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Abstract: There exists a well-developed stability theory for integro-differential equa-
tions of the first order and only a few results on integro-differential equations of the
second order. The aim of this paper is to fill up this gap. Explicit tests for uniform
exponential stability of linear scalar delay integro-differential equations of the second
order

ẍ(t) +

∫ t

g(t)

G(t, s)ẋ(s)ds +

∫ t

h(t)

H(t, s)x(s)ds = 0

are obtained.
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1 Introduction

Beginning with the classical book of Volterra [1] integro-differential equations and, more
generally, functional differential equations have many applications in biology, physics, me-
chanics (see, for example, [2, 4–7,22,26]). In particular, second order integro-differential
equations appear in stability problems of viscoelastic shells [3]. There are many papers
devoted to stability of the first order integro-differential equations [8–11,18] and only few
papers on stability for the second order equations [12–14]. Oscillation conditions for the
first and the second order functional differential equations can be found in papers [15–17].

The aim of the present paper is to fill up this gap and obtain new explicit exponential
stability conditions for the equation

ẍ(t) +

∫ t

g(t)

G(t, s)ẋ(s)ds+

∫ t

h(t)

H(t, s)x(s)ds = 0. (1)
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Papers [12–14] are devoted to some asymptotic properties of partial cases of (1).
In [12] an asymptotic behavior of solutions is studied using analysis of a generalized
characteristic equation. In [14] the authors obtain stability results by an application of the
Lyapunov functional method. In [13] the authors use a connection between asymptotic
properties of (1) ( for some special kernels G(t, s), H(t, s)) and a system of infinite number
of ordinary differential equations.

To obtain new stability tests, we apply the method based on the Bohl-Perron theo-
rem together with a priori estimations of solutions, integral inequalities for fundamental
functions of linear delay equations and various transformations of a given equation. We
consider equation (1) in more general assumptions than in the above mentioned papers:
all kernels and delays are measurable functions, derivative of a solution is an absolutely
continuous function.

2 Preliminaries

Denote

a(t) =

∫ t

g(t)

G(t, s)ds, b(t) =

∫ t

h(t)

H(t, s)ds,

a1(t) =

∫ t

g(t)

G(t, s)(t− s)ds, b1(t) =

∫ t

h(t)

H(t, s)(t− s)ds.

We consider scalar delay differential equation (1) under the following conditions:
(a1) G(t, s) ≥ 0, H(t, s) ≥ 0 are Lebesgue measurable on t ≥ s ≥ 0, h, g are measurable
on [0,∞) functions, a, b, a1, b1 are essentially bounded on [0,∞) functions;
(a2) 0 < a0 ≤ a(t) ≤ A0, 0 < b0 ≤ b(t) ≤ B0 for all t ≥ t0 ≥ 0 and some fixed t0 ≥ 0;
(a3) 0 ≤ t− g(t) ≤ σ, 0 ≤ t− h(t) ≤ τ for t ≥ t0 and some σ > 0, τ > 0 and t0 ≥ 0.

Along with (1), we consider for each t0 ≥ 0 an initial value problem

ẍ(t) +

∫ t

g(t)

G(t, s)ẋ(s)ds+

∫ t

h(t)

H(t, s)x(s)ds = f(t), (2)

x(t) = ϕ(t), ẋ(t) = ψ(t), t ≤ t0, (3)

where f : [t0,∞) → R is a Lebesgue measurable locally essentially bounded function,
ϕ : (−∞, t0]→ R , ψ : (−∞, t0)→ R are Borel measurable bounded functions.

Further, we assume that the above conditions hold without mentioning it.

A function x with a locally absolutely continuous on [t0,∞) derivative x′ : R→ R is
called a solution of problem (2) if it satisfies the equation (2) for almost all t ∈ [t0,∞)
and the equalities in (3) for t ≤ t0.

There exists a unique solution of problem (2)-(3), see [6, 21].

Equation (1) is (uniformly) exponentially stable if there exist positive numbers
M and γ such that the solution of problem (3)with f ≡ 0 satisfies the estimate

max{|x(t)|, |ẋ(t)|} ≤Me−γ(t−t0) sup
t∈(−∞,t0]

max{|ψ(t)|, |ϕ(t)|}, t ≥ t0, (4)

where M and γ do not depend on t0 ≥ 0 and functions ψ,ϕ.

Next, we present the Bohl-Perron theorem [6,19].



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1-SI) (2019) 117–123 119

Lemma 2.1 Assume that the solution x of the problem (2) with the initial conditions
x(t) = ẋ(t) = 0, t ≤ t0, and its derivative ẋ are bounded on [t0,+∞) for any essentially
bounded function f on [t0,+∞). Then equation (1) is exponentially stable.

Consider now an ordinary differential equation

ẍ(t) + a(t)ẋ(t) + b(t)x(t) = 0 (5)

and denote by X(t, s) the fundamental function of (5).

