach proposed herein.
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Abstract: An active backstepping scheme is proposed to attain three different types
of synchronization between the chaotic Cai system and the Chen system. Complete
synchronization, anti-synchronization and hybrid synchronization are accomplished
by using the active backstepping method between different switches of the Cai and
Chen systems, where the Cai system is considered as a master system and the Chen
system is considered as a slave system. The goal is to design appropriate controllers
by using the Lyapunov stability criteria and active backstepping method so that
asymptotically stable synchronized state for different switches of the master and slave
systems can be obtained. The results obtained by theoretical and graphical analysis
are in agreement.

Keywords: active backstepping method; multi-switching synchronization; chaotic
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1 Introduction

In the area of applied sciences “chaos” is an important field as one of its beautiful features
is its applications in several areas such as ecology, secure communication, medicine,
biology etc. So many integer order chaotic and hyperchaotic systems have been obtained
after the invention of the classical “Lorenz system” in 1963, and so many chaotic and
hyperchaotic systems have also been developed in the field of fractional calculus. In the
field of chaos, synchronization has been a fascinating branch for the last three decades
and researchers have shown their interest to this branch.
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Since 1990, when the important phenomenon of synchronization was discovered by
Pecora and Carroll [10], the field of synchronization has been growing day by day. Numer-
ous new researches have been done theoretically and experimentally in the field of syn-
chronization. Several researches have been done to extend the phenomenon of synchro-
nization from complete synchronization [10] to a new range of synchronizations [2, 9, 17]
and to develop the new techniques [6,15,16] to achieve synchronization. The active back-
stepping technique has been applied widely to achieve synchronization in different cases.
In the last few years, outstanding work has been done on synchronization via active back-
stepping such as complete synchronization between identical systems [1], combination
synchronization [11], reduced order synchronization [8], multi-switching synchronization
for three chaotic systems [13] etc. The active backstepping method is found very effec-
tive for the cases given above. Some of these works have been done on multi-switching
synchronization. Since 2008, when a new type of synchronization was achieved for two
identical chaotic systems by Ucar [12], multi-switching synchronization has been a hot
topic among researchers. Later, multi-switching synchronization between the Lorenz sys-
tem and the Chen system with fully unknown parameters [14] has also been achieved.
Inspite of all the work that has been done, there is a large scope of work in the field of
multi-switching synchronization.

In this paper, for different switches of the chaotic Cai system and the Chen system
three types of synchronizations are achieved by the active backstepping method. It is
clear from numerical simulations that the active backstepping method is very fast, by
which synchronization can be achieved very quickly. The proposed scheme has significant
applications in the field of secure communications as the synchronization attained by any
arbitrary pair increases the grade of security. Secure communication [5] is a field where
synchronization is being used very widely. It was found by some researchers that because
of arbitrary multiplying factor projective synchronization is an important tool to make
communication more reliable [7]. Multi-switching synchronization is defined in such a
manner that any pair of state variables may achieve synchronization, which increases the
level of security. The advantage of the presented scheme is that by choosing different
values of scaling factors different synchronizations can be achieved by a single approach.

This manuscript has been arranged in the following manner. Problem formulation
is given in Section 2. In Section 3 dynamics of the Cai system and the Chen system
is given. Section 4 contains the scheme for multi-switching synchronization achieved by
the active backstepping method and Section 5 contains simulation results for three types
of synchronization between the Cai system and the Chen system. In Section 6, main
features of this work are highlighted.

2 Problem Formulation

Suppose an n-dimensional system is considered as the master system

v̇1 = h11(v1, v2, . . . , vn), v̇2 = h21(v1, v2, . . . , vn), . . . , v̇n = hn1(v1, v2, . . . , vn), (1)

and the n-dimensional slave system is

ẇ1 = h12(w1, w2, . . . , wn) + u1, ẇ2 = h22(w1, w2,

. . . , wn) + u2, . . . , ẇn = hn2(w1, w2, . . . , wn) + un,
(2)
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where u1, u2, . . . , un ∈ Rn → R are the controllers and hi1, hi2 ∈ Rn → R for i =
1, 2, . . . , n are continuous functions. Suppose the errors are defined as

ė1 = p1w1 + q1v1, ė2 = p2w2 + q2v2, . . . , ėn = pnwn + qnvn, (3)

where, pi, qi, i = 1, 2, ..., n are arbitrary scaling factors. By using equations (1) and (2)
the error dynamical system can be expressed as

ė1 = g1 + f1 + p1u1, ė2 = g2 + f2 + p2u2, . . . , ėn = gn + fn + pnun, (4)

where e = (e1, e2, ....en)′ is the error vector, g1, g2, . . . , gn are the functions which contain
only error components and f1, f2, . . . , fn are the nonlinear functions which contain the
terms of master and slave systems. First, put l1 = e1 and consider the l1 subsystem
so that l̇1 = G1(l1, f1, p1u1), where a virtual controller e2 = ϑ(l1) is assumed. The aim
is to design the virtual controller ϑ(l1) and the controller p1u1 by using the Lyapunov
stability criteria so that the l1 subsystem will be stabilized. The same procedure will be
repeated in the next step to stabilize the (l1, l2) subsystem, where l2 = e2−ϑ(l1) and the
virtual controller e3 = ϑ(l1, l2) . Thus, eventually an asymptotically stable (l1, l2, . . . , ln)
system will be achieved so that the master and slave systems will attain asymptotically
stable synchronization state.

3 The Cai System and the Chen System

The Cai system [3] is considered as the master system which is given below

v̇1 = ζ1(v2 − v1),

v̇2 = η1v1 + θ1v2 − v1v3,
v̇3 = v1

2 − δ1v3,
(5)

which shows chaotic behavior for the parameter values ζ1 = 20, η1 = 14, θ1 = 10.6, δ1 =
2.8 and the well known Chen system [4] is considered as the slave system which is given
below

ẇ1 = ζ2(w2 − w1),

ẇ2 = (θ2 − ζ2)w1 + θ2w2 − w1w3,

ẇ3 = w1w2 − η2w3,

(6)

which exhibits chaotic behavior for the parameter values ζ2 = 35, η2 = 3, θ2 = 28.

4 Multi-Switching Synchronization Methodology

The slave system with controller is

ẇ1 = ζ2(w2 − w1) + u1j ,

ẇ2 = (θ2 − ζ2)w1 + θ1w2 − w1w3 + u2j ,

ẇ3 = w1w2 − η2w3 + u3j ,

(7)

where u1j , u2j , u3j , represent different controllers and j = 1, 6 represent different switch-
ing states.
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First, we will define a general synchronization methodology using the active back-
stepping technique. In order to explain the method, for j = 1, the errors are defined as
follows:

e11 = p1w1 + q1v1,

e21 = p2w2 + q2v2,

e31 = p3w3 + q3v3,

(8)

where pi, qi, i = 1, 2, 3 are arbitrary scaling factors. If p1 = p2 = p3 = 1 and q1 =
q2 = q3 = 1, then anti-synchronization will be achieved for the pairs of state variables
(w1, v1), (w2, v2), (w3, v3). If p1 = p2 = p3 = 1 and q1 = q2 = q3 = −1, then complete
synchronization will be achieved and if p1 = p2 = p3 = 1 and q1 = 1, q2 = −1, q3 = 1,
then hybrid synchronization will be achieved.

Hybrid synchronization has been defined as the synchronization for which some state
variables attain completely synchronized state and some state variables attain anti-
synchronized state. But in this paper, since we have chosen the master-slave combination
in multi-switching manner, we assume in the case of hybrid synchronization that any state
variable which is taken with w1 and w3 will be completely synchronized with these state
variables and the state variable which is taken with w2 will be anti-synchronized. From
(8) the error dynamics can be written as

ė11 = p1ẇ1 + q1v̇1,

ė21 = p2ẇ2 + q2v̇2,

ė31 = p3ẇ3 + q3v̇3.

(9)

By using (5) and (7) in (9), we get

ė11 = p1 {ζ2(w2 − w1) + u11}+ q1 {ζ1(v2 − v1)} ,
ė21 = p2 {(θ2 − ζ2)w1 + θ2w2 − w1w3 + u21}+ q2 (η1v1 + θ1v2 − v1v3) ,

ė31 = p3 (w1w2 − η2w3 + u31) + q3
(
v1

2 − δ1v3
)
.

(10)

Hence the error dynamical system can be written as

ė11 = ζ2(p1w2 − p1w1) + ζ1(q1v2 − q1v1) + p1u11

=
p1ζ2
p2

(e21 − q2v2)− ζ2(e11 − q1v1) + ζ1(q1v2 − q1v1) + p1u11,

=
p1ζ2
p2

e21 − ζ2e11 + f1 + p1u11.

(11)

Similarly

ė21 = p2 {(θ2 − ζ2)w1 + θ2w2 − w1w3}+ q2(η1v1 + θ1v2 − v1v3) + p2u21

=
p2(θ2 − ζ2)

p1
(e11 − q1v1) + θ2(e21 − q2v2)− p2

p1p3
(e11 − q1v1)(e31 − q3v3)

+ q2(η1v1 − θ1v2 − v1v3) + p2u21 =
p2(θ2 − ζ2)

p1
e11 −

p2
p1p3

e11e31 +
p2q3
p1p3

e11v3

+
p2q1
p1p3

e31v1 + θ2e21 + f2 + p2u21

(12)
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and

ė31 = p3(w1w2 − η2w3) + q3(v1
2 − δ1v3) + p3u31

=
p3
p1p2

(e11 − q1v1)(e21 − q2v2)− η2(e31 − q3v3) + q3(v1
2 − δ2v3) + p3u33

=
p3
p1p2

e11e21 −
p3q2
p1p2

e11v2 −
p3q1v1
p1p2

e21 − η2e31 + f3 + p3u31,

(13)

where

f1 =
−p1ζ2
p2

q2v2 + ζ2q1v1 + ζ1q1v2 − ζ1q1v1,

f2 = −q1p2
p1

(θ2 − ζ2)v1 −
p2q3q1
p1p3

v1v3 − θ2q2v2 + q2(η1v1 − θ1v2 − v1v3),

f3 =
p3
p1p2

q1q2v1v2 + η2q3v3 + q3(v1
2 − δ2v3).

(14)

Let l1 = e11. Then its derivative will be

l̇1 = ˙e11 =
p1ζ2
p2

e21 − ζ2l1 + f1 + p1u11, (15)

where e21 = ϑ1(l1) is considered as a virtual controller. Our aim is to design ϑ1(l1) so
that the l1 subsystem (15) could be stabilized. Consider the following Lyapunov function

K1 = 0.5l1
2. (16)

Then the derivative of K1 will be

K̇1 = l1 l̇1 = l1

(
p1ζ2
p2

ϑ1(l1)− ζ2e11 + f1 + p1u11

)
. (17)

If ϑ1(l1) = 0 and u11 = − 1
p1

(f1), then K̇1 = −ζ2e211 which is negative definite. Hence by
the Lyapunov stability criteria the l1 subsystem is asymptotically stable. Suppose the
error between e21 and ϑ1(l1) is denoted by l2 = e21 − ϑ1(l1). Then we have the (l1, l2)
subsystem given below

l̇1 =
p1ζ2
p2

l2 − ζ2l1,

l̇2 =

(
p2(θ2 − ζ2)

p1
− p2
p1p3

e31 +
p2q3
p1p3

v3

)
l1 + θ2l2 +

p2q1
p1p3

e31v1 + f2 + p2u21.

