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Abstract: In this paper, based on Lyapunov stability theory, the coexistence of full
state hybrid projective synchronization (FSHPS), Φ−Θ synchronization, generalized
synchronization (GS) and Q-S synchronization between different dimensional chaotic
systems is studied. An application example and numerical simulations are presented
to validate the main results of this paper.
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1 Introduction

Over the last few decades, a great deal of attention has been paid to the subject of
chaotic dynamical systems and their synchronization control. Synchronization is an
adaptive process that works to force the variables of a chaotic slave system to follow
those of a corresponding master system [1]. This considerable interest has resulted in
many synchronization types and schemes, see [2–5]. Among the most effective types
of synchronization for chaotic and hyperchaotic systems are the full state hybrid projec-
tive synchronization (FSHPS) [6], Φ-Θ synchronization [7,8], generalized synchronization
(GS) [9] and Q-S synchronization [10]. As a natural consequence of defining a variety

∗ Corresponding author: mailto:ouannas.a@yahoo.com

c© 2018 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua253

mailto: ouannas.a@yahoo.com
http://e-ndst.kiev.ua


254 S. BOUDIAR, A. OUANNAS, S. BENDOUKHA, AND A. ZARAI

of synchronization types, it became apparent that multiple types could coexist simulta-
neously, e.g. [11–13], a property that is of particular importance in the fields of secure
communications and chaotic encryption schemes.

In this paper, we are concerned with the coexistence of the four types of synchro-
nization mentioned above, i.e. FSHPS, Φ–Θ, GS and Q-S, in four dimensions between
a three–dimensional chaotic master system and a four–dimensional hyperchaotic slave
system. For this, we employ nonlinear control methods and make use of the well known
direct Lyapunov method for establishing the global asymptotic convergence of synchro-
nization errors towards zero. The resulting conditions are simple and their verification
is trivial. Also, in order to put the reader’s mind at ease and confirm the results of our
study, we consider a numerical example, whereby the coexistence of FSHPS, Φ–Θ, GS
and Q-S is illustrated for some typical chaotic and hyperchaotic systems. In Section 2
of this paper, the problem formulation and main result are given. Section 3 presents
the numerical application of the proposed coexistence result with the aim of demonstrat-
ing the effectiveness of the approach developed herein. Section 4 summarizes the work
reported in this paper.

2 Problem Formulation and Main Result

We consider the following master and slave systems

ẋi(t) = fi(X(t)), i = 1, 2, 3, (1)

ẏi(t) =
∑4
j=1 bijyj(t) + gi(Y (t)) + ui, i = 1, 2, 3, 4, (2)

where X(t) = (xi)1≤i≤3 and Y (t) = (yi)1≤i≤4 are the states of the master and the slave

systems, respectively, fi : R3 → R, i = 1, 2, 3, (bij)4×4 ∈ R4×4, gi : R4 → R, i = 1, 2, 3, 4,

are nonlinear functions, and U = (u1, u2, u3, u4)
T

is a vector–valued controller. The
problem of coexistence of FSHPS, Θ − Φ synchronization, GS and Q-S synchronization
between master system (1) and slave system (2) is to find controllers ui, i = 1, 2, 3, 4,
such that the errors

e1(t) = y1(t)− Λ×X(t), (3)

e2(t) = Θ× Y (t)− Φ×X(t),

e3(t) = y3(t)− φ (X(t)) ,

e4(t) = Q (Y (t))− S (X(t))

satisfy
lim
t→∞

ei(t) = 0, i = 1, 2, 3, 4,

where Λ = (Λi)1≤i≤3, Θ = (Θi)1≤i≤4, Φ = (Φi)1≤i≤4 are constant matrices and φ : R3 →
R, Q : R4 → R, S : R3 → R are differentiable functions. Here e1 stands for the FSHPS
error, e2 stands for the Θ− Φ synchronization error, e3 denotes the GS error, and e4 is
the Q-S synchronization error.

Theorem 2.1 FSHPS, Φ−Θ synchronization, GS and Q-S synchronization coexist
between master system (1) and slave system (2) under the following conditions:

(i) M =


1 0 0 0

Θ1 Θ2 Θ3 Θ4

0 0 1 0
∂Q
∂y1

∂Q
∂y2

∂Q
∂y3

∂Q
∂y4

 is an invertible matrix and M−1 is its inverse.
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(ii) U = M−1 ((B − C) e (t)−R) , where C ∈ R4×4 is a control matrix and

R =


∑4
j=1 b1jyj + g1 −

∑3
j=1 Λjfj∑4

i=1 Θi

(∑4
j=1 bijyj + gi

)
−
∑3
j=1 Φjfj∑4

j=1 b3jyj + g3 −
∑3
j=1

∂φ
∂xj

fj∑4
i=1

∂Q
∂yi

(∑4
j=1 bijyj + gi

)
−
∑3
j=1

∂S
∂xj

fj

 .

