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1 Introduction

During the last few decades, the fractional differential equations (FDEs) including
Riemann-Liouville and Caputo derivatives have attracted the interest of many re-
searchers, motivated by demonstrated applications in widespread areas of science and
engineering such as models of medicine (modeling of human tissue under mechanical
loads), electrical engineering(transmission of ultrasound waves), biochemistry (modeling
of proteins and polymers) etc. In addition, due to the memory and hereditary proper-
ties of the materials and processes, in some areas of science such as identification sys-
tems, signal processing, robotics or control theory, the fractional differential operators
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seem more appropriate in modeling than the classical integer operators. For funda-
mental certainties regarding to fractional systems, one can make reference to the pa-
pers [6,9,14,19–21,25,26], the monographs [10,16,24] and references therein. Moreover,
fractional differential systems with delay are used frequently in many fields such as 3-D
printing and oil drilling, modeling of equations, panorama of natural phenomena and
porous media. For more details, see the cited papers [1, 3].

On the other hand, the theory of fractional impulsive differential equations (in short,
FIDEs) also has generated a great interest among the researchers, because many real
world processes and phenomena which are effected by abrupt changes in the state at
certain moments are naturally described by FIDEs. These changes occur due to dis-
turbances, changing operational conditions and component failures of the state. For
example, mechanical and biological models subject to shocks. Generally, the abrupt
changes in the state for instant period in evolution process are formulated by impulsive
differential equations. However, it is not necessary that the dynamical systems with
evolutionary processes always be characterized by instantaneous impulses. For exam-
ple, pharmacotherapy [23], in which the hemodynamic equilibrium of a person is con-
sidered. The initiation of the drugs in the bloodstream and the resultant absorption
for the body are gradual and continuous processes. Therefore, instantaneous impulses
failed to describe such processes. To characterize these type of situations Hernández and
O′Regan [8] introduce a new case of impulsive actions, which are triggered abruptly at
an arbitrary instant and their action remains for a finite time interval. Meanwhile, Pierri
et al. [22] extended the results of [8] with an α-normed Banach space. For the general
theory of impulsive differential equations, we refer to the monographs [4, 12], research
papers [5, 11,13,15,17,18,28] and references therein.

Indeed, in [9, 14, 19, 27], the authors have obtained the existence and uniqueness
results without impulsive conditions, and in [20], Pardo studied weighted pseudo almost
automorphic mild solutions for two-term time-fractional order differential equations. In
[21], Pardo and Lizama studied a nonlinear multi-term time-differential system of the
form

cDγ
t y(t) +

d∑
j=1

µj
cD

βj

t y(t) = Ay(t) + f(t, y(t)), βj > 0, t ∈ [0, 1], 0 < γ ≤ 2, (1)

y(0) = 0, y′(0) = g(y), (2)

where A : D(A) ⊂ X→ X is a closed linear operator and f and g are suitable functions. In
the foregoing cases, the initial value problems were considered, but the study of existence
of mild solutions for the system modeled as (1)−(2) involving non-instantaneous impulses
and delay was left open. Anticipating a wide interest in the problems modeled as the
system (3)− (5), this paper contributes to fill this important gap.

This paper is organized as follows. Section 2 is devoted to recall basics of fractional
calculus and mild solution which will be employed to attain our mains outcomes. In
Section 3, the existence and uniqueness results for the system (3) − (5) are analyzed
under the Banach and condensing map fixed point theorems. In Section 4, as a final
point, an example is provided to show the feasibility of the theory discussed in this
paper.
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2 Problem Formulation

Let X be a Banach space. Let L(X) be the space of all bounded and linear operators
on X equipped with the norm ‖ · ‖L. Let R and N stand for real numbers and natural
numbers, respectively. For a linear operator A on X, R(A),D(A) and %(A) represent
the range, domain and resolvent of A respectively. To facilitate the discussion due to
delay, we use the space PC0 := C([−τ, 0],X) formed by the continuous functions from
[−τ, 0] to X equipped with the norm ‖y‖PC0 = supt∈[−τ,0]{‖y(t)‖X : y ∈ PC0}. To
study the impulsive forces, we define a space PCT := PC([−τ, T ],X), 0 ≤ t ≤ T of all
functions y : [−τ, T ] → X, which are continuous everywhere except the points tk ∈
(0, T ), k = 1, 2, ...,m, at which y(t+k ) and y(t−k ) exist and y(t−k ) = y(tk). Obviously, PCT
is a Banach space equipped with the norm ‖y‖PCT = supt∈[−τ,T ]{‖y(t)‖X : y ∈ PCT }.