(18)

In order to make the (l1, l2) subsystem stable, e31 = ϑ2(l1, l2) is taken as a virtual
controller. Now, we take the Lyapunov function and its derivatives as

K2 = K1 + (0.5)l2
2,

K̇2 = −ζ2l12 − θ2l22 + l2

[(
p2(θ2 − ζ2)

p1
− p2
p1p3

ϑ2(l1, l2) +
p2q3
p1p3

v3

)
l1 + 2θ2l2

+
p2q1
p1p3

v1ϑ2(l1, l2) +
p1ζ2
p2

l1 + f2 + p2u21

]
.

(19)
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Hence by choosing the controller u21 in the following way

u21 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v3 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
(20)

and the virtual controller ϑ2(l1, l2) = 0, we get K̇2 = −ζ2l12 − θ2l22 which is negative
definite. Hence the (l1, l2) subsystem is asymptotically stable. Now, suppose the error
between e31 and ϑ2(l1, l2) is l3 = e31 − ϑ2(l1, l2). Then

l̇3 =
p3
p1p2

l1l2 −
p3q2
p1p2

l1v2 −
p3
p1p2

l2q1v1 − η2l3 + f3 + p3u31. (21)

Now to stabilize the (l1, l2, l3) system, the controller u31 is defined as

u31 = − 1

p3

[{(
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v2

}
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v1 + f3

]
(22)

and the Lyapunov function K3 as

K3 = K2 + 0.5l3
2. (23)

Its derivative will be

K̇3 = −ζ2l12 − θ2l22 − η2l32 (24)

which is negative definite. Hence according to the Lyapunov stability theory (0, 0, 0)
equilibrium point of (l1, l2, l3) system is now asymptotically stable. The (l1, l2, l3) system
is given by 

l̇1 =
p1ζ2
p2

l2 − ζ2l1,

l̇2 = − p2
p1p3

l1l3 +
p2
p1p3

q1v1l3 − θ2l2 −
p1ζ2
p2

l1,

l̇3 =
p2
p1p3

l2l1 − η2l3 −
p2q1
p1p3

l2v1.

(25)

Now, for the second switch the errors are defined as follows

e12 = p1w1 + q1v2, e22 = p2w2 + q2v3, e32 = p3w3 + q3v1. (26)

Then, the controllers are

u12 = − 1

p1
(f1),

u22 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v1 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u32 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v3

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v2 + f3

]
,

(27)

where l1 = e12, l2 = e22, l3 = e32. For the third switch the errors are

e13 = p1w1 + q1v3, e22 = p2w2 + q2v1, e32 = p3w3 + q3v2. (28)
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The controllers defined by using the above procedure are

u13 = − 1

p1
(f1),

u23 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v2 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u33 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v1

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v3 + f3

]
,

(29)

where l1 = e13, l2 = e23, l3 = e33. In case of switch four the errors are defined as

e14 = p1w1 + q1v1, e24 = p2w2 + q2v3, e34 = p3w3 + q3v2 (30)

and the controllers are

u14 = − 1

p1
(f1),

u24 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v2 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u34 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v3

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v1 + f3

)
,

(31)

where l1 = e14, l2 = e24, l3 = e34. For switch five the errors are taken as

e15 = p1w1 + q1v3, e25 = p2w2 + q2v2, e35 = p3w3 + q3v1. (32)

For switch five the controllers are

u15 = − 1

p1
(f1),

u25 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v1 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u35 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v2

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v3 + f3

]
,

(33)

where l1 = e15, l2 = e25, l3 = e35. For switch six the errors are

e16 = p1w1 + q1v2, e26 = p2w2 + q2v1, e36 = p3w3 + q3v3 (34)

and the controllers are

u16 = − 1

p1
(f1),

u26 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v3 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u36 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v1

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v2 + f3

]
,

(35)

where l1 = e16, l2 = e26, l3 = e36. It is obvious that the values of f1, f2, f3 will be
different in all the switches, since the values of f1, f2, f3 will be changed according to
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Figure 1: (a) Synchronization between the state variables w1, v1 in switch one; (b) Synchro-
nization between the state variables w2, v2 in switch one; (c) Synchronization between the state
variables w3, v3 in switch one; (d) Convergence of e11, e21, e31 to zero for switch one.

the error defined. If q1, q2, q3 are chosen as any arbitrary scalars but not equal and all
p1 = p2 = p3 = 1, then this will become a case of modified projective synchronization.
If q1 = q2 = q3 are chosen as any arbitrary scalars and all p1 = p2 = p3 = 1, then
the problem will be reduced to projective synchronization which is a particular case of
modified projective synchronization. The method described above is easy to apply for
the dynamical systems having dimension greater than three also.

5 Numerical Simulations

5.1 Complete synchronization

Numerical simulations are shown only for three switches as the remaining ones can be
achieved in a similar manner. The values of p′is and q′is are chosen in such a manner
which lead to complete synchronization, anti-synchronization and hybrid synchronization
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Figure 2: (a) Anti-synchronization between the state variables w1, v2 in switch two; (b) Anti-
synchronization between the state variables w2, v3 for switch two; (c) Anti-synchronization be-
tween the state variables w3, v1 in switch two; (d) Convergence of the errors e12, e22, e32 to zero
for switch two.

between different state variables of the drive and response systems.

The case of complete synchronization is considered for the first switch and the values
of scaling factors are p1 = p2 = p3 = 1 and q1 = q2 = q3 = −1.

The initial conditions are kept fixed for the slave system throughout the paper, which
are (−5, 25, 1), but in each type of synchronization the initial conditions for the master
system are different. In the case of complete synchronization the initial conditions for
the master system are (8, 20, 30). Hence for the first switch the initial conditions for the
errors are (−13, 5,−29). Complete synchronization between w1, v1 and w2, v2 is shown in
Figure 1a-b. Figure 1c-d show synchronization between w3, v3 and the errors e11, e21, e31
converging to zero.
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Figure 3: (a) Complete synchronization between the state variables w1, v3; (b) Anti-
synchronization between w2, v1 for switch three; (c) Complete synchronization between the
state variables w3, v2; (d) Convergence of e13, e23, e33 to zero for switch three.

5.2 Anti-synchronization

Anti-synchronization is shown for the second switch. In order to achieve anti-
synchronization, the values of p1 = p2 = p3 = 1 and q1 = q2 = q3 = 1 are chosen. Since
the initial conditions for the master and slave systems are (15, 40, 6) and (−5, 25, 1), the
initial conditions for the errors are (35, 31, 16). Figure 2 a-b show anti-synchronization
between w1, v2 and w2, v3, and Figure 2 c-d show anti-synchronization between the state
variables w3, v1 and the errors e12, e22, e32 converging to zero.

5.3 Hybrid synchronization

In this subsection the case of hybrid synchronization is considered for the third switch. In
order to attain hybrid synchronization, the values of p1 = p2 = p3 = 1 and q1 = 1, q2 =
−1, q3 = −1 are chosen. In the case of hybrid synchronization the initial conditions for the
master system are (26, 10, 6). According to the initial conditions for the master and slave
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systems (26, 10, 6) and (−5, 25, 1) respectively, for the third switch the initial conditions
for the errors are (−11, 51,−9). Figure 3 a-b show complete synchronization between
w1, v3 and anti-synchronization for w2, v1. Figure 3 c-d exhibit the state variables w3, v2
in complete synchronized states and the errors e13, e23, e33 converging to zero.

The numerical results presented in this paper are obtained by using Matlab software.
In numerical simulations, complete synchronization, anti-synchronization and hybrid syn-
chronization are shown and other types of synchronization can be achieved by choosing
different scaling factors.

6 Conclusion

In this manuscript, we have investigated multi-switching synchronization between the
Cai system and the Chen system by using the active backstepping method. An effi-
cient and easy method is proposed to design suitable controllers and fruitful results are
obtained. Both theoretical and graphical analysis lead to the same conclusion. The con-
trollers designed by this approach are very effective as synchronizations are achieved very
rapidly by this method. Since the chaos synchronization has its applications in secure
communications and multi-switching increases the grade of security as it is very difficult
to guess which pair of state variables will attain synchronization, the proposed method
has significant applications in the field of secure communication. The approach is also
significant in the sense that by simply taking different scaling factors, various types of
synchronization can be achieved. This work can be extended to fractional order systems
and various higher dimensional systems.
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Abstract: In this paper we presented a reliable efficient numerical scheme to find
analytical supportive solution of Caputo-time-fractional Wu-Zhang system. A modi-
fied version of generalized Taylor power series method is used in this work. Graphical
justifications of the reliability of the proposed method are provided. Finally, the
effects of the fractional order on the solution of Wu-Zhang system is also discussed.
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1 Introduction

Wu-Zhang system is known also as (1+1)-dimensional dispersive long wave equations [25].
It is very helpful for coastal and civil engineers to apply the nonlinear water wave model
in harbor and coastal design. Abundant soliton solutions are obtained to this model
using the extended hyperbolic tangent expansion method. In [20], the Wu-Zhang system
is considered to study dispersive long waves. The extended trial equation method is used
and solitary wave solutions are obtained. Also, they used the mapping method to extract
more solitonic solutions.

Finding analytical solution to fractional nonlinear differential equations is a difficult
task. In the literature, different computational schemes were developed for either finding
numerical solutions over a specific range or considering a few terms of an iterative com-
putational series solution as an approximate. Such available methods are the variational
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iteration method [21], the iterative Laplace transform method [17], Adomian’s decom-
position method [23], homotopy analysis (perturbation) methods [12, 15, 16, 22], gener-
alized iterative-monotone methods [11, 13, 24] and the fractional power series method
[1–10,14,18,19].

The motivation of this work is to study for the first time the fractional Wu-Zhang
system

Dα
t v(x, t) = −v(x, t)vx(x, t)− wx(x, t),

Dα
t w(x, t) = −(v(x, t)w(x, t))x −

1

3
vxxx(x, t), (1)

where 0 < α ≤ 1 in Caputo sense and 0 < t < R < 1. Also, we desire to study the effect
of the fractional derivative α on the solution of (1).

The generalized Taylor fractional series will be used as an alternative method to
extract a reliable analytical supportive solution of the time-fractional Wu-Zhang system.
The accuracy of the method will be provided and graphical analysis is conducted to study
the effect of the fractional order α on the behavior of the obtained solution.

