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Abstract: Vulnerability is an important concept in network analysis. When a failure
occurs in some of the components of the network, vulnerability measures the ability
of the network to disruption in order to avoid the external or internal effects. Graph
theory is an important concept in network vulnerability analysis. If a network is
modeled as an undirected and unweighted graph composed of processing vertices
and communication links, there have been several proposals for measuring graph
vulnerability under link or vertex failures. In this paper, we consider the concept
of average edge betweenness of a graph in order to measure the network stability.
The average edge betweenness is related to the edge betweenness of an edge. The
edge betweenness of a given edge is the fraction of shortest paths, counted over all
pairs of vertices that pass through that edge. The average edge betweenness considers
both the local and the global structure of the graph. In this paper, we obtain exact
values for average edge betweenness and normalized average edge betweenness for
some special graphs and Et

p graph.

Keywords: network vulnerability; network design and communication; stability; av-
erage edge betweenness.
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1 Introduction

Many complex systems in the real world can be conceptually described as networks, where
vertices represent the system constituents and edges depict the interaction between them,
such as social networks (collaboration network), technological networks (communication
networks, the Internet), information networks (the World Wide Web), biological networks
(protein-protein interaction networks, neural networks) and etc. [10,11] . A central issue
in the analysis of complex networks is the assessment of their stability and vulnerability.
Vulnerability is an important concept in network analysis related with the ability of
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the network to avoid intentional attacks or disruption when a failure is produced in
some of its components. Often enough, the network is modeled as an undirected and
unweighted graph. Different measures for graph vulnerability have been introduced so far
to study different aspects of the graph behavior after removal of vertices or links such as
connectivity, toughness, scattering number, integrity, residual closeness and exponential
domination number [1, 4, 9, 12–15].

As an important parameter in the study of networks associated with complex systems
in both modeling and measuring the reliability, the graph-theoretical concept of vertex
betweenness was first proposed by Freeman [7] in 1977. Then, Girvan and Newman
in [8] generalize this definition to edges and introduce the edge betweenness of an edge
as the fraction of shortest paths between pairs of vertices that run along it. The edge
betweenness of a given edge is the fraction of shortest paths, counted over all pairs of
vertices that pass through that edge. This measure considers both the local and the global
structure of the graph. Since average edge betweenness gives information on which edge
carries the most of the network vulnerability, it is important to determine the average
edge betweenness of several graph classes.

In this paper, we consider simple finite undirected graphs without loops and multiple
edges. Let G = (V,E) be a graph with a vertex set V = V (G) and an edge set E = E (G).
The complement G of a graph G is the graph with a vertex set V (G) such that two vertices
are adjacent in G if and only if these vertices are not adjacent in G. A vertex dominating
set for a graph G is a set S of vertices such that every vertex G belongs to S or is adjacent
to a vertex of S. The minimum cardinality of a vertex dominating set in a graph G is
called the vertex dominating number of G and is denoted by γ(G). The distance d (u, v)
between two vertices u and v in G is the length of the shortest path between them. If u
and v are not connected, then d (u, v) =∞, and for u = v, d (u, v) = 0. In addition, the
distance between the vertices u and v in G can be denoted by d (u, v |G ). The diameter
of G, denoted by diam (G), is the largest distance between two vertices in V (G) [2].

The paper proceeds as follows. In Section 2, definitions and known results for average
edge betweenness and normalized average edge betweenness are given. In Sections 3 and
4, average edge betweenness and normalized average edge betweenness of some special
graphs are respectively determined and exact values are given. Conclusions are addressed
in Section 5.

2 Average Edge Betweenness and Normalized Average Edge Betweenness

In this paper, we consider a simple finite undirected graph that has no self-loops and
possesses no more than one edge between any two different vertices. Let G = (V,E) be
a graph with a vertex set V = V (G) and an edge set E = E (G).

Average edge betweenness of the graph G is defined as b(G) = 1
|E|

∑
e∈E

be, where |E|

is the number of the edges, and be is the edge betweenness of the edge e, defined as
be =

∑
i 6=j

be(i, j), where be(i, j) = nij(e)/nij , nij(e) is the number of geodesics (shortest

paths) from vertex i to vertex j that contain the edge e, and nij is the total number of
shortest paths [3, 5].