In this paper, we study the existence and uniqueness of mild solutions for the following
class of multi-term time-fractional differential equations with non-instantaneous impulses

cD1+β
sk

y(t) +

n∑
j=1

αj
cDγj

sk
y(t)

= Ay(t) + F

(
t, yt,

∫ t

0

K(t, s)(ys)ds

)
, t ∈ ∪mk=0(sk, tk+1], (3)

y(t) = Gk(t,yt), y′(t) = Hk(t, yt), t ∈ ∪mk=1(tk, sk], (4)

y(t) + g1(y) = φ(t), y′(t) + g2(y) = ϕ(t), t ∈ [−τ, 0], (5)

where A : D(A) ⊂ X → X is a closed linear operator. cDη
sk

stands for the Caputo
derivative of order η > 0 and I = [0, T ] = {0} ∪mk=0 (sk, tk+1] ∪mk=1 (tk, sk], T < ∞ such
that 0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm ≤ sm ≤ tm+1 = T are prefix numbers. All
γj , j = 1, 2, 3...n, are positive real numbers such that 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1. Gk
and Hk are continuous functions from ∪mk=1(tk, sk] × PC0 into X for all k = 1, 2, ...,m.
F : I × PC0 × PC0 → X is a suitable function. The history function yt : [−τ, 0] → X is
the element of PC0 characterized by yt(θ) = y(t + θ), θ ∈ [−τ, 0] and also φ, ϕ ∈ PC0.
y′ denotes the usual derivative of y with respect to t. K is a positive and continuous
operator on Ω := {(t, s) ∈ R2 : 0 ≤ s ≤ t < T} and k0 = sup

∫ t
0
K(t, s)ds < ∞. Here by

non-instantaneous, we mean that the impulses start abruptly at tk and their effect will
continue on the interval [tk, sk] for k = 1, 2, 3, ...,m.

Now, we recall some definitions and basic results on fractional calculus (for more
details, see [24]). Define gη(t) for η > 0 by

gη(t) =

{ 1
Γ(η) t

η−1, t > 0;

0, t ≤ 0,

where Γ denotes the gamma function. Let (X ∗ Y )(t) be the convolution of X and Y

given by (X ∗ Y )(t) :=
∫ t

0
X(t− s)Y (s)ds.

Definition 2.1 The Riemann-Liouville fractional integral of a function f ∈
L1
loc(R+,X) of order η > 0 with the lower limit a ≥ 0 is defined as follows

Iηaf(t) =

∫ t

a

gη(t− s)f(s)ds, t > 0,

and I0
af(t) = f(t). This fractional integral satisfies the properties Iη0 ◦ Ib0 = Iη+b

0 for
b > 0 and Iη0 f(t) = (gη ∗ f)(t).
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Definition 2.2 [21] Let η > 0 be given and denote m = dηe. The Caputo fractional
derivative of order η > 0 of a function f ∈ Cm([0,∞),R) with the lower limit a ≥ 0 is
given by

cDη
af(t) = Im−ηa Dm

a f(t) =

∫ t

a

gm−η(t− s) d
m

dtm
f(s)ds,

and cD0
af(t) = f(t). In addition, we have cDη

0f(t) = (gm−η ∗Dmf)(t).

To give an appropriate representation of mild solution in terms of certain family of
bounded and linear operators, we define the following family of operators.

Definition 2.3 [21] Let A be a closed linear operator on a Banach space X with
the domain D(A) and β > 0, γj , αj be the real positive numbers. Then A is called the
generator of a (β, γj)− resolvent family if there exists ω > 0 and a strongly continuous
function Sβ,γj : R+ → L(X) such that {λβ+1 +

∑n
j=1 αjλ

γj : Reλ > ω} ⊂ %(A) and

λβ
(
λβ+1 +

n∑
j=1

αjλ
γj −A

)−1

y =

∫ ∞
0

e−λtSβ,γj (t)ydt, Reλ > ω, y ∈ X. (6)

The following result provides the existence of (β, γj)− resolvent family under some suit-
able conditions.

