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Abstract: The goal of this study is twofold. The Jacobi elliptic expansion method
is used to extract new solutions for the phi-four equation and the breaking soliton
system. Special values of the Jacobi elliptic module and other involved parameters
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obtained solutions are verified and presented graphically.
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1 Introduction

Solitary waves occur due to nonlinear phenomena appearing in different fields of science
and engineering. These nonlinear phenomena are interpreted as (n + 1)-dimensional
nonlinear partial differential equations. Seeking the exact solutions to these equations
provides essential information about the physical structure of such phenomena. Since
there is no specific method that produces such solutions, researchers made all the efforts
to construct and modify methods to retrieve different kind of solutions for the same
nonlinear model. We may mention some of these well-known techniques such as: the
simplified bilinear method [11, 18, 31], sine-cosine method [4, 5], rational trigonometric
function method [6], tanh method [7], extended tanh method [12,27], Yan transformation
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method [33–35], sech-tanh method [8–10,32], exponential-function method [25], the first
integral method [2, 29], the (G′/G)-expansion method [3, 23,24], etc.

In this work, we use the Jacobi elliptic expansion method to explore further new
solutions for two physical models: the phi-four equation that reads [17]

utt − αuxx − λu+ βu2 = 0, (1)

and the breaking soliton system

ut = −αuxxy − 4α(uv)x,

uy = vx. (2)

The phi-four equation is a mathematical model that is used in nuclear and particle
physics. Many methods have been used to study the solutions of this model. In [13],
the modified simple equation method is used and tanh-coth solutions are derived. The
modified (G′/G)-expansion method is adopted in [26] and produced the same solutions as
in [13]. In [28], tan2 and cot2 solutions are obtained by using the extended direct algebraic
method. Finally, the exponential-function method is used and rational trigonometric
solutions of the phi-four equation are obtained in [14].

Different versions of the breaking soliton model are also studied by many researchers.
In [30], the mapping method is used to obtain propagating solutions. The tanh-coth
method is implemented [15] to construct solitary and soliton solutions of the breaking
soliton equations. Finally, the exponential-function method is used [16] to obtain multiple
soliton solutions of (2 + 1) and (3 + 1)-dimensional breaking soliton equations.

2 Jacobi Elliptic Sine-Cosine Expansion Method

Partial differential equations can be written as a polynomial of the unknown function
and its partial derivatives, i.e.

f(u, ut, ux, uxt, uxx...) = 0, u = u(x, t). (3)

By using the variable of the form ξ = µ(x − ct) and the chain rule, equation (3) is
transformed into

g(u,−cµu′, µu′,−cµ2u′′, µ2u′′, ...) = 0, u = u(ξ). (4)

For the Jacobi elliptic sine-cosine technique [1, 19–22], we write the solution as a power
series of order n in terms of either the Jacobi elliptic sine sn(ξ,m) or cosine cn(ξ,m).
The index m is regarded as the Jacobi module and 0 ≤ m ≤ 1, i.e.

u(ξ) =

n∑
i=0

aiY
i, (5)

where
Y = sn(ξ,m), (6)

or
Y = cn(ξ,m). (7)

Then, we determine the value of n by matching the order of Y in the highest derivative
term with its order in the other nonlinear terms of the equation. Once n is obtained, we
substitute (5) in (4) and collect the coefficients of Y i : i = 0, 1, 2, ..., n, .... Setting these
coefficients to zero and solving the resulting non algebraic system lead to identifying the
required a0, a1, ..., an, µ and c.
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3 The Phi-Four Equation

Consider the phi-four equation that reads

utt − αuxx − λu+ βu2 = 0. (8)

By the wave variable ξ = k(x− ct), equation (8) is turned into the differential equation:

k2(c2 − α)u′′ − λu+ βu2 = 0. (9)

Balancing u′′ with u2 produces the algebraic equation n+2 = 2n whose solution is n = 2.
Thus, the solution of (8) in terms of the elliptic sine function will have the form

u(ξ) = a0 + a1 sn(ξ,m) + a2 sn
2(ξ,m). (10)

Substituting (10) into (9) and collecting the coefficients of the same power of sn lead
to the nonlinear algebraic system

0 = 2a2k
2(c2 − α) + a0(a0β − λ),

0 = −a1(c2k2(1 +m2)− k2(1 +m2)α− 2a0β + λ),

0 = a21β − a2(4c2k2(1 +m2)− 4k2(1 +m2)α− 2a0β + λ),

0 = 2a1(c2k2m2 − k2m2α+ a2β),

0 = a2(6c2k2m2 − 6k2m2α+ a2β). (11)

By solving the above system for the parameters a0, a1, a2, c and k, we get

a0 =
λ

2β

(
1− 1 +m2

√
1−m2 +m4

)
,

a1 = 0,

a2 =
3m2λ

2β
√

1−m2 +m4
,

c =
1

2

√
4α− λ

k2
√

1−m2 +m4
, (12)

where k is a free parameter. Thus, our first solution to the phi-four model is

u(x, t) =
3m2λ

2β
√

1−m2 +m4
sn2(k(x− 1

2

√
4α− λ

k2
√

1−m2 +m4
t),m)

+
λ

2β

(
1− 1 +m2

√
1−m2 +m4

)
. (13)

Substituting m = 1 in (13) produces the soliton solution

u(x, t) = − λ

2β
+

3λ

2β
tanh2(k(x− 1

2
t

√
4α− λ

k2
)). (14)

Now, replacing sn in (10) by cn will lead to a second solution, which is

u(x, t) =
−3m2λ

2β
√

1−m2 +m4
cn2(k(x− 1

2

√
4α− λ

k2
√

1−m2 +m4
t),m)

+
λ

2β

(
1 +

2m2 − 1√
1−m2 +m4

)
. (15)
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Let m = 1 in (15), this produces the soliton solution

u(x, t) =
λ

β
− 3λ

2β
sech 2(k(x− 1

2
t

√
4α− λ

k2
)). (16)

Remark 1 The obtained solution given in (16) can be obtained directly from (14) by
using the identity sech 2(x) = 1− tanh2(x).