2 Analysis of the Proposed Method

In this section, we present in details the construction of the generalized Taylor fractional
series. The suggested solutions of the problem are sought to have the form

v(x, t) =

∞∑
j=0

cj(x)
tjα

Γ(jα+ 1)
, (2)

w(x, t) =

∞∑
j=0

dj(x)
tjα

Γ(jα+ 1)
. (3)

The target of this study is obtaining a supportive approximate solution to the proposed
model. Thus, we may write the suggested solution as

v(x, t) =

m∑
j=0

cj(x)
tjα

Γ(jα+ 1)
= c0(x) +

m∑
j=1

cj(x)
tjα

Γ(jα+ 1)
, (4)

w(x, t) =

m∑
j=0

dj(x)
tjα

Γ(jα+ 1)
= d0(x) +

m∑
j=1

dj(x)
tjα

Γ(jα+ 1)
. (5)

In Caputo sense, we recall the fact that

Dα
t t
β =


Γ(β+1)

Γ(β−α+1) t
β−α, β ≥ α,

0, β < α.

Therefore, applying the operator Dα
t on equations (4) and (5), will produce the formulas

Dα
t vm(x, t) =

m−1∑
j=0

cj+1(x)
tjα

Γ(jα+ 1)
, (6)

Dα
t wm(x, t) =

m−1∑
j=0

dj+1(x)
tjα

Γ(jα+ 1)
. (7)
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Next, we substitute both (4)-(7) in the fractional equation (1). Therefore, we arrive at
the following recurrence relations

0 =

m−1∑
j=0

cj+1(x)
tjα

Γ(jα+ 1)
+

m∑
j=0

d′j(x)
tjα

Γ(jα+ 1)

+

 m∑
j=0

cj(x)
tjα

Γ(jα+ 1)

 m∑
j=0

c′j(x)
tjα

Γ(jα+ 1)

 (8)

and

0 =

m−1∑
j=0

dj+1(x)
tjα

Γ(jα+ 1)
+

1

3

m∑
j=0

c′′′j (x)
tjα

Γ(jα+ 1)

+

 m∑
j=0

cj(x)
tjα

Γ(jα+ 1)

 m∑
j=0

d′j(x)
tjα

Γ(jα+ 1)


+

 m∑
j=0

c′j(x)
tjα

Γ(jα+ 1)

 m∑
j=0

dj(x)
tjα

Γ(jα+ 1)

 . (9)

We follow the same analogue used in obtaining the Taylor series coefficients. In particular,
to determine the functions cn(x), dn(x), n = 1, 2, 3, ..., we have to solve the following
two systems simultaneously

D
(m−1)α
t {L1(x, t, α,m)} ↓t=0= 0,

D
(m−1)α
t {L2(x, t, α,m)} ↓t=0= 0, (10)

where

L1(x, t, α,m) =

m−1∑
j=0

cj+1(x)
tjα

Γ(jα+ 1)
+

m∑
j=0

d′j(x)
tjα

Γ(jα+ 1)

+

 m∑
j=0

cj(x)
tjα

Γ(jα+ 1)

 m∑
j=0

c′j(x)
tjα

Γ(jα+ 1)

 (11)

and

L2(x, t, α,m) =

m−1∑
j=0

dj+1(x)
tjα

Γ(jα+ 1)
+

1

3

m∑
j=0

c′′′j (x)
tjα

Γ(jα+ 1)

+

 m∑
j=0

cj(x)
tjα

Γ(jα+ 1)

 m∑
j=0

d′j(x)
tjα

Γ(jα+ 1)


+

 m∑
j=0

c′j(x)
tjα

Γ(jα+ 1)

 m∑
j=0

dj(x)
tjα

Γ(jα+ 1)

 . (12)
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Now, we explain the derivations of the first few terms of the sequence {cm(x)}N1 and
{dm(x)}N1 . We start with the index m = 1;

L1(x, t, α, 1) = c1(x) + d′0(x) + d′1(x)
tα

Γ(α+ 1)

+

(
c0(x) + f1(x)

tα

Γ(α+ 1)

)(
c′0(x) + c′1(x)

tα

Γ(α+ 1)

)
,

L2(x, t, α, 1) = d1(x) +
1

3

(
c′′′0 (x) + c′′′1 (x)

tα

Γ(α+ 1)

)
+

(
c0(x) + c1(x)

tα

Γ(α+ 1)

)(
d′0(x) + d′1(x)

tα

Γ(α+ 1)

)
+

(
c′0(x) + c′1(x)

tα

Γ(α+ 1)

)(
d0(x) + d1(x)

tα

Γ(α+ 1)

)
. (13)

Solving L1(x, 0, α, 1) = 0 and L2(x, 0, α, 1) = 0, yields

c1(x) = −c0(x)c′0(x)− d′0(x),

d1(x) = −1

3
c′′′0 (x)− (c0(x)d′0(x) + c′0(x)d0(x)) . (14)

To determine c2(x) and d2(x), we consider L1(x, t, α, 2) & L2(x, t, α, 2) and we solve
Dα
t {L1(x, t, α, 2)} ↓t=0= 0 and Dα

t {L2(x, t, α, 2)} ↓t=0= 0. Therefore

c2(x) = −(c1(x)c′0(x) + c′1(x)c0(x))− d′1(x),

d2(x) = −1

3
c′′′1 (x)− (c0(x)d′1(x) + c′0(x)d1(x))

− (c1(x)d′0(x) + c′1(x)d0(x)) . (15)

We should point here that chain rule differentiation is not applicable when using
Caputo sense. Thus, in the preceding step ”as well as the forthcoming steps” we
had to expand all the terms involved in both L1(x, t, α, 2), L2(x, t, α, 2) ”in general
L1(x, t, α, n), L2(x, t, α, n)” and use the following fact

Dα
t t
β ↓t=0=


0, β < α,

Γ(α+ 1), β = α,

0, β > α.

To determine c3(x) and d3(x), we consider L1(x, t, α, 3) and L2(x, t, α, 3) and we solve
D2α
t {L1(x, t, α, 3)} ↓t=0= 0 and D2α

t {L2(x, t, α, 3)} ↓t=0= 0. Therefore

c3(x) = −(c2(x)c′0(x) + c′2(x)c0(x))− Γ(1 + 2α)

Γ2(1 + α)
c1(x)c′1(x)− d′2(x),

d3(x) = −1

3
c′′′2 (x)− (c0(x)d′2(x) + c′0(x)d2(x))− (c2(x)d′0(x) + c′2(x)d0(x))

− Γ(1 + 2α)

Γ2(1 + α)
(c1(x)d′1(x) + c′1(x)d1(x)) . (16)

Finally, we proceed as above to obtain the other coefficient functions ck(x) and dk(x) by

solving D
(k−1)α
t {L1(x, t, α, k)} ↓t=0= 0 and D

(k−1)α
t {L2(x, t, α, k)} ↓t=0= 0.
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3 Discussion and Concluding Remarks

The purpose of this section is to test the validity of the proposed scheme and to study the
effect of the fractional order α on the solution of the time-fractional Wu-Zhang system.
To achieve these goals, we solve (1) subject to the initial conditions

v(x, 0) =
2

3

(
1− tanh

(√
1

3
x

))
,

w(x, 0) =
2

9

(
1− tanh2

(√
1

3
x

))
. (17)

Provided that the exact solution of (1) when α = 1 is [25]

v(x, t) =
2

3

(
1− tanh

(√
1

3

(
x− 2

3
t

)))
,

w(x, t) =
2

9

(
1− tanh2

(√
1

3

(
x− 2

3
t

)))
. (18)

For a reliability verification, we consider the 4-th order approximation

v4(x, t) = v(x, 0) +

4∑
k=1

ck(x)
tkα

Γ(kα+ 1)
,

w4(x, t) = w(x, 0) +

4∑
k=1

dk(x)
tkα

Γ(kα+ 1)
, (19)

as the supportive solution of the time-fractional Wu-Zhang system. We present here
the plots of this obtained approximate solution against the exact solution (18) when
α = 1, see Figure 1 (i) and (ii) and Figure 4 (a) and (b). For the accuracy of the used
method, we provide Figures 2 and 5 which represent respectively |v(x, t)− v4(x, t)| and
|w(x, t)− w4(x, t)|.

Figure 3 provides profile solutions of the function v(x, t) for different values of the
fractional order α, the plot on the left when t is fixed, t = 0.2, and the plot on the right
when x is fixed, x = 0.5. Figure 6 provides profile solutions of the function w(x, t) for
different values of the fractional order α, the plot on the left when t is fixed, t = 0.2, and
the plot on the right when x is fixed, x = 0.5.

We point here that the proposed method is effective for all nonlinear equations. If
the order of the nonlinear terms involved in the equation is small, then a few terms of the
fractional power series provide a high accuracy approximation. But, if the order of the
nonlinear term is big, it is required to add more terms to reach the desired reasonable
approximation.
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Figure 1: The approximate v4(x, t) and exact v(x, t) solutions, respectively, when −1 < x < 15
and 0 < t < 0.5 and α = 1.
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Figure 2: Absolute error |v(x, t)− v4(x, t)|
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Figure 3: Profile solutions of v4(x, 0.2) on the left and v4(0.5, t) on the right for different values
of the fractional order α.
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HaL w 4Hx,tL for Α = 1
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Figure 4: The approximate w4(x, t) and exact w(x, t) solutions, respectively, when −1 < x < 15
and 0 < t < 0.5 and α = 1.
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Figure 5: Absolute error |w(x, t)− w4(x, t)|.
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Figure 6: Profile solutions of w4(x, 0.2) on the left and w4(0.5, t) on the right for different
values of the fractional order α.
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1 Introduction

The valuation of options is one of the most popular problems in financial mathematical
literature. This problem is of interest for both academics and traders. As compared to
the case of the Black and Scholes model, where the volatility is constant, the Heston
model is more common since the volatility is stochastic, inasmuch as the dynamics of
the volatility is fundamental to elaborate strategies for hedging and for arbitrage and a
model based on a constant volatility cannot explain the reality of the financial markets.
So, the pricing of option under stochastic volatility model is then very important and
required.

During the last few decades, several papers studied the existence of closed-form solu-
tion of the European option using many methods and generated by different models, for
example, the Black and Scholes case [3–5], the Hull and White model [14], the Heston
model [6, 12] and recently, Jerbi has given a new closed-form solution for the European
option [15] based on a new stochastic process.

∗ Corresponding author: mailto:mohamed.kharrat@fphm.rnu.tn

c© 2018 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua191



192 M. KHARRAT

The fractional calculus is used in several research axes. Recently, it has been intro-
duced in the mathematical finance field [9–11,16], and especially to generate the under-
lying asset price in order to give a closed form solution for the evaluation of a European
option problem [10,11,16,18,20]. Many methods are proposed in order to resolve linear
and nonlinear fractional differential equations, see, for example, [2, 19]. In this work we
use the Adomian decomposition method [1, 7, 8].

