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Abstract: The paper is devoted to the problem of delay-independent stability for
a class of nonlinear mechanical systems. Mechanical systems with linear velocity
forces and essentially nonlinear positional ones are studied. It is assumed that there
is a delay in the positional forces. With the aid of the decomposition method and
original constructions of Lyapunov–Krasovskii functionals, conditions are found under
which the trivial equilibrium positions of the considered systems are asymptotically
stable for any constant nonnegative delay. An example is given to demonstrate the
effectiveness of the obtained results.
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1 Introduction

An efficient approach to investigation of dynamical properties of complex systems is the
decomposition method [15, 21]. The approach is successfully applied in various forms to
the stability analysis of mechanical systems, see, for example, [15, 17, 20, 22, 24] and the
bibliography therein.

An interesting and practically important result on the decomposition of mechanical
system was obtained by V.I. Zubov [24]. He studied the stability of gyroscopic systems
described by linear time-invariant second order systems and found conditions under which
the stability problem for an original system can be reduced to that for two auxiliary
independent first order subsystems. However, it should be noted that the Zubov approach
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is based on the Lyapunov first method, and it is inapplicable to nonstationary and
nonlinear systems.

Another approach to derive the Zubov result has been proposed by A.A. Kosov [14].
He suggested to use a special transformation of variables and the Lyapunov direct
method. This approach was further developed in [1, 4, 5], where it has been applied
not only to linear time-invariant systems but also to switched systems and systems with
nonlinear force fields. Furthermore, in [3, 7], with the aid of the Kosov approach and
a special technique of using the Razumikhin theorem, new delay-independent stability
conditions for some classes of mechanical systems were obtained.

In the present contribution, we consider mechanical systems with linear velocity forces
and essentially nonlinear positional ones. It is assumed that there is a delay in the
positional forces. We will look for conditions guaranteeing that the trivial equilibrium
positions of the systems under consideration are asymptotically stable for any constant
nonnegative delay.

Let us note that such conditions were derived in [7] with the aid of the decomposi-
tion method and Lyapunov–Razumikhin functions. In this paper, instead of Lyapunov–
Razumikhin functions, we will use special constructions of Lyapunov–Krasovskii func-
tionals. It will be shown that such an approach permits us to obtain less conservative
delay-independent stability conditions than those in [7].

2 Notation

Throughout the paper the following notation is used:
• R is the field of real numbers and Rn denotes the n-dimensional Euclidean space.
• ‖ · ‖ is the Euclidean norm of a vector.
• P > 0 (P < 0) means that the matrix P is symmetric and positive (negative)

definite.
• AT is the transpose of a matrix A.
• A matrix C is called Metzler [13] if all its off-diagonal entries are nonnegative.
• diag{λ1, . . . , λn} is the diagonal matrix with the elements λ1, . . . , λn.
• A matrix C is called diagonally stable if there exists a diagonal matrix Λ =

diag{λ1, . . . , λn} > 0 such that ΛC + CTΛ < 0.
• For a given positive number τ , let C1([−τ, 0],Rn) be the space of continuously

differentiable functions ϕ(θ) : [−τ, 0]→ Rn with the uniform norm

‖ϕ‖τ = max
θ∈[−τ,0]

(‖ϕ(θ)‖+ ‖ϕ̇(θ)‖) .

• Ω∆ is the set of functions ϕ(θ) ∈ C1([−τ, 0],Rn) satisfying the condition ‖ϕ‖τ < ∆,
0 < ∆ ≤ +∞.

3 Problem Formulation

Consider the system

Aq̈(t) +Bq̇(t) + Cf(q(t)) +Df(q(t− τ)) = 0 (1)

describing motions of a nonlinear mechanical system. Here q(t), q̇(t) ∈ Rn; A,B,C,D
are constant matrices; vector function f(q) is continuous for ‖q‖ < ∆, 0 < ∆ ≤ +∞; τ
is a constant nonnegative delay.
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Assume that f(q) is a separable nonlinearity, i.e., f(q) = (f1(q1), . . . , fn(qn))T , and
each scalar function fi(qi) satisfies the sector-like condition qifi(qi) > 0 for qi 6= 0,
i = 1, . . . , n. It is worth noting that such functions are widely used in models of automatic
control systems and neural networks [2, 13,16].