Theorem 2.1 [21] Let 0 < β ≤ γi ≤, · · · ,≤ γ1 ≤ 1 and αj ≥ 0 be given and let
A be a generator of a bounded and strongly continuous cosine family {C(t)}t∈R. Then A
generates a bounded (β, γj)− resolvent family {Sβ,γj (t)}t≥0.

Motivated by [21], we define a mild solution for the system (3)− (5) as follows.

Definition 2.4 A function y ∈ PCT is called a mild solution of the system (3)− (5),
if y(t) = φ(t)−g1(y), y′(t) = ϕ(t)−g2(y) for [−τ, 0] and y(t) = Gk(t, yt), y

′(t) = Hk(t, yt)
for t ∈ ∪mk=1(tk, sk] and satisfy the following integral equations

y(t) =



Sβ,γj (t)[φ(0)− g1(y)] +
∫ t

0
Sβ,γj (s)[ϕ(0)− g2(y)]ds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s)[φ(0)− g1(y)]ds

+
∫ t

0
(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ [0, t1];

Sβ,γj (t− sk)Gk(sk, ysk) +
∫ t
sk
Sβ,γj (s− sk)Hk(sk, ysk)ds

+

n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s− sk)Gk(sk, ysk)ds

+
∫ t
sk

(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ ∪mk=1(sk, tk+1],

(7)

where K(ys) =
∫ s

0
K(s, ξ)(yξ)dξ.

Theorem 2.2 [7, Condensing theorem] Let M be a closed, bounded and convex
subset of a Banach space X and assume that Q : M →M is a condensing map. Then
Q admits a fixed point in M.
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3 Main Results

In this section, we establish the existence and uniqueness of mild solution for the system
(3) − (5). We denote S0 = supt∈[0,T ] ‖Sβ,γj (t)‖L. In order to establish the existence
and uniqueness result by the Banach fixed point theorem, we consider the following
assumptions:

(A1) There exist positive constants µF and µ0
F such that

‖F (t, ψ1, χ1)− F (t, ψ2, χ2)‖X ≤ µF ‖ψ1 − ψ2‖PC0 + µ0
F ‖χ1 − χ2‖PC0 ,

where ψi, χi ∈ PC0, i = 1, 2.

(A2) There exist positive constants µG, µgi and µH such that

‖Gk(t, ψ)−Gk(t, χ)‖X ≤ µG‖ψ − χ‖PC0 , ‖Hk(t, ψ)−Hk(t, χ)‖X ≤ µH‖ψ − χ‖PC0 ,
‖gi(x)− gi(y)‖X ≤ µgi‖x− y‖X,

for all ψ, χ ∈ PC0, x, y ∈ X, i = 1, 2 and k = 1, 2, 3, . . . ,m.

Theorem 3.1 Assume that the assumptions (A1)−(A2) are fulfilled, then the system
(3)− (5) has a unique mild solution in I if Θ < 1, where

Θ = max

[
S0d+ T0S0e+

n∑
j=1

αjS0dT
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[µF + µ0

F k
0], µG

]
,

where d = max{µg1 , µG}, e = max{µg2 , µH} and T0 = max
0≤k≤m

|tk+1 − sk|.

Proof. To transform the problem into a fixed point problem, we define an operator
Q : PCT → PCT by Qy(t) = φ(t) for t ∈ [−τ, 0] and Qy(t) = Gk(t, yt) for all t ∈
∪mk=1(tk, sk], and

Qy(t) =



Sβ,γj (t)[φ(0)− g1(y)] +
∫ t

0
Sβ,γj (s)[ϕ(0)− g2(y)]ds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s)[φ(0)− g1(y)]ds

+
∫ t

0
(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ [0, t1];

Sβ,γj (t− sk)Gk(sk, ysk)

+
∫ t
sk
Sβ,γj (s− sk)Hk(sk, ysk)ds

+

n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s− sk)Gk(sk, ysk)ds

+
∫ t
sk

(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ ∪mk=1(sk, tk+1].

(8)
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Let x, y ∈ PCT . For t ∈ [0, t1], we have

‖Qx(t)−Qy(t)‖X

≤‖Sβ,γj (t)‖L‖g1(x)− g1(y)‖X +

∫ t

0

‖Sβ,γj (s)‖L‖g2(x)− g2(y)‖Xds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

‖Sβ,γj (s)‖L‖g1(x)− g1(y)‖Xds

+

∫ t

0

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, xs,K(xs)(s))− F (s, ys,K(ys))‖Xds

≤
[
S0µg1 + T0S0µg2 +

n∑
j=1

αjS0µg1T
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[µF + µ0

F k
0]

]
‖x− y‖PCT .