In the following, we shall need to introduce the dynamic of the Heston model. Let
St and Vt represent two stochastic processes so that Xt is generated by the following
process :

dSt = rStdt+ St
√
VtdW

S
t (1)

and Vt follows a mean reversion and a square-root diffusion process given by:

dVt = kV (θV − Vt)dt+ σV
√
VtdW

V
t , (2)

where r is supposed to be constant, WS
t and WV

t are two correlated standard Brownian

motions, i.e. WS
t =

√
1− ρ2B1

t + ρB2
t and WV

t = B2
t , where B is a standard 2-

dimensional Brownian motion and ρ ∈ ] − 1, 1[ . The parameters θV , kV and σV are
respectively, the long-term mean, the rate of mean reversion, and the volatility of the
stochastic process Vt. We assume that the volatility process Vt is strictly positive.
So, based on the Heston stochastic volatility model a two dimensional parabolic partial
differential equation can be derived for the value of the European option, see, for instance,
[13].

2 Preliminaries

In what follows, we give some definitions related to the fractional calculus which consti-
tute the basis of our work. For an organic presentation of the fractional theory, we can
refer the readers to Podlubny’s book [17].

Definition 2.1 The Riemann-Liouville fractional integral of order α > 0 is defined
as

Iαt0x(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1x(τ)dτ,

where Γ(α) =

∫ +∞

0

e−ttα−1dt.

Definition 2.2 The Caputo fractional derivative is defined as

Dα
t0,tx(t) =

1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1
dm

dτm
x(τ)dτ, (m− 1 < α < m).

When 0 < α < 1, then the Caputo fractional derivative of order α of f reduces to

Dα
t0,tx(t) =

1

Γ(1− α)

∫ t

t0

(t− τ)−α
d

dτ
x(τ)dτ. (3)

Note that the relation between the Riemann-Liouville operator and the Caputo frac-
tional differential operator is given by the following equality:

Iαt0D
α
t0,tf(t) = D−αt0,tD

α
t0,tf(t) = f(t)−

m−1∑
k=0

tk

k!
fk(0), m− 1 < α ≤ m. (4)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 191–195 193

Similarly to the exponential function used in the solutions of integer-order differential
systems, the Mittag-Leffler function is frequently used in the solutions of fractional-order
differential systems.

Definition 2.3 The Mittag-Leffler function with two parameters is defined as

Eα,β(z) =

+∞∑
k=0

zk

Γ(kα+ β)
,

where α > 0, β > 0, z ∈ C.
When β = 1, we have Eα(z) = Eα,1(z), furthermore, E1,1(z) = ez.

3 Main Results

When the volatility is stochastic, the value P (St, Vt) of a European option is given by
the following nonlinear fractional differential equation

Dα
t P (St, Vt) +A[P ](St, Vt) = 0, 0 < α ≤ 1, (5)

in the unbounded domain {(St, Vt)|St ≥ 0, Vt ≥ 0 and t ∈ [0, T ]} with the initial value

P (S0, V0). (6)

For the boundary conditions, in the case of a call option, at maturity T with an exercise
price K, the payoff function is

max(ST −K, 0) (7)

and for the put option the payoff function is equal to

max(K − ST , 0), (8)

where Dα
t = ∂α

∂t and

A[P ] = rS
∂P

∂S
+ k(θ − V )

∂P

∂V
+

1

2
V S2 ∂

2P

∂S2
+ ρσV S

∂2P

∂S∂V
− 1

2
σV

∂2P

∂V 2
− rP.

Theorem 3.1 Let (Pt)t≥0 be the European option price, a function of the underlying
asset price and the volatility. Under the same hypotheses of the Heston model, the price
of the European option is given by the following formula:

P (St, Vt) = Eα(−tαA[P (S0, V0)]),

where 0 < α ≤ 1, Eα is the Mittag-Leffler function and A[P ] = rS ∂P∂S +k(θ−V ) ∂P∂V +
1
2V S

2 ∂2P
∂S2 + ρσV S ∂2P

∂S∂V −
1
2σV

∂2P
∂V 2 − rP.

Proof. Multiplying equation (5)by the operator D−αt and on taking into account (4),
we get

P (St, Vt) = P (S0, V0) +D−αt (−A[P ](St, Vt)), (9)

so, using the Adomian decomposition method we get the solution in the following form

P (St, Vt) = P0(St, Vt) +

∞∑
k=1

Pk(St, Vt), (10)
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by substituting (10) into (5), we have:

Pn+1(St, Vt) = D−αt (−A[Pn](St, Vt))

= −A[P (S0, V0)]nD−αt

( tnα

Γ(1 + nα)

)
(11)

with P0(St, Vt) = P (S0, V0), we get:

P (St, Vt) =

∞∑
k=0

(−1)k
tkα

Γ(1 + kα)
A[P (S0, V0)]k

= Eα(−tαA[P (S0, V0)]). (12)

The convergence of the power series of the fractional Heston model is guaranteed for a
real and positive α.

4 Conclusion

In this paper, we have elaborated a new closed-form solution of a European option
generated by the fractional Heston stochastic volatility model. In this work, we have
performed two extensions: when we take α = 1, we return to the standard Heston model
and for a constant volatility, we have the fractional Black-Scholes model.
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1 Introduction

Let h > 0 be a value of delay, |·| denote the norm of the vector in the space Rd, ‖·‖ be
the norm of d×m -dimensional matrix which is consistent with the norm of the vector.

Let us denote by C = C
(
[−h, 0] ;Rd

)
the Banach space of continuous maps of

[−h, 0] into Rd with the uniform norm ‖ϕ‖C = max
θ∈[−h;0]

|ϕ (θ)| . Also denote by

Lp = Lp ([−h, 0] ;Rm) , p > 1 , the Banach space of p-integrable m-dimensional vector-

functions with standard norm ‖ϕ‖Lp
=
(∫ 0

−h |ϕ (τ)|pdτ
) 1

p

.
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Let x ∈ C
(
[0, T ] ;Rd

)
, ϕ ∈ C. If x (0) = ϕ (0), then the function

x (t, ϕ) =

{
ϕ(t) , t ∈ [−h, 0] ,
x (t) , t ≥ 0,

is continuous on [−h, T ].
For each t ∈ [0, T ] in the standart way by θ ∈ [−h, 0] we put an element xt (ϕ) ∈ C

as xt (ϕ) = x (t+ θ, ϕ). In what follows we shall write xt instead of xt (ϕ).
Let t ∈ [0, T ], D be some domain in [0, T ]×C, ∂D be its boundary and D = D∪∂D.
In this paper we consider the optimal control problems for systems of functional

differential equations

ẋ = f1 (t, xt) +

∫ 0

−h
f2 (t, xt, y)u (t, y) dy, t ∈ [0, τ ] , (1.1)

x (t) = ϕ0 (t) , t ∈ [−h, 0] ,

with the quality criterion

J [u] =

∫ τ

0

L (t, xt, u (t, ·)) dt→ inf (1.2)

on [0, T ] , where ϕ0 ∈ C is a fixed element such that (0, ϕ0) ∈ D, x (t) is the phase
vector in Rd, xt is the phase vector in C, τ is the moment of the first exit (t, xt) on the
boundary ∂D , f1 : D → Rd, f2 : D× [−h, 0]→Md×m are d×m -dimensional matrices,
and for each (t, ϕ) ∈ D, f2 (t, ϕ, ·) ∈ Lq

(
[−h, 0] ;Md×m) with the norm ‖f2 (t, ϕ, ·)‖Lq

=(∫ 0

−h ‖f2(t, ϕ, y) ‖qdy
) 1

q

, 1
q + 1

p = 1 , L : D × Lp → R1.

The control parameter u ∈ Lp ([0, T ]× [−h, 0]) is such that u (t, y) ∈ U , and U is a
convex and closed set in Rm for almost all t, y.

Many works are devoted to the optimal control problems for functional-differential
equations systems. We note the monograph [1] devoted to the application of the method
of dynamic programming and the principle of maximum to such problems. There is also
a wide bibliography. Althought these methods, as a rule, give the necessary conditions
of optimality, it would be desirable to have suitable sufficient conditions for checking to
apply them.

In this regard, we cite the work [2] in which in the case of compactness of the set of
admissible controls an analogue of the Filippov theorem on optimal control existence for
ordinary differential equations was obtained.

For noncompact set of admissible controls an analogue of the Cessari theorem is
obtained in [4]. In the mentioned work the condition of compactness is imposed on a
set of constraints and a certain condition of growth is established which connects the
right-hand sides of the system and the quality criterion.

In [5] under the condition of compactness of the set of admissible controls values
sufficient conditions for optimality on a fixed interval [t0, t1] for neutral-type equations
are obtained.

In [6] the problem of optimal control of a delayed linear system is rewritten in a form
that does not depend on the delay and which is studied by the methods of ordinary
differential equations. In the works [7]- [9] the optimal control problem of the system

ẋ (t) = rx (t) + f0

(
x (t) ,

∫ 0

−T
a (ς)x (t+ ς) dς

)
− u (t)
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is considered.
In [7] certain Hamilton-Jacobi-Bellman equations are obtained for certain quality

functionals and, in terms of their solutions, sufficient conditions for optimality in the
form of a reverse link are obtained.

In [8] similar questions are considered for problems with phase restriction.
In [9] for such problems the authors obtained sufficient conditions for optimality under

the condition of nondecreasing function rx+f0 (x, y) in both variables and for the quality
criterion

J(u) =

∫ ∞
0

e−ϕtatσ(t)dt, σ ∈ (0, 1) .

The main goal of this work is to obtain the theorem on the existence of optimal
controls for a wider class of problems under weaker conditions as compared with the
above mentioned works [2]- [9].

This paper is organized as follows. In Section 2 we give rigorous formulations of the
considered problems and state main results. Section 3 is devoted to the proof of the main
results.

In Subection 3.1 we prove the existence theorem, the uniqueness and extension of the
solution of the initial problem (1.1) to the boundary ∂D of the domain D.

In Subsection 3.2 the theorem on the existence of optimal control for problem (1.1)-
(1.2) is proved.

Examples of the application of the results obtained for ordinary differential equations,
equations with delaying argument and equations with maxima are given in Section 4.

2 Statement of the Problems and Main Results

Now we give exact statement of the problem and formulate the main results of this paper.
The main conditions for the problem (1.1)-(1.2) are assumed as follows.

Assumption 2.1 Admissible controls are m-dimensional vector functions u ∈
Lp ([0, T ] [−h, 0] ,Rm), such that u (t, y) ∈ U for almost all t ∈ [0, T ] and y ∈ [−h, 0].

The set of admissible controls is denoted by U .