Remark 2 If we replace the free parameter k in (14) by iγ with i =
√
−1, we obtain

the singular periodic solution

u(x, t) = − λ

2β
− 3λ

2β
tan2(γ(x− 1

2
t

√
4α+

λ

γ2
)). (17)

Also, in (16), we obtain the singular periodic solution

u(x, t) =
λ

β
− 3λ

2β
sec2(γ(x− 1

2
t

√
4α+

λ

γ2
)), (18)

where the singularities occur on the line characteristics γ(x− 1
2 t
√

4α+ λ
γ2 ) = π

2 + nπ.

Proof: Use the fact that tanh(ix) = i tan(x) and sech (ix) = sec(x).
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Figure 1: The obtained solutions given in (14) and (18) respectively, when λ = α = β = k = 1.

4 (2 + 1)-Dimensional Breaking Soliton Equations

We recall the following (2+1)-dimensional breaking soliton equations

ut = −αuxxy − 4α(uv)x,

uy = vx. (19)

Substituting ξ = µx+ λy − ct into (19) yields

− cu+ αµ2λu′′ + 4αµ(uv) = 0 (20)
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and
λu′ = µv′. (21)

From (21) we get

v =
λ

µ
u. (22)

Substituting (22) in (20) yields

− cu+ 4αλu2 + αλµ2u′′ = 0. (23)

Balancing u′′ with u2 in (23) produces the algebraic equation n+ 2 = 2n whose solution
is n = 2. Thus, by the Jacobi elliptic sine expansion, the solution has the form

u(ξ) = a0 + a1 sn(ξ,m) + a2 sn
2(ξ,m). (24)

Substitute (24) into (23) to get the following algebraic system

0 = −a0c+ 4a20αλ+ 2a2αλµ
2,

0 = −a1(c+ αλ(−8a0 + (1 +m2)µ2)),

0 = 4a21αλ− a2(c+ 4αλ(−2a0 + (1 +m2)µ2)),

0 = 2a1αλ(4a2 +m2µ2),

0 = 2a2αλ(2a2 + 3m2µ2). (25)

Solving the above system with respect to a0, a1, a2, µ, λ and c, we get

a0 =
1

2

(
1 +m2 ±

√
1−m2 +m4

)
µ2,

a1 = 0,

a2 =
−3

2
m2µ2,

c = ±4αλµ2
√

1−m2 +m4. (26)

Thus, the solution is

u(x, y, t) =
1

2
µ2{1 +m2 +A− 3m2sn2(µx+ λy − 4Aαλµ2t,m)},

v(x, y, t) =
1

2
λµ{1 +m2 +A− 3m2sn2(µx+ λy − 4Aαλµ2t,m)}, (27)

where A =
√

1−m2 +m4. When m = 1 in (27), we obtain

u(x, y, t) =
3

2
µ2
(
1− tanh2(µx+ λy − 4αλµ2t)

)
,

v(x, y, t) =
3

2
λµ
(
1− tanh2(µx+ λy − 4αλµ2t)

)
. (28)

Now, by the Jacobi elliptic cosine expansion, the solution has the form

u(ξ) = a0 + a1 cn(ξ,m) + a2 cn
2(ξ,m) (29)
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Substituting (29) into (23) and solving the resulting algebraic system, we arrive at

u(x, y, t) =
1

4
µ2{1− 2m2 −m4 +B + 2(m2 + 2m4) cn2(µx+ λy − 2Bαλµ2t,m)},

v(x, y, t) =
1

4
λµ{1− 2m2 −m4 +B + 2(m2 + 2m4) cn2(µx+ λy − 2Bαλµ2t,m)},

(30)

where B =
√

1 + 6m4 − 4m6 +m8 and λ, µ are free variables. When m = 1, the solution
is

u(x, y, t) =
3

2
µ2 sech 2(µx+ λy − 4αλµ2t),

v(x, y, t) =
3

2
λµ sech 2(µx+ λy − 4αλµ2t). (31)

Remark 3 If we replace λ by θλ1 and µ by θµ1 and θ by iθ1 in both (28) and (31),
where i =

√
−1, two singular periodic solutions are obtained

u(x, y, t) = −3

2
θ21µ

2
1

(
1 + tan2(θ1(µ1x+ λ1y + θ214αλ1µ

2
1t))

)
,

v(x, y, t) = −3

2
θ21λ1µ1

(
1 + tan2(θ1(µ1x+ λ1y + θ214αλ1µ

2
1t))

)
(32)

and

u(x, y, t) = −3

2
θ21µ

2
1 sec2(θ1(µ1x+ λ1y + θ214αλ1µ

2
1t)),

v(x, y, t) = −3

2
θ21λ1µ1 sec2(θ1(µ1x+ λ1y + θ214αλ1µ

2
1t)). (33)

The singularities of the last two solutions occur on the plane characteristics θ1(µ1x +
λ1y + θ214αλ1µ

2
1t) = π

2 + nπ.

5 Conclusion

In this paper, we used the Jacobi elliptic sine-cosine expansion method to study the solu-
tions of two physical models, the phi-four equation and the (2 + 1)-dimensional breaking
soliton system. Special values of the Jacobi elliptic module and the free parameters lead
us to different types of solutions to these models such as soliton, singular-soliton and
periodic solution. This work reveals that the proposed method is a reliable technique
that provides different types of solutions and is relatively easy when applied to nonlinear
equations.
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