For t ∈ ∪mk=1(tk, sk], we get

‖Qx(t)−Qy(t)‖X ≤ ‖Gk(sk, xsk)−Gk(sk, ysk)‖X ≤ µG‖x− y‖PCT , k = 1, 2, 3, . . . ,m.

Similarly, for t ∈ ∪mk=1(sk, tk+1] we get

‖Qx(t)−Qy(t)‖X
≤‖Sβ,γj (t− sk)‖L‖Gk(sk, xsk)−Gk(sk, ysk)‖X

+

∫ t

sk

‖Sβ,γj (s− sk)‖L‖Hk(sk, xsk)−Hk(sk, ysk)‖Xds

+

n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

‖Sβ,γj (s− sk)‖L‖Gk(sk, xsk)−Gk(sk, ysk)‖Xds

+

∫ t

sk

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, xs,K(xs)(s))− F (s, ys,K(ys))‖Xds

≤
[
S0µG + T0S0µH +

n∑
j=1

αjS0µGT
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[µF + µ0

F k
0]

]
‖x− y‖PCT .

Gathering the above results, we have ‖Qx−Qy‖PCT ≤ Θ‖x−y‖PCT . Now, by the Banach
contraction theorem the system (3)− (5) has a unique mild solution.
In order to establish the existence results by virtue of the condensing map, we consider
the following assumptions:

(A3) The functions Gk, Hk, g1 and g2 are continuous functions and F is compact and
continuous, and there exist positive constants νF , ν0

F , νG, νH , νg1 , νg2 such that

‖F (t, ψ, χ)‖X ≤ νF ‖ψ‖PC0 + ν0
F ‖χ‖PC0 , ‖gi(x)‖X ≤ νgi‖x‖X,

‖Gk(t, ψ)‖X ≤ νG‖ψ‖PC0 , ‖Hk(t, ψ)‖X ≤ νH‖ψ‖PC0
for all x ∈ X, ψ, χ ∈ PC0.

Theorem 3.2 Assume that the assumptions (A2)−(A3) are fulfilled, then the system
(3)− (5) has a mild solution in I if ∆ < 1, where

∆ = max

[
S0d+ T0S0e+

n∑
j=1

αjS0dT
1+β−γj
0

Γ(2 + β − γj)
, µG

]
,

where d = max{µg1 , µG}, e = max{µg2 , µH}.
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Proof. Consider the operator Q : PCT → PCT defined in Theorem 3.1. We show
that Q has a fixed point. It is easy to see that Qy(t) ∈ PCT . Let Br0 := {y ∈ PCT :
‖y‖PCT ≤ r0}, where

r0 ≥ max

[
S0Y1 + T0S0Z1 +

n∑
j=1

αjS0Y1T
1+β−γj
0

Γ(2 + β − γj)
, νGr0, S0νGr0 + T0S0νHr0

+

n∑
j=1

αjS0νGr0T
1+β−γj
0

Γ(2 + β − γj)

]
+

S0T
1+β
0

Γ(2 + β)
[νF + ν0

F k
0]r0, (9)

where Y1 = ‖φ(0)‖+ νg1r0, Z1 = ‖ϕ(0)‖+ νg2r0. It is clear that Br0 is a closed, bounded
and convex subset of PCT . Let y ∈ Br0 , then for t ∈ [0, t1], we have

‖Qy(t)‖X ≤‖Sβ,γj (t)‖L(‖φ(0)‖+ ‖g1(y)‖X) +

∫ t

0

‖Sβ,γj (s)‖L(‖ϕ(0)‖+ ‖g2(y)‖X)ds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

‖Sβ,γj (s)‖L(‖φ(0)‖+ ‖g(y)‖X)ds

+

∫ t

0

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, ys,K(ys))‖Xds

≤S0Y1 + T0S0Z1 +

n∑
j=1

αjS0Y1T
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[νF + ν0

F k
0]r0.

For t ∈ ∪mk=1(tk, sk], we get

‖Qy(t)‖X ≤ ‖Gk(t, yt)‖X ≤ νGr0, k = 1, 2, 3, . . . ,m.