Assumption 2.2 The maps f1(t, ϕ) : D → Rd and f2(t, ϕ, y) : D× [−h, 0]→Md×m

are defined and measurable with respect to all their arguments in the domains D and
D1 = {(t, ϕ) ∈ D, y ∈ [−h, 0]} respectively, and satisfy the linear growth condition and
the Lipschitz condition with respect to ϕ, i.e. there exists a constant K > 0 such that

|f1(t, ϕ)|+ ‖f2(t, ϕ, y)‖ ≤ K (1 + ‖ϕ‖C) (2.1)

for any (t, ϕ) ∈ D, y ∈ [−h, 0],

|f1(t, ϕ1)− f1(t, ϕ2)|+ ‖f2(t, ϕ1, y)− f2(t, ϕ2, y)‖ ≤ K‖ϕ1 − ϕ2‖C (2.2)

for all (t, ϕ1), (t, ϕ2) ∈ D, y ∈ [−h, 0].

Assumption 2.3 Conditions for the criterion function are:

1) the map L(t, ϕ, z) : D × Lp → R1 is defined and continuous with respect to all its
arguments in the domain D2 = {(t, ϕ) ∈ D, z ∈ Lp};
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2) there exists a > 0 such that

|L(t, ϕ1, z)− L(t, ϕ2, z)‖ ≤ a‖ϕ1 − ϕ2‖C

for all (t, ϕ1, z), (t, ϕ2, z) ∈ D2;

3) the Frechet derivative Lu of the map L is continuous with respect to all its argu-
ments in the domain D2, and there exist constants C1 > 0, α > 0 such that for all
(t, ϕ, z) ∈ D2 the following inequality holds:

‖Lu(t, ϕ, z)‖Lq
≤ C1(1 + ‖ϕ‖αC + ‖z‖p−1Lp

);

4) there exists a constant C > 0 such that L(t, ϕ, z) ≥ C‖z‖pLp
for all (t, ϕ, z) ∈ D2;

5) L(t, ϕ, z) is convex with respect to z for any fixed t, ϕ;

Our first result concerns the existence, uniqueness and extension of the solution of
the original problem (1.1) to the boundary ∂D of the domain D. It is some analogue of
the Carathéodory theorem for ordinary differential equations.

Definition 2.1 The solution of the initial problem (1.1) on the segment [−h,A],
A > 0, is called a continuous on the segment [−h,A] function x(t) such that

1) x(t) = ϕ0(t), t ∈ [−h, 0];

2) (t, xt) ∈ D on t ∈ [0, A];

3) for t ∈ [0, A] the function x(t) satisfies the integral equation

x(t) = ϕ0(0) +

∫ t

0

[
f1(s, xs) +

∫ 0

−h
f2(s, xs, y)u(s, y)dy

]
ds. (2.3)

.

Remark 2.1 It is obvious that for t ∈ [0, A] the solution x(t) is an absolutely con-
tinuous function and satisfies the equation (1.1) for almost all t on [0, A].

Theorem 2.1 Suppose that Assumptions 2.1 and 2.2 are satisfied. Then there exists
a solution of the initial problem (2.3) on the maximal segment [−h, τ ], τ > 0 and (τ, xτ ) ∈
∂D.

The following theorem gives for the problem (1.1)-(1.2) the existence conditions of the
optimal pair x∗(t), u∗(t, θ)), which provides the minimum of the quality criterion (1.2).

In this case u∗ ∈ U is called the optimal control and the corresponding trajectory
x∗(t) (1.1) is called the optimal trajectory.

Theorem 2.2 Suppose that Assumptions 2.1-2.3 are satisfied. Then there exists a
solution of the optimal control problem (1.1)-(1.2).
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3 Proofs of the Theorems

3.1 Proof of Theorem 2.1

Let us fix an admissible control u∗ ∈ U . First, we shall prove the local existence and
uniqueness of the solution of the problem (1.1), on some segment [−h, α], α > 0.

To do this, we use the standard principle of contraction mappings.
Obviously, there exist α0 > 0 and β0 > 0 such that all (t, ϕ) for which 0 ≤ t ≤ α0,

and ‖ϕ− ϕ0‖C ≤ β0 belong to D are equivalent to ϕ0 on [−h, 0].
Now we consider the class B(α, β0) of all continuous on [−h, α] functions x(t) that

are equivalent to ϕ0 on [−h, 0] and |x(t)− ϕ0(0)| ≤ β0 for t ∈ [0, α].
Obviously, the set B(α, β0) is closed relatively uniformly metric on [−h, α] .
In this case there exists α0 ≥ α1 > 0 such that if x(t) ∈ B(α, β0) at 0 < α ≤ α1, then

the following inequality holds:

‖xt − ϕ0(0)‖C ≤ β0, t ∈ [0, α]. (3.1)

Indeed, under the condition of uniform continuity of ϕ0 on [−h, 0] there exists α1 > 0
such that if |θ1 − θ2| ≤ α1, then

|ϕ0(θ1)− ϕ0(θ2)| ≤ β0
3

(3.2)

for all θ1, θ2 ∈ [−h, 0].
Hence, for each t ∈ [0, α1] at α ≤ α1 from (3.2) and the properties of the set B(α, β0)

we have

‖xt − ϕ0‖C ≤ sup
θ∈[−h,−t]

|x(t+ θ)− ϕ0(θ)|+ sup
θ∈[−t,0]

|x(t+ θ)− ϕ0(θ)| ≤

≤ sup
θ∈[−h,−t]

|ϕ0(t+ θ)− ϕ0(θ)|+ sup
θ∈[−t,0]

|x(t+ θ)− ϕ0(θ)|+

+ sup
θ∈[−t,0]

|ϕ0(θ)− ϕ0(0)| ≤ β0
3

+
β0
3

+
β0
3

= β0.

Next we shall prove that α > 0 can be choosen so that the operator

(Ax) (t) =

{
ϕ0(t), t ∈ [−h, 0],

ϕ0(0) +
∫ t
0
f1(s, xs)ds+

∫ t
0

∫ 0

−h f2(s, xs, y)u(s, y)dyds, t ∈ [0, α],
(3.3)

maps the set B(α, β0) into itself and this operator is a contraction.
Indeed, by Lemma 2.2.1 [10] it follows that xt is a continuous function with respect

to t ∈ [0, α]. Therefore, from Assumption 2.1 f1(s, xs) is continuous with respect to
s ∈ [0, α] and the function ∫ 0

−h
f2(s, xs, y)u(s, y)dy (3.4)

is measurable with respect to s and satisfies the estimate

∣∣∣∣∫ 0

−h
f2(s, xs, y)u(s, y)dy

∣∣∣∣ ≤ C2

(∫ 0

−h
|u(s, y)|p dy

) 1
p



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 196–211 201

for some constant C2 > 0. From this we have the integrability of (3.4) with respect to s
and hence the absolute continuity of the second integral in (3.4).

Now we evaluate the difference |(Ax)(t)− ϕ0(0)| at t ∈ [0, α], α ≤ α0.
With (2.1) and (2.2) using Holder’s inequality and Fubini’s theorem we get

|(Ax)(t)− ϕ0(0)| ≤
∫ t

0

|f1(s, xs)| ds+

∫ t

0

(∫ 0

−h
‖f2(s, xs, y)‖ |u(s, y)| dy

)
ds ≤

≤
∫ t

0

K(1 + ‖xs‖C)ds+

∫ t

0

(∫ 0

−h
Kq (1 + ‖xs‖C)

q
dy

) 1
q

·
(∫ 0

−h
|u(s, y)|p dy

) 1
p

ds ≤

≤ K(1 + β0 + ‖ϕ0‖C)α+Kh
1
q (1 + β0 + ‖ϕ0‖C)

(∫ α

0

∫ 0

−h
|u(s, y)|p ds

) 1
p

α
1
q .

Here q = p
p−1 .

Let us choose now α2 ≤ α1 from the condition

K(1 + β0 + ‖ϕ0‖C (α+ α
1
q h

1
q

(∫ α

0

∫ 0

−h
|u(s, y)|p dyds

) 1
p

≤ β0
3
. (3.5)

Thus, for all α ≤ α1 the operator A maps B(α, β0) into itself.
Let us show that there exists α3 ∈ [0, α2] such that the operator A will be a contraction

on B(α3, β0).
Let x and z ∈ B(α, β0). By (2.2) we have

|(Ax)(t)− (Az)(t)| ≤
∫ t

0

K ‖xs − zs‖C ds+

∫ t

0

K ‖xs − zs‖C
∫ 0

−h
|u(s, y)| dyds ≤

≤

(
Kα+Kα

1
q h

1
q

(∫ α

0

∫ 0

−h
|u(s, y)|p dyds

) 1
p

)
sup

t∈[−h,α]
|x(t)− z(t)| .

And now from this we have

sup
t∈[−h,α]

|(Ax)(t)− (Az)(t)| ≤

≤

(
Kα+Kα

1
q h

1
q

(∫ α

0

∫ 0

−h
|u(s, y)|p dyds

) 1
p

)
sup

t∈[−h,α]
|x(t)− z(t)| . (3.6)

Now choosing 0 < α3 ≤ α2 from the condition

Kα+Kα
1
q h

1
q

(∫ α

0

∫ 0

−h
|u(s, y)|p dyds

) 1
p

< 1

we get that the operator A : B(α3, β0) → B(α3, β0) is a contraction. Thus, on the
segment [−h, α3) there exists a unique solution to the initial problem (1.1).

To prove the extension of this solution to the boundary ∂D, we use the approach of
Theorem 2.3.2 [10]. Note that by (2.1) for (t, ϕ) ∈ D the following estimates hold:

|f1(t, ϕ)| ≤ K(1 + ‖ϕ‖C) (3.7)
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and ∣∣∣∣∫ 0

−h
f2(t, ϕ, y)u(t, y)dy

∣∣∣∣ ≤ K(1 + ‖ϕ‖C)h
1
q

∫ 0

−h
|u(s, y)| dy. (3.8)

Let [−h, τ ] be the maximum interval of existence of the solution x(t). For its extension
to the boundary ∂D it is necessary to show that for any closed set G ∈ DtG there
exists tG such that (t, xt) /∈ G for t ∈ [tG, τ ]. The last statement can be proved by
contradiction. Indeed, if this is not the case, then, similar to Theorem 2.3.2 [10], the set
Q̄ = {(t, xt) : t ∈ [−h, τ ]} is closed and bounded in D.