Let us compare two graphs G1 and G2. If b (G1) < b (G2), then G1is more stable than
G2. Since for a graph with a fixed number of vertices b(G) decreases as the number of
edges in the graph increases, it can be said that they represent how “well connected”the
graph is. The higher the values of b(G), the more vulnerable G is to the loss of edges. We
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consider the concept of average edge betweenness of a graph because when computing
b(G), we can gather information on which edge carries the most of the graph vulnerability.

A complete graph is a simple graph in which every pair of distinct vertices is connected
by an edge. The complete graph with n vertices has n(n − 1)/2 edges. For a complete
graph, we have b (Gcomplete) = 1. A path graph is a particularly simple example of a
tree, which is not branched at all, that is, it contains only vertices of degree two and one.
In particular, two of its vertices have degree 1 and all others (if any) have degree 2. For
a path graph with n vertices, |E| = n− 1, and therefore: b (Gpath) = n (n+ 1) /6.
It is easy to see that b (Gcomplete) ≤ b (G) ≤ b (Gpath). As a consequence, we can define
the normalized average edge betweenness of a graph G

bnor(G) =
b(G) − b(Gcomplete)

b(Gpath) − b(Gcomplete)
= (b(G) − 1)/(n(n+ 1)/6− 1 ).

Clearly 0 ≤ bnor (G) ≤ 1; if the normalized average edge betweenness is close to 0, it
means that the network is more robust, when it is close to 1, then the graph is more
vulnerable.

The following lemma provides some basic properties for the betweenness related pa-
rameters. Let us recall that for a graph G, be is the betweenness of edge e, b(G) is the
average edge betweenness of G.

Example 2.1 Let us find the edge betweenness value of each edge of the graph G
with sixvertices and sevenedges given in Fig. 1. Let us find the average edge betweenness
value of the graph G.

Figure 1: The graph G with sixvertices and sevenedges.

In Table 1, the shortest paths between all pairs of vertices of the graph G are found.
According to these shortest paths, the edge betweenness values of each edge are calcu-
lated. Next, the normalization process is performed by finding the average edge between-
ness value of the graph G.

As can be seen in line SUM of Table 1, the edge betweenness values of the edges
e1, e2, e3, e4, e5, e6 and e7 are found to be 5, 5, 5, 3, 2, 3 and 2, respectively. Here, the
highest edge betweenness value is 5. This shows that the edges e1, e2 and e3 are the most
important positions in the graph. According to Table 1, the lowest value is 2. The edges
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pairs of vertices the shortest paths e1 e2 e3 e4 e5 e6 e7
a,b e3 0 0 1 0 0 0 0
a,c e6 0 0 0 0 0 1 0
a,d e7 0 0 0 0 0 0 1
a,e e3e2 0 1 1 0 0 0 0
a,f e1 1 0 0 0 0 0 0
b,c e3e6, e4e5 0 0 1/2 1/2 1/2 1/2 0
b,d e4 0 0 0 1 0 0 0
b,e e2 0 1 0 0 0 0 0
b,f e3e1 1 0 1 0 0 0 0
c,d e5 0 0 0 0 1 0 0
c,e e6e3e2, e5e4e2 0 2/2 1/2 1/2 1/2 1/2 0
c,f e6e1 1 0 0 0 0 1 0
d,e e4e2 0 1 0 1 0 0 0
d,f e7e1 1 0 0 0 0 0 1
e,f e2e3e1 1 1 1 0 0 0 0

SUM 5 5 5 3 2 3 2

Table 1: The edge betweenness values of the edges and the average edge betweenness value of
the graph G.

e5 and e7 have this value. This fact shows that these edges play a more passive role than
other edges of the graph. By using these values, the average edge betweenness value of
G is obtained as

b(G) =
1

7

7∑
i=1

bei =
25

7
= 3, 57.

For n = 6, the normalized average edge betweenness value of the G graph is as follows:

bnor(G) =
b(G)− 1
n(n+1)

6 − 1
=

25
7 − 1
42
6 − 1

=
18

42
= 0, 4.

