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Abstract: In this paper, we first present a new numerical method for solving two-
dimensional integral equations of fractional order. The method is based upon two-
dimensional shifted Legendre polynomials. Then we construct an operational matrix
for two-dimensional fractional integral. Also, we give the error analysis. Finally, three
examples are shown to confirm the theoretical results.
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1 Introduction

In this paper, we present a numerical method for the solution of two-dimensional Volterra
integral equations of fractional order in the form

f(x, y)− 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1k(x, y, s, t)f(s, t) dtds = g(x, y),

(r1, r2) ∈ (0,∞)× (0,∞), f ∈ L1(Ω),Ω := [0, l1]× [0, l2]. (1)

In [1–3] the authors mentioned that equation (1) is a solution for a class of impul-
sive partial hyperbolic differential equations involving the Caputo fractional derivative.
Therefore, researchers are interested in solving this kind of equations. In recent years,
several numerical methods for solving two-dimensional integral equations of fractional
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order have been presented in the literature. Najafalizadeh and Ezzati in [4] used a two-
dimensional block pulse operational matrix to solve two-dimensional nonlinear integral
equations of fractional order. In [5], two-dimensional orthogonal triangular functions
were used for solving two-dimensional integral nonlinear equations of fractional order.
In [6], we see that the operational matrix of two-dimensional Bernstein polynomials is
used for two-dimensional integral equations of fractional order. Here, we would like to
use two-dimensional shifted Legendre polynomials for solving two-dimensional integral
equations of fractional order. Firstly, we present some preliminaries in fractional cal-
culus. In Section 3, we review some general concepts concerning one-dimensional and
two-dimensional shifted Legendre polynomials, and derive an operational matrix of two-
dimensional shifted Legendre polynomials for two-dimensional integration of fractional
order. Section 4 is devoted to solving two-dimensional nonlinear fractional integral equa-
tions by applying the operational matrix of integration of fractional order. Section 5
represents an error estimation for the presented method. In Section 6, we show accuracy
and efficiency of this method through several examples. Finally, a conclusion is given in
Section 7.

2 Brief Review of Fractional Calculus

In this section, we present a short introduction of the fractional calculus which will be
used in this paper.

Definition 2.1 [7]. The Riemann-Liouville fractional integral operator Iα of order α ≥ 0
is defined as

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)(α−1)f(t) dt , α > 0, (2)

where x > 0 and Γ(.) is the Euler gamma function.

The Riemann-Liouville integral satisfies the following properties:

• IαIβf(x) = Iα+βf(x),

• Iαxβ = Γ(β+1)
Γ(α+1+β)x

α+β .

Definition 2.2 [8]. The left-sided mixed Riemann-Liouville integral of order r of f is
defined as

Irθf(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t) dtds, (3)

where r = (r1, r2) ∈ (0,∞)× (0,∞) and θ = (0, 0).

Some properties of the left-sided mixed Riemann-Liouville integral are the following:

• Iθθ f(x, y) = f(x, y),

• if p, g ∈ (−1,∞) then, Irθx
pyq = Γ(p+1)Γ(q+1)

Γ(p+1+r1)Γ(q+1+r2)x
p+r1yq+r2 .
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3 Shifted Legendre Polynomials

3.1 One-dimensional shifted Legendre polynomials

Let Li(x), x ∈ [0.l], be the shifted Legendre polynomials. Then Li(x) can be obtained
with the aid of the following recurrence formula [9]:

Li+1(x) =
2i+ 1

i+ 1
(
2x

l
− 1)Li(x)− i

i+ 1
Li−1(x), i = 1, 2, 3, ...,

where L0(x) = 1, L1(x) = 2x
l − 1.