Therefore, the estimates (3.7) and (3.8) imply the existence of a constant M such that

for (t, ϕ) ∈ Q̄ we have |f1(t, ϕ)| ≤M and
∣∣∣∫ 0

−h f2(t, ϕ, y)u(t, y)dy
∣∣∣ ≤M ∫ 0

−h |u(s, y)| dy.
From (2.3) for each t1, t ∈ [0, τ ] we have

|x(t2)− x(t1)| ≤M(t2 − t1) +Mh(t2 − t1)
1
q

(∫ T

Q

∫ 0

−h
|u(s, y)|p dyds

) 1
p

. (3.9)

This implies that {(t, x) : t ∈ [−h, τ ]} belongs to a compact set in D. The last state-
ment contradicts Corollary 2.3.1 from [10]. The theorem is proved. 2

3.2 Proof of Theorem 2.2

First note that controls u(t, θ) = u(θ) are admissible.
Let x(t) be a solution that coresponds to u(t) and τ be a moment of the first exit

(t, xt) on the boundary ∂D.
Now we shall prove that x(t) is bounded on [0, τ ].
From (2.3) for ∈ [0, τ ] we have

|x(t)| ≤ |ϕ0(0)|+
∫ t

0

K(1 + ‖xs‖C)ds+Kh
1
q

∫ t

0

(1 + ‖xs‖C)ds ‖u‖Lp
≤

≤ |ϕ0(0)|+KT +Kh
1
q ‖u‖Lp

T + (K + h
1
q u ‖u‖Lp

)

∫ t

0

‖xs‖C ds =

= C3 + C4

∫ t

0

‖xs‖ ds ≤ C3 + C4

∫ t

0

max
s1∈[−h,s]

|x(s1)| ds (3.10)

Since
max

s∈[−h,t]
|x(s)| ≤ max

s∈[−h,0]
|ϕ0(s)|+ max

s∈[0,t]
|x1(s1)| ,

and from (3.10) we have

max
s∈[−h,t]

|x(s)| ≤ C5 + C4

∫ t

0

max
s∈[−h,s]

|x(s1)| ds

for some constant C5 > 0. Using Gronwall’s inequality we have max
s∈[−h,t]

|x(s)| ≤ C5,

t ∈ [0, τ ] for some constant C6 > 0 which does not depend on t. From this it follows that

max
s∈[−h,τ ]

|x(s)| ≤ C6

and max
s∈[−h,τ ]

‖xt‖ ≤ C6.
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Since from Lemma 2.2.1 [10] xt is continuous with respect to t ∈ [0, τ ], under the first
condition of Assumption 2.3 we have L(t, xt, u(θ)) (where (u(t, θ)) = u(θ) is continuous
with respect to t and hence ∫ τ

0

L(t, xt, u(θ)dt (3.11)

is bounded. Therefore inf
u∈U

J(u) < ∞. Since J(u) ≥ 0, there exists a nonnegative

lower limit m of the values J(u). Let u(n)(t, θ) be a minimizing sequence such that
J(un)→ m, n→∞ monotonously.

Let x(n) be a sequence of coresponding to u(n) solutions of equation (2.3), [−h, τn] be

a maximal interval of its existense. From Theorem 2.1 it follows that [τn, x
(n)
τn ] ∈ ∂D.

We have

m+ 1 ≥
∫ τn

0

L(t, x
(n)
t , u(n))dt ≥ C

∫ T

0

∫ 0

−h

∣∣∣u(n)(t, y)
∣∣∣p dydt (3.12)

for sufficiently large n. Consequently u(n)(t, y) is weakly compact in Lp([0, T ]× [−h, 0]).
Therefore one can choose a sequence (also denoted by u(n)(t, y)) which is weakly

converging to uk(f) ∈ Lp([0, T ]× [−h, 0]) in Lp([0, T ]× [−h, 0]).
By Mazur’s lemma ( [11], Ch. 5) there exists a convex combination bk(t, y) =∑n(k)
τ=1 αi · (K)u(i) · (t, u) of elements u(i)(t, y) such that bk → u(∗) strongly converges

in Lp([0, T ]× [−h, 0]).
Therefore there exists a subsequence bkj (t, y) of sequence bk(t, y) such that for almost

all (t, y) on [0, T ]× [−h, 0] it converges to ux(t, y).
Since U is convex, we have bkj (t, y) ∈ U, and from the closedness of U it follows that

u∗(t, y) ∈ U for almost all (t, y). So, the control function u∗(t, y) is admissible.
Let us prove uniform boundedness of solutions x(n) on [−h, τn] . From (2.3) under

Assumptions 2.1 and 2.2 we have for t ∈ [0, τn]∣∣∣x(n)(t)∣∣∣q ≤ 3q−1 |ϕ(0)|q +KqT
q
p 2q−1

∫ t

0

(1 +
∥∥∥x(n)s

∥∥∥q
C

)ds+

+h

(∫ T

0

∫ 0

−h

∣∣∣u(n)(t, y)
∣∣∣p) 1

p

Kqh

∫ t

0

2q−1(1 +
∥∥∥x(n)s

∥∥∥q
C

)ds.

With (3.12), from the last inequality for some positive constants C7 and C8 which do
not depend on t, y and n, we have∣∣∣x(n)(t)∣∣∣q ≤ C7 + C8

∫ t

0

‖xs‖q ds

for t ∈ [0, τn].
Thus we have the estimate

max
s∈[−h,t]

|x(s)| ≤ C9 + C8

∫ t

0

max
s1∈[−h,s]

|x(s1)| ds

for some constant C9.
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Using Gronwall’s inequality we have

max
t∈[−h,τn]

∣∣∣x(a)(t)∣∣∣ ≤ C10, (3.13)

where C10 is a positive constant which does not depend on n.
So x(n)(t) are uniform bounded. Let us extend the functions x(n)(t) to the whole

segment [0, T ] as follows

y(n)(t) =

{
x(n)(t), t ∈ [0, τn],
x(n)(τn), t ∈ [τn, T ].

(3.14)

If s1 ≤ s2 ≤ τn, then from (3.9) it follows the estimate∣∣∣y(n)(s1)− yn(s2)
∣∣∣ ≤ C11(s2 − s1) + C12(s2 − s1)

1
q . (3.15)

If s1 ≤ τn ≤ s2, then similarly to (3.15) we have∣∣∣y(n)(s1)− yn(s2)
∣∣∣ =

∣∣∣x(n)(s1)− x(n)(τn)
∣∣∣ ≤ C11|τn − s1|+ C12|τn − s1| ≤

≤ C11 (s2 − s1) + C12(s2 − s1)
1
q .

This implies the equicontinuity of the function set {y(n)(t)} on [0, T ] and from (3.14)
and (3.13) it follows uniform boundedness of this set. Hence the set

{
y(n)(t)

}
includes a

subsequence which converges uniformly on [0, T ] and which we denote as
{
y(n)(t)

}
. Let

y(x)(t) be its uniform limit on [0, T ].
Function y∗(t) is defined and continuous on [0, T ]. Therefore, we also have y∗t =

y∗(t + θ) for all t ∈ [0, T ]. Let τ∗ be a moment of the first exit (t, y∗t ) on the boundary
∂D, i.e.

τ∗ =

{
inf{t ∈ [O, T ] : (t, y∗t ) ∈ ∂D},
T, if (t, y∗t ) ∈ D,∀t ∈ [O, T ].

Note that if
y(n)τn = y(n)(τn + θ) = x(n)(τn + θ) = x(n)τn ,

then τn is the moment of the first exit (t, ynt ) on ∂D.
Let us prove that

τ∗ ≤ lim
n→∞

inf τn. (3.16)

Suppose that it is not true. Then

τ∗ > lim
n→∞

inf τn = τ. (3.17)

Obviously, there exists a subsequence τnk
such that τnk

→ τ for nk →∞. Therefore
for sufficiently large nk we have τ < τ∗ and

(τ, y∗τ ) ∈ D. (3.18)

But (τnk
, y

(nk)
τnk

) ∈ ∂D.
On the other hand, taking into account the uniform convergence of the sequence yn(t)

to y∗(t) on [−h, T ] and uniform on [−h, T ] continuity of y∗(t) it is not difficult to see

that y
(nk)
τnk
→ y∗τ in C for nk →∞.
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Since the set ∂D is closed, we have (τ, y∗τ ) ∈ D. The latter contradicts (3.18).
Therefore

τ∗ ≤ τ = lim
n→∞

inf τn.

Let x∗(t) = y∗(t) for t ∈ [0, τ∗]. Show that x∗(t) is a solution of the equation (1.1)
which corresponds to the equation u∗(t).

We consider two cases.
1. Let τ∗ < τ . Then by the theorem of the characterization of the lower bound, the

set {n ∈ N : τn ≤ τ∗} is finite. Consequently, there exists a subsequence {τnk
} of the

sequence τn, such that τnk
> τ∗. Then y(nk)(t) = x(nk)(t) for t ∈ [0, τ∗] and x(nk)(t)

converges uniformly to x∗(t) for nk →∞. We have

x(nk)(t) = ϕ0(0) +

∫ t

0

f1(s, xnk
s )ds+

∫ t

0

∫ 0

−h
f2(s, xnk

s y)unk(s, y)dyds (3.19)

for t ∈ [0, τ∗].
Then we get

x(uk)(t) = ϕ0(0) +

∫ t

0

f1(s, xnk
s )ds+

∫ t

0

∫ 0

−h
f2(s, xnk

s y)u∗(s, y)dyds+

+

∫ t

0

∫ 0

−h
(f2(s, x(nk)

s , y)− f2(s, x∗s, y))(u(uk)(s, y)− u∗(s, y)dyds+

+

∫ t

0

∫ 0

−h
f2(s, x∗s, y)(u(uk)(s, y)− u∗(s, y)dyds. (3.20)

It is obvious that x
(nk)
t → x∗t on C for all t ∈ [0, τ∗].

From (2.2) we have ∫ t

0

f1(s, x(nk)
s )ds→

∫ t

0

f1(s, x∗s)ds (3.21)

and in view of the Lebesgue theorem on dominanted convergence, we also obtain that∫ t

0

∫ 0

−h
f2(s, x(nk)

s , y)u∗(s, y)dyds→
∫ t

0

∫ 0

−h
f2(s, x∗s, y)u∗(s, y)dyds. (3.22)

Similarly, we establish that the third integral in (3.20) tends to zero for nk →∞.
Taking into account Assumption 2.2 with respect to f2, it is easy to see that

the expression
∫ t
0

∫ 0

−h f2(s, x∗s, y)u(s, y)dyds defines a linear continuous functional on
L2([0, t]× [−h, 0]).

Therefore the last integral in (3.20) tends to zero because of the weak convergence of
u(nk)(s, y) to u∗(s, y). Using the limiting transition in (3.20) we obtain that x∗(t) is the
solution of the initial problem (1.1) on [0, τ∗] which corresponds to the control u∗(t, y).

2. Let τ∗ = τ . Take an arbitrary t1 ∈ [0, τ ] such that t1 < τ∗. Then the set
{n ∈ N : τn ≤ t1} is finite.

In the case of the finiteness of the set Z = {n ∈ N : t1 < τn ≤ t∗} the proof reduces
to the preceding case. Let Z be infinite and δnk

be a subsequence of the sequence τn
such that τnk

∈Z. Then for each t ∈ [0, t] we have y(nk)(t) = x(nk)(t) y∗(t) = x∗(t).
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Similarly to the previous case then x∗(t) is the solution of the initial problem (1.1) on
[0, t1] corresponding to the control u∗(t, y), that is

x∗(t) = ϕ0(0) +

∫ t

0

f1(s, x∗s)ds+

∫ t

0

∫ 0

−h
f2(s, x∗s, y)u∗(s, y)dyds (3.23)

for t ∈ [0, t1]. Since t1 < τ∗ is arbitrary, the equality (3.23) holds on the interval [0, τ∗].
Let us show it holds also for t = τ∗. Let tn ∈ [0, τ∗] and tn → τ∗, then x∗(tn) →

x∗(τ∗).
Similarly to the inequality (3.9) we get for n→∞∣∣∣∣∣

∫ τ∗

0

[f1(s, x∗s) +

∫ 0

−h
f2(s, x∗s, y)u∗(s, y)dy]ds−

∫ tn

0

[f1(s, x∗s) +

∫ 0

−h
f2(s, x∗s, y)u∗(s, y)dy]ds

∣∣∣∣∣→0.