Lemma 2.1 [5] Let G be a connected graph and let e ∈ E be an edge with end
vertices i, j ∈ V , then

1. be(i, j) = 1 = be(j, i).

2. 2 ≤ be ≤ n2/2 if n is even and 2 ≤ be ≤ (n− 1)
2
/2 if n is odd.

3. be = 2(n− 1) if one of the end vertices of e has degree 1.

Lemma 2.2 [5] Let G be a graph of order n, then

1. If e is an edge-bridge of the graph G connecting G1 with G\G1, where |V (G1)| = n1,
then be = 2n1(n− n1).

2. If C is a cut-set of edges of the graph G connecting two sets of vertices X and
V (G) \X and

|X| = nx , then
∑

e∈C
be = 2nx(n− nx) .
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Theorem 2.1 Let G be the complement graph of G. Then, if G has n vertices and
m edges with domination number γ (G) > 2, then the average edge betweenness of G is

b(G) = (n(n− 1) + 2m)/(n(n− 1)− 2m).

Proof. Let i and j be the vertices of G and e be any edge of G. We have two cases
according to d (i, j):

Case 1. If d (i, j) > 1 is in G graph, then d (i, j) =1 is in G. Therefore, there are
(n(n− 1)/2 −m) paths with length 1 in G. Thus, for all vertex pairs i and j, the
summation of the values of edge betweenness of e is∑

i 6=j

be(i, j) = (n(n− 1)/2 −m) .

Case 2. If d (i, j) = 1 is in G graph, then d (i, j) > 1 is in G. Let t be the number of
vertices which are not adjacent to vertices i and j. Since γ (G) > 2, it is clear that
t ≥ 1. Thus, there are t paths with length 2 in G. Hence, for all vertex pairs i and
j , the summation of the values of edge betweenness of e is∑

i 6=j

be(i, j) = t (1/t ) 2m = 2m.

By summing up Cases 1 and 2, we obtain∑
e∈E

be = (n(n− 1)/2 −m) + 2m = n(n− 1)/2 +m.

As a consequence, the average edge betweenness of G is

b(G) = 1/(n(n− 1)/2 −m) (n(n− 1)/2 +m) = (n(n− 1) + 2m)/(n(n− 1)− 2m).

The proof is completed. 2

3 The Average Edge Betweenness of Some Special Graphs

In this section, we give some results on average edge betweennesses of some special graphs.
These graphs are: Cn is a cycle graph, S1,n is a star graph, W1,n is a wheel graph, and
Km,n is a complete bipartite graph. Finally we give average edge betweenness of Et

p

graph.

Lemma 3.1 Label the vertices of Cn as 1, 2, 3, . . . , n and the edges of Cn as
e1, e2, e3, . . . , en, respectively. Let dij(ek) be the distance between i and j including
the edge ek. nij(ek) is the number of paths which include the edge ek with length
dij(ek) (1 ≤ i, j, k ≤ n and i 6= j). The relation between dij(ek) and nij(ek)in graph
Cn is the following

If dij(ek) = 1, then nij(ek) = 1 (1)

If dij(ek) = 2, then nij(ek) = 2 (2)

If dij(ek) = 3, then nij(ek) = 3 (3)

... (4)

If dij(ek) = (n− 1)/2, then nij(ek) = (n− 1)/2 . (5)

(6)
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Theorem 3.1 If Cn is a cycle graph, then the average edge betweenness for the cycle
graph Cn with n vertices is

b(Cn) =

{
(n2 − 1)/8 , n is odd
n2/8 , n is even.

Proof. There exist two cases according to n:

Case 1. If n is odd, then nij = 1 for ∀i, j (1 ≤ i, j, k ≤ n and i 6= j), we get bek =∑
i 6=j

nij(ek)
nij

=
∑
i6=j

nij(ek) . From Lemma 3.1 and dij(ek) ≤ diam(Cn) = (n− 1)/2 ,

we obtain bek =
∑
i 6= j

nij (ek) = 1 + 2 + 3 + . . .+ ((n− 1)/2 ) = (n2 − 1)/8. By the

definition of the average edge betweenness of a graph,

b(Cn) =
1

|E|

(
n∑

i=1

bei

)
= (n2 − 1)/8.