The shifted Legendre polynomials on [0, l] have the following properties:

• Li(x) =
∑i
k=0

(−1)(i+k)(i+k)!
(i−k)!lk(k!)2

xk,

•
∫ l

0
Li(x)Lj(x) dt =


l

2i+1 , for i = j,

0, for i 6= j,

• A function f(x) ∈ C[0, l] can be expanded by shifted Legendre polynomials in the
following form:

f(x) w
m∑
i=0

ciLi(x) = CTΦ(x),

where the coefficients ci are given by

ci =
(2i+ 1)

l

∫ l

0

Li(x)y(x) dt,

and the vectors C, Φ(x) are given by

CT = [c0, c1, ..., cm], (4)

Φ(x) = [L0(x), L1(x), ..., Lm(x)]T . (5)

Previously, in [10] the operational matrix of shifted Legendre polynomials for fractional
integration in the interval [0, 1] has been presented. Now we present the operational
matrix of shifted Legendre polynomials for fractional integration in the interval [0, l] as
follows:

1

Γ(α)

∫ x

0

(x− t)(α−1)Φ(x) dt = PαΦ(x) (6)

and

Pα =



∑0
k=0 θ0,0,k

∑0
k=0 θ0,1,k . . .

∑0
k=0 θ0,m,k∑1

k=0 θ1,0,k

∑1
k=0 θ1,1,k . . .

∑1
k=0 θ1,m,k

...
... . . .

...∑i
k=0 θi,0,k

∑i
k=0 θi,1,k . . .

∑i
k=0 θi,m,k

...
... . . .

...∑m
k=0 θm,0,k

∑m
k=0 θm,1,k . . .

∑m
k=0 θm,m,k


,
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where θi,j,k is given by

θi,j,k = (2j + 1)

j∑
s=0

(−1)(s+j+s+k)(i+ k)!(j + s)!lα+s−k

(i− k)!k!Γ(k + α+ 1)(j − s)!(s!)2(k + s+ α+ 1)
,

and Pα is called the shifted Legendre polynomials operational matrix for fractional in-
tegration.

The proof is similar to the proof of Theorem 3 in [10].

3.2 Two-dimensional shifted Legendre polynomials

The two-dimensional shifted Legendre polynomials are defined on Ω = [0, l1] × [0, l2] as
follows [11]:

ψm,n(x, y) = Lm(x)Ln(y), m, n = 0, 1, 2, · · · ,
where Lm(x) and Ln(y) are shifted Legendre polynomials which are defined in the same
way as on the intervals [0, l1] and [0, l2], respectively. In the following, we study the
important properties of the two-dimensional shifted Legendre polynomials.

The two-dimensional shifted Legendre polynomials are orthogonal with each other∫ l1

0

∫ l2

0

ψm,n(x, y)ψi,j(x, y) dydx =

{
( l1l2

(2m+1)(2n+1) ), i = m, j = n,

0, otherwise.

Suppose that Θ = L2(Ω), the inner product in this space is defined by

〈(f(x, y), g(x, y)〉 =
∫ l1

0

∫ l2
0
f(x, y)g(x, y) dydx,

and the norm is as follows:

‖f(x, y)‖2 = 〈f(x, y), f(x, y)〉 12 = (
∫ l1

0

∫ l2
0
|f(x, y)|2 dydx)

1
2 .

For every f(x, y) ∈ Θ, we have

f(x, y) =

∞∑
i=0

∞∑
j=0

fijφij(x, y). (7)

If the infinite series in (7) is truncated, then we will have

f(x, y) '
M∑
i=0

N∑
j=0

fijφij(x, y) = FTφ(x, y) = φT (x, y)F, (8)

where φ(x, y) and F are (M + 1)(N + 1)× 1 vectors of the following form

F = [f00, ..., f0N , ..., fM0, ..., fMN ]T , (9)

φ(x, y) = [φ00(x, y), ..., φ0N (x, y), ..., φM0(x, y), ..., φMN (x, y)]T (10)

and φi,j(x, y) = φi(x).φj(y).
The two-dimensional shifted Legendre polynomials coefficients fi,j are obtained by

fi,j =
〈f(x, y), φi,j(x, y)〉
‖φi,j(x, y)‖22

.
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By using the Kronecker product of φ(x) and φ(y) we can show φ(x, y) as

φ(x, y) = φ(x)⊗ φ(y), (11)

where ⊗ denotes the Kronecker product defined for two arbitrary matrices A and B as