Therefore x∗(t) satisfies (3.23) for t = τ∗ too.
It remains to show that the control u∗(s, y) is optimal. We have two cases.
1. Let τ∗ < T .
a) Let τ∗ < lim

n→∞
inf τn = τ . Then, similarly to the above, there exists a subsequence

τnk
of the sequence τn such that τnk

> τ∗ and for t ∈ [0, τ∗] y(nk)(t) = x(nk)(t) and
y∗(t) = x∗(t).

We show the integrability of the function L(t, x∗t , u
(nk)(t, ·)) on [0, τ∗]

Using inequality ∣∣∣L(t, x∗t , u
(nk)(t, ·))− L(t, x∗t , u0)

∣∣∣ ≤
≤ sup
λ∈[0,1]

∥∥∥Lu(t, x∗t , u0 + λ(u(nk)(t, ·)− u0)
∥∥∥
Lq

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

,

where u0 = const, u0 ∈ U , we have

L(t, x∗tu
(nk)(t, ·)) ≤ L(t, x∗t , u0)+

+ sup
λ∈[0,1]

∥∥∥Lu(t, x∗t , u0 + λ(u(nk)(t, ·)− u0)
∥∥∥
λq

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

.

Using condition 3) of Assumption 2.3 we have

L(t, x∗t , u
(nk)(t, ·)) ≤ L(t, x∗t , u0) + C1

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

+

+C1 ‖x∗t ‖
α
C

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

+

+ C1 sup
λ∈[0,1]

∥∥∥u0 + λ(u(nk)(t, ·)− u0)
∥∥∥p−1
Lp

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

. (3.24)

The first term in (3.24) is integrable in accordance with (3.11). The second and third
terms are also integrable on [0, τ∗] due to (3.12), (3.13) and the uniform convergence of
x(nk)(t) to x∗(t) on [0, τ∗].

The integrability of the last term in (3.24) follows from the estimate∫ τ∗

0

(‖u0‖Lp
+ ‖unk(t, ·)− u0‖)p−1

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

dt ≤
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≤ 2
(p−1)2

p

(∫ τ∗

0

(‖u0‖pLp
+ ‖unk(t, ·)− u0‖pLp

)dt

) p−1
p
(∫ τ∗

0

(‖unk(t, ·)− u0‖pLp
)dt

) 1
p

.

Therefore the function α(t, x∗t ,u
(nk)(t, ·) is integrable on [0, τ∗].

Let χR(t) be a characteristic function of the set
{
t ∈ [0, t] : ‖u∗(t, ·)‖Lp

< R
}

for some

R > 0.
Since L(t, y, z) is convex on z (condition 5) from Assumption 2.3), the following

inequality holds
L(t, x∗t , υ(t, ·)χR(t) ≥ L(t, x∗t , u

∗(t, ·))χR(t)+〈
L
′

u(t, x∗t , u
∗(t, ·), υ(t, ·)− u∗(t, ·)

〉
χR(t) (3.25)

for any admissible control υ(t, y) ∈ Up t ∈ [0, τ∗]. Here
〈
L
′

u, υ − u∗
〉

is the action of the

linear continuous functional Lu on the element υ(t, ·) − u∗(t, ·) ∈ Lp. Putting in (3.25)
υ(t, ·) = u(nk)(t, ·) we have∫ τ∗

0

L(t, x∗t , u
(nk)(t, ·))χR(t)dt ≥

∫ τ∗

0

L(t, x∗t , u
∗(t, ·))χR(t)dt+

+

∫ τ∗

0

〈
L
′

u(t, x∗t , u
∗(t, ·), u(nk)(t, ·)− u∗(t, ·)

〉
χR(t)dt. (3.26)

Under condition 3) of Assumption 2.3 we have

‖Lu(t, x∗t , u
∗(t, ·)‖Lq

χR(t) ≤ K(1 + ‖x∗t ‖
α
C +R)p−1,

therefore, the second term defines a linear continuous functional in Lp([0, τ
∗]× [−h, 0]).

So, the second integral in (3.26) tends to zero, because of the weak convergence of unk(t, s)
to u∗(t, s).

Therefore

lim
n→∞

inf

∫ τ∗

0

L(t, x∗t , u
(uk)(t, ·))χR(t)dt ≥

∫ τ∗

0

L(t, x∗t , u
∗(t, ·))χR(t)dt.

Since L(t, y, z) ≥ 0, χR(t) ≤ 1 and χR(t) → 1 forR → ∞, we get from the last
inequality that ∫ τ∗

0

L(t, x∗t , u
∗(t, ·)dt ≤ lim

n→∞
inf

∫ τ∗

0

α(t, x∗t , u
(uk)(t, ·)dt. (3.27)

The integrability of L(t, x∗t , u
(nk)(t, ·) on [0, τ∗] is taken into account.

Let us also consider the difference∫ τ∗

0

∣∣∣L(t, x
(nk)
t , u(uk)(t, ·))− L(t, x∗t , u

(uk)(t, ·))
∣∣∣ dt. (3.28)

Using condition 2) of Assumption 2.3 we have∫ τ∗

0

∣∣∣L(t, x
(nk)
t , u(uk)(t, ·))− L(t, x∗t , u

(uk)(t, ·))
∣∣∣ dt ≤



208 O. KICHMARENKO AND O. STANZHYTSKYI

≤ α
∫ τ∗

0

∥∥∥x(nk)
t − x∗t

∥∥∥ dt→ 0, nk →∞. (3.29)

The limit transition in (3.29) is possible by the Lebesgue theorem on the majorization
of convergence (3.13) and the uniform convergence of x(nk)(t) to x∗(t) on [0, τ∗]. From
(3.29) we find that the expression (3.28) tends to zero for nk →∞.

Further, we have

lim
n→∞

inf

∫ τ∗

0

L(t, x
(nk)
t , u(nk)(t, ·))dt ≥

≥ lim
n→∞

inf

∫ τ∗

0

[L(t, x
(nk)
t , u(nk)(t, ·)− L(t, x∗, u(nk))]dt+

+ lim
n→∞

inf

∫ τ∗

0

∣∣∣L(t, x∗t , u
(uk)(t, ·))− L(t, x∗t , u

∗(t, ·))
∣∣∣ dt+∫ τ∗

0

L(t, x∗t , u
∗(t, ·))dt. (3.30)

As is shown above, the first limit on the right-hand side (3.30) is zero, and the second
limit is non-negative with (3.27).

Then

m = lim
nk→∞

inf

∫ τnk

0

L(t, x
(nk)
t , u(nk)(t, ·))dt ≥ lim

nk→∞
inf

∫ τ∗

0

L(t, x
(nk)
t , u(nk)(t, ·))dt ≥

≥
∫ τ∗

0

L(t, x∗t , u
∗(t, ·))dt.

Thus J(u∗) = m, so the pair (x∗(t), u∗(t, s)) is optimal.

b) Let τ∗ = τ = lim
n→∞

inf τn.

Let us consider the set Z ={n ∈ N : t1 < τn ≤ τ∗}, where we again take an arbitrary
t1 ∈ [0, T ] such that t1 < τ∗. It is enough to consider the case when this set is infinite.
Then, in the same way as in a), we can show that∫ t1

0

L(t, x∗t , u
∗(t, ·))dt ≤ m.

Thus, by the limit transition for t1 → τ∗ we establish that∫ τ∗

0

L(t, x∗t , u
∗(t, ·))dt ≤ m.

Hence J(u∗) = m.

2. Let τ∗ = T . Then from (3.16) we have τ = lim
n→∞

inf τn = τ∗, and the proof reduces

to case 1, b ). The theorem is proved. 2

Remark 3.1 The method of proving the existence of optimal control and optimal
trajectory is constructive if we take into account the fact that the approach of works [16,
Chapter 7], or [17, Chapter 4] can be used to construct a minimizing control sequence.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 196–211 209

4 Applications

As an application of the obtained results, we consider some particular cases of problem
(1.1)-(1.2).

Example 4.1 If u = u(t) and does not depend on the value y, then the problem
(1.1)-(1.2) reduces to the ”ordinary” optimal control problem for functional-differential
equations

ẋ(t) = f1(t, xt) + g(t, xt)u(t), t ∈ [0, τ ],

x(t) = ϕ0(t), t ∈ [−h, 0],

J [u] =

∫ τ

0

L(t, xt, u(t))dt → inf,

where g(t, xt) ∈Md×m and g(t, xt) =
∫ 0

−h f2(t, xt, y)dy, u(t) ∈ Lp ([0, T ]), u(t) ∈ U .

Example 4.2 Equations with maximum.

A particular case of the problem (1.1)-(1.2) is the optimal control problem with
maximum on the interval [−h, T ], h > 0.

ẋ(t) = f1(t, xt, max
s∈I(t)

x(s)) + f2(t, xt, max
s∈I(t)

x(s))u(t), (4.1)

x(t) = ϕ(t), t ∈ [−h, 0],

J [u] =

∫ τ

0

L(t, x(t), u(t))dt → inf, (4.2)

where I(t) = [β(t), α(t)], maxx(s) = (maxx1(s), . . . ,maxxd(s)), β(t), α(t) are continu-
ous on [0, T ] functions such that β(t) ≤ α(t) ≤ t and min

t∈[0,T ]
(β(t)−t) = −h, G is a domain

in Rd, f(t, x, y) : [0, T ]×G×G→Md×m, u ∈ U ⊂ Rm, L(t, x, u) : [0, T ]×G×U → R1.
The general theory of equations with maxima is presented in the monograph [12].
The problem (4.1)-(4.2) reduces to problem (1.1)-(1.2) if we put

u(t, y) = u(t) ∈ Lp([0, T ]),

f̃1(t, ϕ) = f1(t, ϕ(0), max
θ∈[β(t)−t,α(t)−t]

ϕ(θ)),

f̃2(t, ϕ) =

∫ 0

−h
f2(t, ϕ(0), max

θ∈[β(t)−t,α(t)−t]
ϕ(θ), s)ds.