Hence, we consider a mechanical system with linear velocity forces and nonlinear
positional ones. The term −Df(q(t − τ)) can be treated as a control vector, and the
presence of delay τ might be caused by a time lag between the moments of measuring of
the state and the application of the corresponding control force, see [12,19].

Let q(t, t0, ϕ, ϕ̇) stand for a solution of the system (1) with the initial conditions
t0 ≥ 0, ϕ(θ) ∈ Ω∆, and qt(t0, ϕ, ϕ̇) denote the restriction of the solution to the segment
[t− τ, t], i.e., qt(t0, ϕ, ϕ̇) : θ → q(t+ θ, t0, ϕ, ϕ̇), θ ∈ [−τ, 0].

In what follows, we will impose additional restrictions on the system (1).

Assumption 3.1 Let the matrices A and B be nonsingular.

Assumption 3.2 Let fi(qi) = αiq
µi

i , where αi are positive coefficients and µi > 1
are rationals with odd numerators and denominators, i = 1, . . . , n.

Remark 3.1 Without loss of generality, we will consider the case where αi = 1,
i = 1, . . . , n, and µ1 ≤ . . . ≤ µn.

Thus, the positional forces in (1) are essentially nonlinear ones. It should be noted
that models with essentially nonlinear forces are widely used in contemporary mechanical
and civil engineering, see, for instance, [8–10,18].

The system (1) has the trivial equilibrium position

q = q̇ = 0. (2)

We will look for conditions providing the asymptotic stability of the equilibrium position
for an arbitrary constant nonnegative delay.

4 Main Results

According to the Zubov approach, consider two auxiliary isolated delay-free subsystems

ẏ(t) = Pf(y(t)), (3)

ż(t) = −A−1Bz(t). (4)

Here P = {pij}ni,j=1 = −B−1(C + D). It is worth mentioning that the subsystem (4)

is linear, whereas the subsystem (3) belongs to the well-known class of Persidskii type
systems [13].

Assumption 4.1 Let the subsystem (4) be asymptotically stable.

Define entries of the matrix P̄ = {p̄ij}ni,j=1 by the formulae p̄ii = pii, and p̄ij = |pij |
for i 6= j; i, j = 1, . . . , n. The matrix P̄ is Metzler, see [13].

In [7], with the aid of the decomposition method and Lyapunov–Razumikhin func-
tions, it was proved that if Assumptions 3.1, 3.2, 4.1 are fulfilled, and the matrix P̄ is
Hurwitz, then the equilibrium position (2) of the system (1) is asymptotically stable for
any τ ≥ 0.

To obtain less conservative stability conditions, we will use the original construction
of Lyapunov–Krasovskii functionals for systems of the form (3) proposed in [6].
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Theorem 4.1 Let Assumptions 3.1, 3.2, 4.1 be fulfilled, and the matrix P be diago-
nally stable. Then the equilibrium position (2) of the system (1) is asymptotically stable
for an arbitrary nonnegative delay.

Proof. Introduce new variables by the formulae

z(t) = q̇(t), y(t) = B−1Aq̇(t) + q(t). (5)

Then

Bẏ(t) = −(C +D)f(y(t)) + C
(
f(y(t))− f

(
y(t)−B−1Az(t)

))
+ D

(
f(y(t))− f

(
y(t− τ)−B−1Az(t− τ)

))
,

Aż(t) = −Bz(t)− Cf
(
y(t)−B−1Az(t)

)
−Df

(
y(t− τ)−B−1Az(t− τ)

)
.

(6)

Taking into account properties of the transformation (5), we obtain that the equilibrium
position (2) of the system (1) is asymptotically stable if and only if the zero solution of
(6) is asymptotically stable.