(iii) (B − C) + (B − C)
T

is a negative definite matrix, where B = (bij)4×4 .

Proof. The error system (3) can be differentiated as follows:

ė1(t) =

4∑
j=1

b1jyj + g1 + u1 −
3∑
j=1

Λjfj , (4)

ė2(t) =

4∑
i=1

Θi

 4∑
j=1

bijyj + gi

+

4∑
j=1

Θjuj −
3∑
j=1

Φjfj ,

ė3(t) =

4∑
j=1

b3jyj + g3 + u3 −
3∑
j=1

∂φ

∂xj
fj ,

ė4(t) =

4∑
i=1

∂Q

∂yi

 4∑
j=1

bijyj + gi

+

4∑
j=1

∂Q

∂yj
uj −

3∑
j=1

∂S

∂xj
fj .

The error system (4) can be written in the following compact form

ė (t) = M × U +R. (5)

By substituting the control law (ii) into equation (5), the error system can be written as

ė(t) = (B − C) e(t). (6)

Construct the candidate Lyapunov function in the form: V (e(t)) = eT (t)e(t), we
obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)
= eT (t)(B − C)T e(t) + eT (t) (B − C) e (t)
= eT (t)

[
(B − C)T + (B − C)

]
e(t).

From (iii), we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability theory, the zero
solution of the error system (6) is globally asymptotically stable and, therefore, systems
(1) and (2) are globally synchronized.

3 Numerical Application

In this example, the master system is chosen as the following 3D system

ẋ1 = a1 (x2 − x1) , (7)

ẋ2 = x1x3,

ẋ3 = 50− a2x21 − a3x3.
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When a1 = 2.9, a2 = 0.7 and a3 = 0.6, system (7) exhibits chaotic attractors [14]. The
salve system is described by

ẏ1 = α (y2 − y1) + γy4 + u1, (8)

ẏ2 = −y1y3 − y2 + γy4 + u2,

ẏ3 = y1y2 − y3 − β + u3,

ẏ4 = −δ (y1 + y2) + u4.

The uncontrolled system (8) (i.e. with u1 = u2 = u3 = u4 = 0) exhibits strange
hyperchaotic attractors for the parameter values α = 4, β = 20, γ = 0.2 and δ = 0.5 [15].
The linear part B and nonlinear part g of the slave system (8) can be formulated as

B =


−4 4 0 0.2
0 −1 0 0.2
0 0 −1 0
−0.5 −0.5 0 0

 and g =


0

−y1y3
y1y2 − β

0

 .

According to our approach, the error system between systems (7) and (8) is described
by

e1 = y1 − Λ× (x1, x2, x3)
T
, (9)

e2 = Θ× (y1, y2, y3, y4)
T − Φ× (x1, x2, x3)

T
,

e3 = y4 − φ (x1, x2, x3) ,

e4 = Q (y1, y2, y3, y4)− S (x1, x2, x3) ,

where Λ = (−1, 0, 2) , Θ = (0, 2, 0, 0) , Φ = (1, 2, 3) , φ (x1, x2, x3) = x1x2 +
x3, Q (y1, y2, y3, y4) = 1 + 3y4 and S (x1, x2, x3) = x1x2x3. Based on the notations
used in Section 2, the matrix M is given by

M =


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 3

 , (10)

and thus

M−1 =


1 0 0 0
0 1

2 0 0
0 0 1 0
0 0 0 1

3

 . (11)

Then, the control matrix C can be selected as

C =


0 4 0 0.2
0 2 0 0.2
0 0 1 0
−0.5 −0.5 0 1

 . (12)

Using matrices (10), (11) and (12) we can easily construct the control law (ii) de-

scribed in Theorem 1. We can see that (B − C)+(B − C)
T

is a negative–definite matrix
and all conditions of Theorem 1 are satisfied. Therefore, systems (7) and (8) are globally
synchronized in 4-D. The time evolution of errors between systems (7) and (8) is shown
in Figure 1.
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Figure 1: Time evolution of the synchronization errors e1,e2, e3 and e4 between the master
system (7) and the slave system (8).

4 Conclusion

A new synchronization scheme has been used to achieve coexistence of several types of
synchronization between an arbitrary 3-dimensional master and a 4-dimensional slave
system. By using Lyapunov stability theory, the paper analysed the coexistence of full
state hybrid projective synchronization (FSHPS), Φ − Θ synchronization, generalized
synchronization (GS) and Q-S synchronization based on the control of the linear part of
the master system. The numerical example detailed in the previous section confirms the
effectiveness of the theoretical analysis.
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