Let the following conditions be satisfied:
4.A. Functions f1(t, x, y) and f2(t, x, y, s) are defined and measurable with re-

spect to all its arguments in domains Q = {t ∈ [0, T ], x ∈ G, y ∈ G} , and Q1 =
{t ∈ [0, T ], x ∈ G, y ∈ G, s ∈ [−h, 0]} and satisfies with respect to x, y the linear growth
and the Lipschitz condition with constant K > 0 in these domains, i. e.

|f1(t, x, y)|+ ‖f2(t, x, y, s)‖ ≤ K(1 + |x|+ |y|) (4.3)

|f1(t, x, y)− f1(t, x1, y1)|+ ‖f2(t, x, y, s)− f2(t, x1, y1, s)‖ ≤

≤ K (|x0 − x1|+ |y − y1|) (4.4)



210 O. KICHMARENKO AND O. STANZHYTSKYI

for all t ∈ [0, T ], x, y, x1, y1 ∈ Q s ∈ [−h, 0].
4.B. 1) The function L(t, x, y) : [0, T ] ×G × U → R1 is defined and continuous with

respect to all its arguments and satisfies the Lipschitz condition with respect to x;
2) the partial derivative Lu is continuous in the domain of definition and satisfies for

some C0 > 0, α > 0 the following estimate:

‖Lu(t, x, u)‖ ≤ C0(1 + |x|α + |u|p−1);

3) there exists a constant C1 > 0 such that

L(t, x, u) ≥ C1 |u|p , p > 1;

4) the function L(t, x, u) is convex with respect to u for each fixed t ∈ [0, T ], x ∈ G.
The optimal control problem (4.1)-(4.2) can be written as follows:

ẋ(θ) = f1(t, xt), max
θ∈I(t)

x(t)) +

∫ 0

−h
f2(t, x(t)) max

θ∈I(t)
xt, s)ds u(t) (4.5)

x(t) = ϕ(t), t ∈ [−h, 0]

I(t) = [β(t)− t, α(t)− t]

I(u) =

∫ τ

0

L(t, x(t), u(t))dt→ inf . (4.6)

Then all of the conditions of Assumptions 2.1-2.3 hold.
Moreover, the domain D ⊂ [−h, T ] × C is a set {(t, ϕ) : t ∈ [−h, T ] , ϕ ∈ Ω, where

Ω is a set of functions ϕ ∈ C such that ϕ(θ) ∈ G for θ ∈ [−h, 0], ∂Ω is a set of
functions ϕ ∈ C such that ϕ(θ) ∈ Ḡ, and for each of these functions there exists a point
θ ∈ [−h, 0] such that ϕ(θ) ∈ ∂G. It is obvious that the set [0, T ] × Ω = D is open, and
∂D = ([0, T ]× ∂Ω) ∪ ({T} × Ω̄) is closed.

Let us check the conditions of Assumptions 2.1-2.3. Indeed, by 4.A we have∣∣∣f̃1(t, ϕ)
∣∣∣ =

∣∣∣∣f1(t, ϕ(0), max
θ∈[β(t)−t,α(t)−t]

ϕ(θ))

∣∣∣∣ ≤
≤ K

(
1 + |ϕ(0)|+

∣∣∣∣ max
θ∈[β(t)−t,α(t)−t]

ϕ(θ)

∣∣∣∣) ≤ K (1 + ‖ϕ‖C + ‖ϕ‖C)

and for f̃1(t, ϕ) the condition (2.1) holds. For f̃2(t, ϕ) the situation is similar. Further∣∣∣f̃1(t, ϕ)− f̃1(t, ϕ1)
∣∣∣ ≤

≤ K
(
|ϕ(0)− ϕ1(0)|+

∣∣∣∣ max
θ∈[β(t)]−t,α(t)−t]

ϕ(θ)− max
θ∈[β(t)−t,α(t)−t]

ϕ1(θ)

∣∣∣∣) ≤
≤ K

(
‖(ϕ− ϕ1‖C +

∣∣∣∣ max
θ∈[β(t)−t,α(t)−t]

|ϕ(θ)− ϕ1(θ)|
∣∣∣∣) ≤ 2K ‖ϕ− ϕ1‖C ,

that is the condition (2.2) holds.
Further, since the mapping L is finite-dimensional with respect to u, the Frechet

derivative Lu is the Jacobi matrix ∂L
∂u , and the norm ‖Lu‖Lq

= ‖Lu‖. Therefore, con-
dition 3) from Assumption 2.3 is trivially satisfied. It is obvious that other conditions
from Assumption 2.3 are also satisfied. Therefore, for problems (4.1) and (4.2), when
conditions 4.1 and 4.2 are satisfied, Theorems 2.1 and 2.2 hold.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 196–211 211

References

[1] Kolmanovskii, V.B. and Shaikhet, L.E. Control of Systems with Aftereffect. Amer. Math.
Society (Book 157), Providence, 1996.

[2] Angell, T.S. Existence theorems for optimal control problems involving functional differen-
tial equations. Journ. of Optimiz. Theory and Applic. 7 (3) (1971) 149–169.

[3] Filippov, A.F. On certain questions in the theory of optimal control. SIAM. Journal on
Control 1 (1) (1962) 76–84.

[4] Cesari, L. Existence theorems for weak and usual optimal solutions in Lagrange problems
with unilateral constraints I and II. Transactions of the American Math. Society 124 (3)
(1966) 369–430.

[5] Banks, H.T. and Keut, G.A. Control of functional differential equations of retarded and
neutral type to target sets in functional space SIAM. Journ. on Control 10 (4) (1972)
567–593.

[6] Guo-Ping, C., Jin-Zhi, H. and Simon, X. Y. An optimal control method for linear systems
with time delay. Computers and Structures 81 (15) (2003) 1539 – 1546.

[7] Carlier, G. and Taharoni, R. On some optimal control problems governed by a state equa-
tion with memory. ESIAM Control, Optimization and Calculus of Variations 14 (4) (2008)
725–743.

[8] Federico, S., Goldys, B. and Gozzi, F. HJB equations for the optimal control of differential
equations with delays and state constraints I: regularity of viscosity solutions. SIAM. Journ.
on Control and Optimiz. 48 (8) (2010) 4910–4937.

[9] Federico, S., Goldys, B. and Gozzi,F. HJB equations for the optimal control of differential
equations with delays and state constraints II: verification and optimal feedbacks. SIAM
Journ. on Control and Optimiz. 49 (6) (2011) 2378-2414.

[10] Hale, G. Theory of Functional-Differential Equations. Springer-Verlag, Berlin, New York,
1977.

[11] Yosida, K. Functional Analysis. Springer-Verlag, Berlin, New York, 1980.

[12] Bainov, D.D. and Hristova, S.G. Differential Equations with Maxima. CRS Press Tylor and
Francis Group, 2011.

[13] Lavrova, O., Mogylova, V., Stanzhytskyi, O. and Misiats O. Approximation of the Optimal
Control Problem on an Interval with a Family of Optimization Problems on Time Scales.
Nonlinear Dynamics and Systems Theory 17 (3) (2017) 303-314.

[14] Martynyuk, A.A. Analysis of a Set of Trajectories of Generalized Standard Systems: Av-
eraging Technique. Nonlinear Dynamics and Systems Theory 17 (1) (2017) 29-41.

[15] Kamaljeet and Bahuguna, D. Extremal Mild Solutions for Nonlocal Semilinear Differential
Equations with Finite Delay in an Ordered Banach Space. Nonlinear Dynamics and Systems
Theory 16 (3) (2016) 300-311.

[16] Bryson, A.E., Ho, Y.C. Applied Optimal control: Optimization, Estimation and Control.
Waltham, MA: Blaisdell, 1969.

[17] Beltrami, E.J. An Algorithmic Approach to Nonlinear Analysis and Optimization. Math. in
Sci. and Engr., 63, Academic Press, 1970.



CAMBRIDGE SCIENTIFIC PUBLISHERS 
 

AN INTERNATIONAL BOOK SERIES 
STABILITY OSCILLATIONS AND OPTIMIZATION OF SYSTEMS 

 
Matrix Equations, Spectral Problems and Stability of Dynamic Systems  
Stability, Oscillations and Optimization of Systems: Volume 2, 
XX+270 pp, 2008    ISBN 978-1-904868-52-1   £55/$100/€80 
        
A.G. Mazko  
Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine 
 
This volume presents new matrix and operator methods of investigations in systems theory, 
related spectral problems, and their applications in stability analysis of various classes of 
dynamic systems. Providing new directions for future promising investigations, Matrix 
Equations, Spectral Problems and Stability of Dynamic Systems 

• furnishes general methods for localization of eigenvalues of matrices, matrix 
polynomials and functions 

• develops operator methods in a matrix space 
• evolves the inertia theory of transformable matrix equations 
• describes general spectral problems for matrix polynomials and functions in the form 

of matrix equations 
• presents new Lyapunov type equations for various classes of dynamic systems as 

excellent algebraic approaches to solution of spectral problems 
• demonstrates effective application of the matrix equations approaches in stability 

analysis of controllable systems 
• gives new expression for the solutions of linear arbitrary order differential and 

difference systems 
• advances the stability theory of positive and monotone dynamic systems in partially 

ordered Banach space 
• systematizes comparison methods in stability theory 
• and more! 

Containing over 1200 equations, and references, this readily accessible resource is excellent for 
pure and applied mathematicians, analysts, graduate students and undergraduates specializing 
in stability and control theory, matrix analysis and its applications. 
 
CONTENTS  
Preface • Preliminaries • Location of Matrix Spectrum with Respect to Plane Curves • 
Analogues of the Lyapunov Equation for Matrix Functions • Linear Dynamic Systems. 
Analysis of Spectrum and Solutions • Matrix Equations and Law of Inertia • Stability of 
Dynamic Systems in Partially Ordered Space • Appendix • References • Notation • Index 
 
 

Please send order form to: 
Cambridge Scientific Publishers 

PO Box 806, Cottenham, Cambridge CB4 8RT Telephone: +44 (0) 1954 251283 
Fax: +44 (0) 1954 252517 Email: janie.wardle@cambridgescientificpublishers.com 

Or buy direct from our secure website: www.cambridgescientificpublishers.com 

 


	Introduction
	Preliminaries
	Some technical results

	Assumptions and Definition
	Basic assumptions 
	Definition of entropy solution

	The Principal Result
	Introduction
	Preliminary Results 
	Monotone Method
	Numerical Example
	Introduction
	Preliminaries
	Main Results
	Introduction
	Definition of FSHFPS and IFSHFPS
	Scheme 1
	Scheme 2
	Numerical Examples
	Example 1
	Example 2

	Conclusion
	Introduction
	Problem Formulation
	The Cai System and the Chen System
	Multi-Switching Synchronization Methodology
	Numerical Simulations
	Complete synchronization
	Anti-synchronization
	Hybrid synchronization

	Conclusion
	Introduction
	Analysis of the Proposed Method
	Discussion and Concluding Remarks
	Introduction
	Preliminaries
	Main Results
	Conclusion
	Introduction
	Statement of the Problems and Main Results
	Proofs of the Theorems
	 Proof of Theorem 2.1
	 Proof of Theorem 2.2

	Applications
	Страница 1
	Страница 2