It is known, see [23], that under Assumption 4.1, for any number γ > 1, there exists
a continuously differentiable for z ∈ Rn positive homogeneous of the order γ Lyapunov
function Ṽ (z) such that the estimates

a1‖z‖γ ≤ Ṽ (z) ≤ a2‖z‖γ ,

∥∥∥∥∥∂Ṽ (z)

∂z

∥∥∥∥∥ ≤ a3‖z‖γ−1,

(
∂Ṽ (z)

∂z

)T
A−1Bz ≥ a4‖z‖γ

hold for z ∈ Rn. Here ai > 0, i = 1, 2, 3, 4.
The matrix P is diagonally stable. Therefore, one can choose a matrix Λ =

diag{λ1, . . . , λn} > 0 such that ΛP + PTΛ < 0.
Using the approach proposed in [6], construct a Lyapunov–Krasovskii functional for

the system (6) in the form

V (yt, zt) = Ṽ (z) + β1

∫ t

t−τ
‖z(s)‖γds+

n∑
i=1

λi
yµi+1
i (t)

µi + 1
+ β2

∫ t

t−τ
‖f(y(s))‖2ds

+β3

∫ t

t−τ
(τ + s− t)‖f(y(s))‖2ds− fT (y(t))ΛB−1D

∫ t

t−τ
f(y(s))ds,

where β1, β2, β3 are positive coefficients.
Differentiating functional V (yt, zt) along the solutions of the system (6), we obtain

V̇ = −

(
∂Ṽ (z(t))

∂z

)T
A−1Bz(t) + β1‖z(t)‖γ − β1‖z(t− τ)‖γ

−

(
∂Ṽ (z(t))

∂z

)T
A−1

(
Cf
(
y(t)−B−1Az(t)

)
+Df

(
y(t− τ)−B−1Az(t− τ)

))
+fT (y(t))ΛPf(y(t)) + (β2 + τβ3)‖f(y(t))‖2 − β2‖f(y(t− τ))‖2 − β3

∫ t

t−τ
‖f(y(s))‖2ds

+fT (y(t))ΛB−1
(
C
(
f(y(t))− f

(
y(t)−B−1Az(t)

))
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+D
(
f(y(t− τ))− f

(
y(t− τ)−B−1Az(t− τ)

)))
+

∫ t

t−τ
fT (y(s))dsDT

(
B−1

)T
Λ
∂f(y(t))

∂y
B−1

(
Cf
(
y(t)−B−1Az(t)

)
+Df

(
y(t− τ)−B−1Az(t− τ)

))
.

If ‖z(ξ)‖ < 1 for ξ ∈ [t− τ, t], then

V̇ ≤ (−a4 + β1)‖z(t)‖γ − β1‖z(t− τ)‖γ + (β2 + τβ3 − c1)‖f(y(t))‖2 − β2‖f(y(t− τ))‖2

+c2

∥∥∥∥∂f(y(t))

∂y

∥∥∥∥ ∫ t

t−τ
‖f(y(s))‖ds (‖f(y(t))‖+ ‖z(t)‖µ1 + ‖f(y(t− τ))‖+ ‖z(t− τ)‖µ1)

+c3‖z(t)‖γ−1 (‖f(y(t))‖+ ‖z(t)‖µ1 + ‖f(y(t− τ))‖+ ‖z(t− τ)‖µ1)

−β3

∫ t

t−τ
‖f(y(s))‖2ds+ c4‖f(y(t))‖

∥∥f(y(t))− f
(
y(t)−B−1Az(t)

)∥∥
+c5‖f(y(t))‖

∥∥f(y(t− τ))− f
(
y(t− τ)−B−1Az(t− τ)

)∥∥ ,
where c1, c2, c3, c4, c5 are positive constants.

Let 2 < γ < 2µ1. Using homogeneous functions properties, see [23], it is easy to show
that, for sufficiently small values of parameters β1, β2, β3, there exist positive numbers
c̃1, c̃2, c̃3, δ such that if ‖y(ξ)‖+ ‖z(ξ)‖ < δ for ξ ∈ [t− τ, t], then

c̃1

(
‖z(t)‖γ +

n∑
i=1

yµi+1
i (t)

)
≤ V (yt, zt)

≤ c̃2

(
‖z(t)‖γ +

∫ t

t−τ
‖z(s)‖γds+

n∑
i=1

yµi+1
i (t) +

∫ t

t−τ
‖f(y(s))‖2ds

)
,

V̇ ≤ −c̃3
(
‖z(t)‖γ + ‖z(t− τ)‖γ + ‖f(y(t))‖2 + ‖f(y(t− τ))‖2 +

∫ t

t−τ
‖f(y(s))‖2ds

)
.