A⊗B = (ai,jB),

also it has the following two basic properties [12]:

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (A+B)⊗ C = A⊗ C +B ⊗ C. (12)

Similarly, the function k(x, y, s, t) in L2(Ω×Ω) can be expanded in terms of two shifted
Legendre polynomials as

k(x, y, s, t) ' φT (x, y)Kφ(s, t), (13)

where K is a block matrix of the form

K = [K(i,m)]Mi,m=0

in which
K(i,m) = [kijmn]Nj,n=0, i,m = 0, 1, ...,M

and the two-shifted Legendre polynomials coefficient kijmn is given by

kijmn =
〈〈k(x, y, s, t)φm,n(s, t)〉, φi,j(x, y)〉
‖φi,j(x, y)‖22‖φm,n(s, t)‖22

, i,m = 0, 1, ...,M. j, n = 0, 1, ..., N.

The product of two vectors φ(x, y) and φT (x, y) with the vector F is given by

φ(x, y)φT (x, y)F ' F̃ φ(x, y), (14)

where F is defined by (9) and F̃ is an (M + 1)(N + 1)× (M + 1)(N + 1) matrix

F̃ = [F (i,j)]i,j=0,1,...M , (15)

where F (i,j), i, j = 0, 1, ...,M , are given by

F (i,j) =
2j + 1

l2
=

M∑
m=0

Wi,j,mΛm,

in which Wi,j,m is defined as

Wi,j,m =

∫ l1

0

Li(
2

l1
x− 1)Lj(

2

l1
x− 1)Lm(

2

l1
x− 1) dx.

and Λm, m = 0, 1, ...,M , are (N + 1)× (N + 1) matrices

[Λm]kh =
2h+ 1

l1
=

N∑
n=0

Ẃk,h,nfmn, k, h = 0., 1, ..., N,

where

Ẃk,h,n =

∫ l2

0

Lk(
2

l2
y − 1)Lh(

2

l2
y − 1)Ln(

2

l2
y − 1) dy.
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3.3 Operational matrix of fractional order

Now, we construct an operational matrix of two-dimensional shifted Legendre polynomi-
als for the fractional integration.

By using equations (10), (11) we have

1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φ(s, t) dtds =

1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φ(s)⊗ φ(t) dtds =

1

Γ(r1)

∫ x

0

(x− s)r1−1φ(s) ds⊗ 1

Γ(r2)

∫ y

0

(y − t)r2−1φ(t) dt = ∗.

From equation (6) we get

∗ =pr1φ(x)⊗ pr2φ(y)

=(pr1 ⊗ pr2)(φ(x)⊗ φ(y))

=(pr1 ⊗ pr2)φ(x, y).

Hence,

1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φ(s, t) dtds = pr1,r2φ(x, y), (16)

where
pr1,r2 = (pr1 ⊗ pr2).

4 Numerical Solution of Two-Dimensional Volterra Integral Equations of
Fractional Order

In this section, we present an effective method to solve equation (1). For this purpose, by
using the method mentioned in Section 3, the functions f(x, y), g(x, y) and k(x, y, s, t)
can be approximated by

f(x, y) = φ(x, y)TF,
g(x, y) = φ(x, y)TG,
k(x, y, s, t) = φ(x, y)TKφ(s, t), (17)

where φ(x, y) is defined in equation (10) and the vectors F ,G and matrix K are two-
dimensional shifted Legendre polynomials coefficients of f(x, y), g(x, y) and k(x, y, s, t),
respectively. Now, substituting equation (17) in equation (1), we have

φT (x, y)F − 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φT (x, y)Kφ(s, t)φT (s, t)F dtds

' φT (x, y)G. (18)

By using equations (14) and (16) we conclude that

φT (x, y)F − φT (x, y)KF̃

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1φ(s, t) dtds ' φT (x, y)G, (19)
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φT (x, y)F − φT (x, y)KF̃P r1,r2φ(x, y) ' φT (x, y)G. (20)

If in the above equation we substitute ' with =, we get the following equation

F −KF̃P r1,r2φ(x, y) = G. (21)

Now we collocate equation (21) in (M + 1)(N + 1) Newton-Cotes nodes as

xm =
2m+ 1

2(M + 1)
, yn =

2n+ 1

2(N + 1)
,m = 0, 1, ...,M, n = 0, 1, ..., N.