Similarly, for t ∈ ∪mk=1(sk, tk+1], we get

‖Qy(t)‖X ≤‖Sβ,γj (t− sk)‖L‖Gk(sk, ysk)‖X +

∫ t

sk

‖Sβ,γj (s− sk)‖L‖Hk(sk, ysk)‖Xds

+

n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

‖Sβ,γj (s− sk)‖L‖Gk(sk, ysk)‖Xds

+

∫ t

sk

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, ys,K(ys))‖Xds

≤S0νGr0 + T0S0νHr0 +

n∑
j=1

αjS0νGr0T
1+β−γj
0

Γ(2 + β − γj)
+

S0T
1+β
0

Γ(2 + β)
[νF + ν0

F k
0]r0.

We conclude by (9) that ‖Qy‖PCT ≤ r0. Thus we conclude that Q(Br0) ⊆ Br0 . Next,
we show that Q is a condensing operator. Let us decompose Q by Q = Q1 +Q2, where
Q1y(t) = Gk(t, yt) for all t ∈ ∪mk=1(tk, sk] and

Q1y(t) =



Sβ,γj (t)[φ(0)− g1(y)] +
∫ t

0
Sβ,γj (s)[ϕ(0)− g2(y)]ds

+

n∑
j=1

αj

∫ t

0

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s)[φ(0)− g1(y)]ds, t ∈ [0, t1];

Sβ,γj (t− sk)Gk(sk, ysk) +
∫ t
sk
Sβ,γj (s− sk)Hk(sk, ysk)ds

+
n∑
j=1

αj

∫ t

sk

(t− s)β−γj
Γ(1 + β − γj)

Sβ,γj (s−sk)Gk(sk, ysk)ds, t ∈ ∪mk=1(sk, tk+1],

(10)
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and

Q2y(t) =

{ ∫ t
0
(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ [0, t1];∫ t

sk
(gβ ∗ Sβ,γj )(t− s)F (s, ys,K(ys))ds, t ∈ ∪mk=1(sk, tk+1].

(11)

First, we show that Q1 is continuous, so consider a sequence in Br0 such that yn → y ∈
Br0 , then for t ∈ [0, t1], we get

‖Q1y
n(t)−Q1y(t)‖X ≤S0‖g1(yn)− g1(y)‖X + S0T0‖g2(yn)− g2(y)‖X

+

n∑
j=1

αjS0T
1+β−γj
0

Γ(2 + β − γj)
‖g1(yn)− g1(y)‖X.

For t ∈ ∪mk=1(sk, tk+1], we obtain

‖Q1y
n(t)−Q1y(t)‖X ≤S0‖Gk(sk, y

n
sk

)−Gk(sk, ysk)‖X
+ S0T0‖Hk(sk, y

n
sk

)−Hk(sk, ysk)‖X

+

n∑
j=1

αjS0T
1+β−γj
0

Γ(2 + β − γj)
‖Gk(sk, y

n
sk

)−Gk(sk, ysk)‖X.

By continuity of Gk, Hk, g1 and g2, we have ‖Q1y
n−Q1y‖PCT → 0 as n→∞. Hence Q1

is continuous. Let x, y ∈ PCT . As we have done in Theorem 3.1 for t ∈ [0, t1], we have

‖Q1x(t)−Q1y(t)‖X ≤
[
S0µg1 + T0S0µg2 +

n∑
j=1

αjS0µg1T
1+β−γj
0

Γ(2 + β − γj)

]
‖x− y‖PCT .

For t ∈ ∪mk=1(tk, sk], we get

‖Q1x(t)−Q1y(t)‖X ≤ ‖Gk(sk, xsk)−Gk(sk, ysk)‖X ≤ µG‖x− y‖PCT , k = 1, 2, . . . ,m,

and for t ∈ ∪mk=1(sk, tk+1], we obtain

‖Q1x(t)−Q1y(t)‖X ≤
[
S0µG + T0S0µH +

n∑
j=1

αjS0µGT
1+β−γj
0

Γ(2 + β − γj)

]
‖x− y‖PCT .

Gathering the above results, we have ‖Q1x−Q1y‖PCT ≤ ∆‖x− y‖PCT . Hence, Q1 is a
contraction mapping.