From the obtained estimates it follows [11] that the zero solution of the system (6)
is asymptotically stable. This implies that the equilibrium position (2) of the original
system (1) is asymptotically stable as well. 2

Remark 4.1 On the one hand, it is well known, see [13], that if the matrix P̄ is
Hurwitz, then the matrix P is diagonally stable. On the other hand, the matrix

P =

(
−1 10
−10 −1

)
is diagonally stable, but the corresponding matrix

P̄ =

(
−1 10
10 −1

)
is not Hurwitz. Hence, conditions of Theorem 4.1 are less conservative than those ob-
tained in [7].
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Next, together with (1), consider the perturbed system

Aq̈(t) +Bq̇(t) + Cf(q(t)) +Df(q(t− τ)) = G(t, q(t), q(t− τ)). (7)

Here vector function G(t, q, u) is continuous for t ≥ 0, ‖q‖ < ∆, ‖u‖ < ∆.

Assumption 4.2 The estimate ‖G(t, q, u)‖ ≤ ã (‖f(q)‖+ ‖f(u)‖)σ is valid for t ≥ 0,
‖q‖ < ∆, ‖u‖ < ∆, where ã and σ are positive constants.

If Assumption 4.2 is fulfilled, then the system (7) admits the equilibrium position (2).
We will look for conditions under which perturbations do not disturb the asymptotic
stability of the equilibrium position.

Theorem 4.2 Let Assumptions 3.1, 3.2, 4.1, 4.2 be fulfilled, and the matrix P be
diagonally stable. If σ > 1, then the equilibrium position (2) of the system (7) is asymp-
totically stable for an arbitrary nonnegative delay.

The proof of the theorem is similar to that of Theorem 4.1.

5 Example

Let system (1) be of the form

q̈1(t) + bq̇1(t) + gq̇2(t)− cq3
1(t) = u1,

q̈2(t) + bq̇2(t)− gq̇1(t)− cq5
2(t) = u2.

(8)

Here q1(t), q2(t) ∈ R, b, g, c are positive constants, u1, u2 are control variables.

If u1 = u2 = 0, then the equilibrium position

q1 = q2 = q̇1 = q̇2 = 0 (9)

of the system (8) is unstable, see [17]. We are going to design a feedback control providing
the asymptotic stability of the equilibrium position.

Assume that the control law depends on q1 and q2, and is independent of q̇1 and q̇2.
Moreover, we consider the case where there exists a delay τ in the control scheme.

It should be noted that for the linear control law

u1 = a11q1(t− τ) + a12q2(t− τ), u2 = a21q1(t− τ) + a22q2(t− τ),

where a11, a12, a21, a22 are constants, the presence of delay might result in instability of
the equilibrium position. Therefore, we choose a nonlinear control in the form

u1 = −dq5
2(t− τ), u2 = dq3

1(t− τ), d = const > 0.

Verifying the conditions of Theorem 4.1, it is easy to show that if d > bc/g, then the
equilibrium position (9) of the corresponding closed-loop system is asymptotically stable
for an arbitrary constant nonnegative delay.
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6 Conclusion

In this paper, new delay-independent conditions of the asymptotic stability are found for a
class of nonlinear mechanical systems. Compared with the results of [7], these conditions
are less conservative. However, it is worth mentioning that in [7] it was assumed that
the delay may be a continuous nonnegative and bounded function of time, whereas the
results of the present paper are valid only for systems with constant delays.

It should be noted that the approach to construction of Lyapunov–Krasovskii func-
tionals proposed in the paper not only permits us to prove the asymptotic stability but
also can be used to derive estimates of the convergence rate of solutions to the equilibrium
position.
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