Case 2. If n is even, then we have two subcases for dij(ek).

Subcase 1. If dij(ek) < diam(Cn) = n/2, then nij = 1 for
∀i, j (1 ≤ i, j, k ≤ n and i 6= j). In this case we proceed in a similar way
as in Case 1 and

bek(i, j) = 1 + 2 + 3 + . . .+ [(n/2)− 1] =
(
n2 − 2n

)
/8

is obtained.

Subcase 2. If dij(ek) = diam(Cn) = n/2, then nij(ek) = n/2 and nij = 2 for
∀i, j (1 ≤ i, j, k ≤ n and i 6= j), we get

bek (i, j) =
∑
i 6= j

nij(e)/nij = (n/2) (1/2) = n/4.

By Subcase 1 and Subcase 2, it is clear that

bek = (n2 − 2n)/8 + n/4 = n2/8 (∀k = 1, n).

Consequently, we obtain the average edge betweenness of Cn

b(Cn) =
1

|E|

n∑
i=1

bei = n2/8.

Thus, the proof is completed. 2

Theorem 3.2 If S1,n is a star graph, then the average edge betweenness for the star
graph S1,n with n+ 1 vertices is b(S1,n) = n.

Proof. The vertices of S1,n are of two kinds: one vertex of degree n and n vertices
of degree one. The vertices of degree one will be referred to as the minor vertices and
the vertex of degree n as the center vertex. Label the minor vertices as 1, 2, 3, . . . , n, the
center vertex as c, and the edges of S1,n as ei (i = 1, n). We have two cases in order to
find the shortest paths.
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Case 1. The shortest path between central vertex c and any minor vertex i:
There is only one path ei in this case. By the definition of the edge betweenness,
we obtain the value of the edge ei (i = 1, n )

bei (c, i) = 1.

Case 2. The shortest path between any two different minor vertices:
There is only one path eiej between the minor vertices i and j (1 ≤ i, j ≤ n). By
using Lemma 2.1, for ∀i, j , we get nij = nji = 1 and nij(ek) = 1 (k = i ∨ j). Thus,
we have bek (i, j) = 1/1 = 1. There are n− 1 different pairs of vertices that include
ek. Hence, the value of the edge betweenness of ek

bek (i, j) = (n− 1) 1 = n− 1.

By summing up Cases 1 and 2, we clearly see that

bei = 1 + n− 1 = n.

Consequently, the average edge betweenness of S1,n is

b(S1,n) =
1

|E|

(
n∑

i=1

bei

)
= n.

Thus, the proof is completed. 2

Theorem 3.3 If W1,n is a wheel graph, then the average edge betweenness for the
wheel graph W1,n (n ≥ 5) with n+ 1 vertices is b(W1,n) = (n− 1)/2.

Proof. The vertices of W1,n are of two kinds: n vertices which are of degree 3 will
be referred to as the minor vertices and the vertex of degree n will be referred to as the
central vertex. Label the minor vertices as 1, 2, 3, . . . , n , the central vertex as c, the
edges between the central vertex and the minor vertices as ec i (i = 1, n) and the other
remaining edges as ei (i = 1, n). There exist two cases for the shortest paths between
the pairs of vertices.

Case 1. If the pair of vertices includes the central vertex and the minor vertices:
There exists only one path eci between those vertices that has the length d(c, i)=1.
It is clear that for the path eci, we have nci = 1 and nci(eci) = 1. Hence, the value
of the edge betweenness of eci

beci (c, i) = 1.

Case 2. If the pair of vertices includes any two different minor vertices i and j:
We have three subcases for these minor vertices according to the length of the
shortest path between the vertices:

Subcase 1. If d(i, j) = 1, then there is only one path ek (k = i ∨ j) between i and
j. It is clear that for this path ek, we have nij = 1 and nij(ek) = 1. Hence,
the value of the edge betweenness of ek

bek (i, j) = 1.
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Subcase 2. If d(i, j) = 2, then there are two paths: the paths eiej and ec iec j
between the vertices i and j. The lengths of the paths between the vertices i
and j including the edges ek and eck (k = i ∨ j) are dij(ek) = 2 and dij(eck) =
2 , respectively. By Lemma 3.1, nij(ek) = 2, nij(eck) = 2 and nij = 2. Thus
we have

bek (i, j) = 2/2 = 1, beck (i, j) = 2/2 = 1.