We will have a linear system of algebraic equations

F −KF̃P r1,r2φ(xm, yn) = G,m = 0, 1, ...,M, n = 0, 1, ..., N. (22)

It is clear that, by solving this system, we can obtain the approximate solution of equation
(1) according to equation (8).

5 Error Analysis

Theorem 5.1 . [11] Let f̃(x, y) =
∑M
i=0

∑N
j=0 fijφij(x, y) be the two-dimensional

shifted Legendre polynomials expansion of the real sufficiently smooth function f(x, t) in
Ω, then there exist real numbers C1 , C2 and C3 such that

‖f(x, y)− f̃(x, y)‖2 ≤ C1

( l12 )M+1

(M + 1)!2M
+ C2

( l22 )N+1

(N + 1)!2N
+ C3

( l12 )M+1( l22 )N+1

(M + 1)!(N + 1)!2M+N
.

In the special case when M = N and l1 = l2 = 1 we get

‖f(x, y)− f̃(x, y)‖2 ≤ (C1 + C2 + C3
1

(M + 1)!22M+1
)

1

(M + 1)!22M+1
,

hence

‖f(x, y)− f̃(x, y)‖2 = O(
1

(M + 1)!22M+1
).

Theorem 5.2 Suppose M = N , l1 = l2 = 1 and f(x, y) is an exact solution of
the fractional integral equation (1) and f̃(x, y) shows the approximate solution by the
two-dimensional shifted Legendre polynomials. If |(x− s)r1−1(y− t)r2−1k(x, y, s, t)| < C,
f(x, y) and k(x, y, s, t) are sufficiently smooth functions, then

‖f(x, y)− f̃(x, y)‖22 ≤
C2

(Γ(r1)Γ(r2)(M + 1)!22M+1)2
(C1 + C2 + C3

1

(M + 1)!22M+1
)2 .
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Proof.

‖f(x, y)− f̃(x, y)‖22 =

1

(Γ(r1)Γ(r2))2
‖
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1k(x, y, s, t)(f(s, t)− f̃(s, t)) dtds‖22

≤ 1

(Γ(r1)Γ(r2))2

∫ x

0

∫ y

0

‖(x− s)r1−1(y − t)r2−1k(x, y, s, t)(f(s, t)− f̃(s, t))‖22 dtds

≤ C2

(Γ(r1)Γ(r2))2

∫ x

0

∫ y

0

‖(f(s, t)− f̃(s, t))‖22 dtds

≤ C2xy

(Γ(r1)Γ(r2)(M + 1)!22M+1)2
(C1 + C2 + C3

1

(M + 1)!22M+1
)2

≤ C2

(Γ(r1)Γ(r2)(M + 1)!22M+1)2
(C1 + C2 + C3

1

(M + 1)!22M+1
)2.2

6 Illustrative Examples

In this section we will implement our method by three examples. For justifying our
method, we compare our computed results and those by other authors. Outcomes show
the accuracy and the validity of the presented method. In these examples we let l1 =
l2 = 1, M = N and denote the following error function

e(x, y) = |f(x, y)− f̃M,N (x, y)|,

where f(x, y) and f̃M,N (x, y) are the exact and approximate solutions of the two-
dimensional fractional integral equation, respectively.

Example 6.1 Consider the two-dimensional fractional integral equation given in [5]

f(x, y)− 1

Γ(3.5)Γ(3.5)

∫ x

0

∫ y

0

(x− s)2.5(y − t)2.5xyt
1
2 f(s, t) dtds =

1

2
xy − x5.5y6

9450
.

The exact solution of this equation is f(x, y) = 1
2xy. Table 1 shows the absolute error

obtained by using the present method and by using the 2D-Tf method [5].