Next, we show that Q2 is completely continuous. First, we verify that Q2 is contin-
uous, so we consider a sequence in Br0 such that yn → y ∈ Br0 as n → ∞, then for
t ∈ [0, t1], we get

‖Q2y
n(t)−Q2y(t)‖X

≤
∫ t

0

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, yns ,K(yns ))− F (s, ys,K(ys))‖Xds,

for t ∈ ∪mk=1(sk, tk+1], we obtain

‖Q2y
n(t)−Q2y(t)‖X

≤
∫ t

sk

‖(gβ ∗ Sβ,γj )(t− s)‖L‖F (s, yns ,K(yns ))− F (s, ys,K(ys))‖Xds.
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By continuity of F , we get ‖Q2y
n −Q2y‖PCT → 0 as n→∞. Hence Q2 is continuous.

Further, we show that Q2 is a family of equi-continuous functions. Let l2, l1 ∈ [0, t1] such
that 0 ≤ l1 < l2 ≤ t1, we have

‖Q2y(l2)−Q2y(l1)‖X

≤
∫ l1

0

‖(gβ ∗ Sβ,γj )(l2 − s)− (gβ ∗ Sβ,γj )(l1 − s)‖L‖F (s, ys,K(ys))‖Xds

+

∫ l2

l1

‖(gβ ∗ Sβ,γj )(l2 − s)‖L‖F (s, ys,K(ys))‖Xds

≤S0

[ ∫ l1

0

(
(l2 − s)β

Γ(1 + β)
− (l1 − s)β

Γ(1 + β)

)
ds+

(l2 − l1)1+β

Γ(2 + β)

]
[νF + ν0

F k
0]r0

≤ S0

Γ(2 + β)

[∣∣∣∣(l1+β
2 − l1+β

1 )− (l2 − l1)1+β

∣∣∣∣+
(l2 − l1)1+β

Γ(2 + β)

]
[νF + ν0

F k
0]r0.

For l2, l1 ∈ ∪mk=1(sk, tk+1] such that sk ≤ l1 < l2 ≤ tk+1, we have

‖Q2y(l2)−Q2y(l1)‖X

≤
∫ l1

sk

‖(gβ ∗ Sβ,γj )(l2 − s)− (gβ ∗ Sβ,γj )(l1 − s)‖L‖F (s, ys,K(ys))‖Xds

+

∫ l2

l1

‖(gβ ∗ Sβ,γj )(l2 − s)‖L‖F (s, ys,K(ys))‖Xds

≤S0

[ ∫ l1

sk

(
(l2 − s)β

Γ(1 + β)
− (l1 − s)β

Γ(1 + β)

)
ds+

(l2 − l1)1+β

Γ(2 + β)

]
[νF + ν0

F k
0]r0

≤ S0

Γ(2 + β)

[∣∣∣∣((l2 − sk)1+β − (l1 − sk)1+β)− (l2 − l1)1+β

∣∣∣∣+
(l2 − l1)1+β

Γ(2 + β)

]
[νF + ν0

F k
0]r0,

from aforemention inequalities we conclude that ‖Q2y(l2)−Q2y(l1)‖PCT → 0 as l2 → l1
for t ∈ [0, T ]. This shows that Q2 is a family of equi-continuous functions.

Finally, we will show that Y = {Q2y(t) : y ∈ Br0} is precompact in X. Let t > 0 be
fixed and let yn ∈ Br0 , {yn} be a bounded sequence in PCT . Let Y = {Q2y

n(t) : yn ∈
Br0} be a bounded sequence in Br0 . Hence, for any t∗ ∈ ∪mk=0(sk, tk+1], the sequence
{yn(t∗)} is bounded in Br0 . Since F is compact, it has a convergent subsequence such
that

F (t∗, ynt∗ ,K(ynt∗))→ F (t∗, yt∗ ,K(yt∗)),

or

‖F (t∗, ynt∗ ,K(ynt∗))− F (t∗, yt∗ ,K(yt∗))‖X → 0 as n→∞.

Using the bounded convergence theorem, we can conclude that

(Q2y
n)(t)→ (Q2y)(t), in Br0 .