Subcase 3. If d(i, j) > 2, then there is only one path between the vertices i and
j with length 2, that is ec iec j . It is clear that for this path ec iec j , we have
nij = 1 and nij(eck) = 1 (k = i ∨ j). Hence,

beck (i, j) = 1.

In this way, since there are n− 5 different pairs of vertices that include the edge eck,
the value of the edge betweenness of eck is

beck (i, j) = 1(n− 5) = n− 5.

By summing up Subcases 1 and 2, we get the value of the edge betweenness of ek as

bek = 1 + 1 = 2.

By summing up Case 1 and Subcases 2 and 3, we get the value of the edge betweenness
of eck as

beck = 1 + 1 + n− 5 = n− 3.

Consequently, the average edge betweenness of W1,n is

b(W1,n) =
1

|E|

(
n∑

i=1

bei +

n∑
i=1

beci

)
= (n− 1)/2.

Thus, the proof is completed. 2

Theorem 3.4 If Km,n is a complete bipartite graph, then the average edge be-
tweenness for the complete bipartite graph Km,n with m + n vertices is b (Km,n) =
(m2 + n2 − (m+ n))/mn+ 1.

Proof. Let G = Km,n, where S1 and S2 are the partite sets of G with cardinality
m and n respectively. The set of edges of Km,n is E = {epk | p ∈ S1 and k ∈ S2 } and
|E| = mn. We have 3 cases in order to find the shortest paths according to the vertices
being either in S1 or in S2 . Let i and j be the vertices of Km,n.

Case 1. If i ∈ S1 and j ∈ S2, then there is only one path eij between the vertices i and
j. Therefore, it is straightforward that nij = 1 and nij(eij) = 1. Thus

beij (i, j) = 1.

Case 2. If i, j ∈ S1, then there are n paths eikejk with length 2 between the vertices i
and j (k ∈ S2). Clearly, nij = n, nij(epk) = 1 (p = i ∨ j). Hence,

bepk (i, j) = 1/n.

There are m − 1 different pairs of vertices that include epk, the value of the edge
betweenness of epk is

bepk (i, j) = (m− 1)/n.
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Case 3. If i, j ∈ S2, then there are m paths eikejk with length 2 between the vertices
i and j (k ∈ S1). This case is similar to Case 2, and for n − 1 different pairs of
vertices that include epk, the value of the edge betweenness of epk is

bepk (i, j) = (n− 1)/m.

By summing up Cases 1, 2 and 3, we get the value of the edge betweenness of epk as

bepk = (m2 + n2 − (m+ n))/mn+ 1.

Consequently, the average edge betweenness of Km,n is

b(Km,n) =
1

|E|

m∑
p=1

n∑
k=1

bepk = (m2 + n2 − (m+ n))/mn+ 1.

Hence the desired result holds. 2

Definition 3.1 [6] The graph Et
p has t legs and each leg has p vertices (Figure 2).

Thus Et
p has pt+ 2 vertices and pt+ 1 edges.

Figure 2: Et
p graph with pt + 2 vertices.

Theorem 3.5 Let t and p be integers (t ≥ 2, p ≥ 2). The average edge betweenness
of graph Et

p is

b(Et
p) = [(pt (p+ 1)) /6 (pt+ 1)] [3pt− 2p+ 5] + 1.

Proof. Label the vertex with degree t+ 1 as v, the neighbor of v with degree 1 as u,
the vertices of jth leg as (i, j) ( i = 1, p and j = 1, t ), the edge between the vertices u
and v as e, the edge between the vertices v and (i, j) as bridge eij , where i = 1, and the
edges of jth leg as eij respectively (i = 2, p and j = 1, t).

This labeling is shown in Figure 3. Since Et
p is a tree, there is only one path between

any pairs of vertices. Clearly, nij = 1 and be =
∑
i 6=j

(nij(e)/nij) =
∑
i 6=j

nij(e) (i = 1, p, j =

1, t). We have four cases for the vertex pairs of Et
p.