Example 6.2 Consider the two-dimensional fractional integral equation given in [6]

f(x, y)− 1

Γ(3.5)Γ(2.5)

∫ x

0

∫ y

0

(x− s)2.5(y − t)1.5e−t(y2 + s)f(s, t) dtds =

x2ey − 1024x5.5y2.5(6x+ 13y2)

2027025π

and the exact solution of the above equation is f(x, y) = eyx2. Table 2 shows the
absolute error obtained by using the present method and by using the two-dimensional
Bernstein polynomials method [6].

Example 6.3 As the last example, we have the two-dimensional fractional integral
equation

f(x, y)− 1

Γ(3.5)Γ(3.5)

∫ x

0

∫ y

0

(x− s)3.5(y − t)3.552
√
txf(s, t) dtds = xy2 − x5y5

5670
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Present method Present method Method [5]

x=y m = 1 m = 2 m=8

0.1 2.2349×10−6 7.84825 ×10−8 1.126×10−4

0.2 2.13487 ×10−6 3.48089 ×10−8 1.363 ×10−4

0.3 2.03717×10−6 1.47598×10−7 6.22×10−5

0.4 1.94179×10−6 2.60141×10−7 1.27×10−5

0.5 1.84874×10−6 3.7269×10−7 1.983×10−4

0.6 1.758×10−6 4.8549×10−7 4.6×10−5

0.7 1.66959×10−6 5.9879×10−7 5.2×10−5

0.8 1.58351×10−6 7.1281×10−7 6.8×10−4

0.9 1.49975×10−6 8.2781×10−7 6.8×10−4

Table 1: Absolute error for Example 1.

Present method Present method Method [6]

x=y m = 1 m = 2 m=4

0.0 1.1458×10−2 2.4215×10−5 4.086×10−4

0.1 1.1130×10−2 2.1511 ×10−5 4.181×10−4

0.2 1.0799 ×10−2 1.9207 ×10−5 4.471 ×10−4

0.3 1.0466×10−2 1.7355×10−5 4.970×10−4

0.4 1.0131×10−2 1.6000×10−5 5.656×10−4

0.5 9.7937×10−3 1.5188×10−5 6.474×10−4

0.6 9.4538×10−3 1.4957×10−5 7.316×10−4

0.7 9.1117×10−3 1.5342×10−5 7.817×10−4

0.8 8.7676×10−3 1.6374×10−5 6.788×10−4

0.9 8.4215×10−3 1.8082×10−5 1.004×10−4

Table 2: Absolute error for Example 2.

and the exact solution of the above equation is f(x, y) = xy2. Table 3 illustrates the
numerical results for this example.

7 Conclusion

In this paper a general formulation for the two-dimensional shifted Legendre polynomi-
als operational matrix of two-dimensional fractional integral equations has been derived.
This matrix is used to approximate numerical solution of the two-dimensional nonlinear
fractional integral equations. The properties of two-dimensional shifted Legendre poly-
nomials and the operational matrices are used to reduce the two-dimensional fractional
integral equations to a system of algebraic equations that can be solved easily. Finally,
illustrative examples are presented to show the validity and the accuracy of the proposed
method.
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x=y m = 1 m = 2 m=3

0.0 5.9600×10−3 1.3080×10−6 2.7534×10−7

0.1 6.3096×10−3 1.4595 ×10−6 2.8692×10−7

0.2 6.6175 ×10−3 1.6017 ×10−6 2.9819×10−7

0.3 6.8844×10−3 1.7349×10−6 3.0917×10−7

0.4 7.1110×10−3 1.8596×10−6 3.1989×10−7

0.5 7.2982×10−3 1.9763×10−6 3.3038×10−7

0.6 7.4466×10−3 2.0852×10−6 3.4065×10−7

0.7 7.5570×10−3 2.1868×10−6 3.5073×10−7

0.8 7.6301×10−3 2.2815×10−6 3.6063×10−7

0.9 7.6668×10−3 2.3696×10−6 3.7036×10−7

Table 3: Absolute error for Example 3.
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