This proves that Q2 is a compact operator. Therefore Q1 is a continuous and contraction
operator and Q2 is a completely continuous operator, hence Q = Q1 +Q2 is a condensing
map on Br0 . Finally, by Theorem 2.2, we infer that there exists a mild solution of the
system (3)− (5) in Br0 .
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4 Example

In this section, we provide an example to illustrate the feasibility of the established
results. Set X = L2(Rn), then PC0 := C([−τ, 0], L2(Rn)). Let β, γJ > 0 for j =
1, 2, 3, . . . , n be given, satisfying 0 < β ≤ γn ≤ · · · ≤ γ1 ≤ 1 and τ ∈ R such that τ > 0 .
We consider the following system

∂1+β
t u(t, x) +

n∑
j=1

αj∂
γj
t u(t, x) =∆u(t, x) +

ut(θ, x)

50

+

∫ t

−τ
cos(t− ξ)ut(θ, x)

25
dξ, (12)

for all (t, x) ∈ ∪mk=0(sk, tk+1]× [0, 1],

Gk(t, ut(θ, x)) =

∫ t

−τ

sin(t− ξ)
(k + 1)

ut(θ, x)

25
dξ,

Hk(t, ut(θ, x)) =

∫ t

−τ

cos(t− ξ)
(k + 1)

ut(θ, x)

25
dξ, t ∈ ∪mk=1(tk, sk], (13)

u(θ, x) +

q∑
r=1

ary(tr) = φ(θ, x), u′(θ, x)+

q∑
r=1

bry(tr) = ϕ(θ, x), (14)

where ar, br ∈ R, θ ∈ [−τ, 0]. The points 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < · · · <
tm ≤ sm ≤ tm+1 = 1 are prefix numbers, ∂1+β

t denotes the Caputo derivative of order
(1 + β) and ∆ is the Laplacian with a maximal domain {v ∈ X : v ∈ H2(Rn)}. The
history function ut(θ, x) : [−τ, 0]→ X is the element of PC0 characterized by ut(θ, x) =

u(t+ θ, x), θ ∈ [−τ, 0]. Set y(t)(x) = u(t, x), g1(x) =

p∑
r=1

arx(tr), g2(x) =

p∑
r=1

brx(tr) and

φ(θ)(x) = φ(θ, x), (θ, x) ∈ [−τ, 0]× [0, 1]. Now, we have F (t, ψ,K(ψ)) = ψ
50 +

∫ t
−τ cos(t−

ξ) ψ52 dξ, Gk(t, ψ) =
∫ t
−τ

sin(t−ξ)
(k+1)

ψ
25dξ, Hk(t, ψ) =

∫ t
−τ

cos(t−ξ)
(k+1)

ψ
25dξ. Now, we observe that

the system (12) − (14) has the abstract form of the system (3) − (5). Moreover, for
t ∈ [0, 1], ψi, χi ∈ PC0, i = 1, 2 and x, y ∈ X, we have

‖F (t, ψ1,K(χ1))− F (t, ψ2,K(χ2))‖ ≤ 1

50
‖ψ1 − ψ2‖+

1

25
‖χ1 − χ2‖,

‖Gk(t, χ1)−Gk(t, χ2)‖ ≤ 2

25
‖χ1 − χ2‖; ‖Hk(t, χ1)−Hk(t, χ2)‖ ≤ 1

25
‖χ1 − χ2‖,

‖g1(x)− g1(y)‖X ≤ qa‖x− y‖X; ‖g2(x)− g2(y)‖X ≤ qb‖x− y‖X,

where a = max
1≤r≤q

|ar| and b = max
1≤r≤q

|br|. Thus the assumptions (A1) and (A2) are

satisfied. On the other hand, it follows from the theory of cosine families that ∆ gen-
erates a bounded cosine function {C(t)}t≥0 on L2(Rn). Moreover, by Theorem 2.1 the
operator ∆ in equation (12) generates a bounded {Sβ,γj (t)}t≥0-resolvent family. Let
S0 = supt∈[0,1] ‖Sβ,γj (t)‖L. Now, by Theorem 3.1 if

max

[
S0d+ S0e+

n∑
j=1

αjS0d

Γ(2 + β − γj)
+

3S0

50Γ(2 + β)
,

1

25

]
< 1,

where d = max{qa, 2
25}, e = max{qb, 2

25}, then the system (12) − (14) admits a unique
mild solution.
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5 Conclusion

In this paper, an approach has been developed concerning the existence and uniqueness
of mild solutions for the system (3) − (5) using the Banach fixed point theorem and
condensing map theorem. The system (3)− (5) involves abrupt forces(impulsive effects),
hence our results generalize the results of Pardo and Lizama studied in [21]. Thus, our
results are more general and interesting.
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