Case 1. Consider the shortest paths between the vertex u and the other vertices. There
exist (pt+ 1) paths. Each of these paths includes the edge e. The value of the edge
betweenness of this edge e is

be = be(u, (i, j)) + be(u, v) = pt+ 1.
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Figure 3: The labeling of vertices and edges of Et
p graph.

Each of these paths also includes the edge eij . The edge eij , that is at distance i
to the vertex v, is on p+ 1− i different paths. The value of the edge betweenness
of this edge eij that is between the vertices u and (k,m) (k = 1, p and m = 1, t) is

beij (u, (k,m)) = p+ 1− i.

Case 2. Consider the shortest paths between the vertex v and the other vertices on
the legs. Each of these paths includes only the edge eij . The value of the edge
betweenness of this edge eij that is between the vertices v and (k,m) (k = 1, p and
m = 1, t) is

beij (v, (k,m)) = p+ 1− i.

Case 3. Consider the shortest paths between the vertices of any leg. The initial vertex
is (1, j) and the last vertex is (p, j) (j = 1, t) on a leg. Thus we have t paths with
p vertices, that is Pp. Those paths include the edge eij . The value of the edge
betweenness of this edge eij equals the number of the left-hand side vertices of eij
multiplied by the number of the right-hand side vertices of eij . If the edge eij is
between the vertices (k,m) and (k′,m) (k, k′ = 1, p and m = 1, t), then we have

beij ((k,m) , (k′,m)) = (i− 1) (p+ 1− i) .

Case 4. Consider the shortest paths between the vertices of any leg and the vertices of
the other legs. This case is similar to Case 3. If the edge eij is between the vertices
(k,m) and (i, j) (k = 1, p and m = 1, t), then we get

beij ((k,m) , (i, j)) = [p (t− 1)] (p+ 1− i) .

By summing up Cases 1, 2, 3, and 4, we obtain

beij = (p+ 1) (p (t− 1) + 1) + i (p (2− t))− i2.

The summation for all the edges eij of the graph is

p∑
i=1

t∑
j=1

beij = (pt/6)
[
3p2t+ 3pt+ 3p− 2p2 + 5

]
.
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Consequently, the average edge betweenness of Et
p graph is

b(Et
p) = [ 1/ (1 + pt) ]

[
(pt+ 1) + (pt/6)

(
3p2t+ 3pt+ 3p− 2p2 + 5

) ]
b(Et

p) = [(pt (p+ 1)) /6 (pt+ 1)] [3pt− 2p+ 5] + 1.

Thus the proof is completed. 2

4 The Normalized Average Edge Betweenness of Some Special Graphs

In this section, we give the normalized average edge betweennesses of some special graphs
whose average edge betweennesses values are calculated in Section 3.

1. bnor(Cn) =

{
[3(n− 3)]/[4(n− 2)], n is odd[
3(n2 − 8)

]
/
[
4(n2 + n− 6)

]
, n is even.

2. bnor(W1,n) = (3n− 9)/(n2 + 3n− 4).

3. bnor(S1,n) = 6/(n+ 4).

4. Km,n and p = m+ n, bnor(Km,n) =
[
6(m2 + n2 − p)

]
/
[
mn(p2 + p− 6)

]
.

5. bnor(Et
p) =

[
3p2t− 2p2 + p+ 6pt+ 13

]
/ [pt+ 5]− [2p− 5] / [pt(pt+ 5)].

6. G is a complement graph of G with γ (G) > 2,

bnor(G) = 24m/
[
(n2 − n− 2m)(n2 + n− 6)

]
.

5 Conclusion

In this paper, we evaluate the average edge betweenness and the normalized average edge
betweenness of some special graphs and Et

p graph. The average edge betweenness is a
new characteristic for graph vulnerability introduced in [8]. Calculation of average edge
betweenness for simple graph types is important because we can gather information on
which edge is the most vulnerable. The average edge betweenness of a given edge is the
fraction of shortest paths, counted over all pairs of vertices that pass through that edge.
This measure considers both the local and the global structure of the graph.
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[12] Aytaç, A. and Atay, B. On exponential domination of some graphs. Nonlinear Dyn. Syst.
Theory 16 (1) (2016) 12–19.
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