Lemma 2.2 [20] If A0 ≥ a(t) ≥ a0 > 0, B0 ≥ b(t) ≥ b0 > 0, t ≥ t0 and a20 ≥ 4B0,
then X(t, s) ≥ 0, equation (5) is exponentially stable and∫ t

t0

X(t, s)b(s)ds < 1.

For a fixed bounded interval I = [t0, t1], consider the space L∞[t0, t1] of all essentially
bounded on I functions with the norm ‖y‖[t0,t1] = esssupt∈I |y(t)|, denote

‖f‖[t0,+∞) = esssupt≥t0 |f(t)|

for an unbounded interval, E is the identity operator.
In the sequel, we use the concept of a non-singular M -matrix. For convenience, we

recall this notion.

Definition 2.1 [ [24]] An m ×m matrix A = (aij)
m
i,j=1 is called a non-singular M -

matrix if aij ≤ 0, i, j = 1, . . . ,m, i 6= j and one of the following equivalent conditions
holds:

1. There exists a positive inverse matrix A−1.
2. All the principal minors of matrix A are positive.

3 Explicit Stability Conditions

Theorem 3.1 Assume that for some t0 ≥ 0 and t ≥ t0 a
2
0 ≥ 4B0 and the following

condition holds

‖a‖[t0,∞)

∥∥∥a1
a

∥∥∥
[t0,∞)

+

∥∥∥∥b1b
∥∥∥∥
[t0,∞)

(∥∥∥∥ ba
∥∥∥∥
[t0,∞)

+ ‖b‖[t0,∞)

∥∥∥a1
a

∥∥∥
[t0,∞)

)

+
∥∥∥a1
b

∥∥∥
[t0,∞)

(
‖b‖[t0,∞) + ‖a‖[t0,∞)

∥∥∥∥ ba
∥∥∥∥
[t0,∞)

)
< 1.

(6)

Then equation (1) is exponentially stable.

Proof. For simplicity we omit the index in the norm ‖ · ‖[t0,+∞) of functions.
Consider problem (2) with ‖f‖ < ∞, where x(t) = ẋ(t) = 0, t ≤ t0. We will prove

that the solution x and its derivative are bounded functions on [t0,+∞). First we have
to obtain estimates for x, ẋ, ẍ, t ∈ I = [t0, t1], t1 > t0. Rewrite equation (2)

ẍ(t)+a(t)ẋ(t)+ b(t)x(t) =

∫ t

g(t)

G(t, s)(ẋ(t)− ẋ(s))ds+

∫ t

h(t)

H(t, s)(x(t)−x(s))ds+f(t)
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=

∫ t

g(t)

G(t, s)

∫ t

s

ẍ(τ)dτds+

∫ t

h(t)

H(t, s)

∫ t

s

ẋ(τ)dτds+ f(t).

Hence

x(t) =

∫ t

t0

X(t, s)b(s)

[
1

b(s)

∫ s

g(s)

G(s, ξ)

∫ s

ξ

ẍ(τ)dτdξ

+
1

b(s)

∫ s

h(s)

H(s, ξ)

∫ s

ξ

ẋ(τ)dτdξ

]
ds+ f1(t),

where X(t, s) is the fundamental function of equation (5) and f1(t) =
∫ t
t0
X(t, s)f(s)ds.

Since X(t, s) has an exponential estimate, f1 is essentially bounded on [t0,∞).
By Lemma 2.2 we have

‖x‖[t0,t1] ≤
∥∥∥a1
b

∥∥∥ ‖ẍ‖[t0,t1] +

∥∥∥∥b1b
∥∥∥∥ ‖ẋ‖[t0,t1] + ‖f1‖. (7)

Rewrite now (2) in another form:

ẍ(t) + a(t)ẋ(t) =

∫ t

g(t)

G(t, s)

∫ t

s

ẍ(τ)dτds−
∫ t

h(t)

H(t, s)x(s)ds+ f(t).

Hence

ẋ(t) =

∫ t

t0

e−
∫ t
s
a(ξ)dξa(s)

[
1

a(s)

∫ s

g(s)

G(s, ξ)

∫ s

ξ

ẍ(τ)dτdξ

− 1

a(s)

∫ s

h(s)

H(s, ξ)x(ξ)dξ

]
ds+ f2(t),

where f2(t) =
∫ t
t0
e−

∫ t
s
a(ξ)dξf(s)ds is an essential bounded on [t0,∞) function.

Hence

‖ẋ‖[t0,t1] ≤
∥∥∥a1
a

∥∥∥ ‖ẍ‖[t0,t1] +

∥∥∥∥ ba
∥∥∥∥ ‖x‖[t0,t1] + ‖f2‖. (8)

From equation (2) we have

‖ẍ‖[t0,t1] ≤ ‖a‖‖ẋ‖[t0,t1] + ‖b‖‖x‖[t0,t1] + ‖f‖. (9)

Denote Y = {‖x‖[t0,t1], ‖ẋ‖[t0,t1], ‖ẍ‖[t0,t1]}T , F = {‖f1‖, ‖f2‖, ‖f‖, }T . Inequalities (7)-
(9) imply Y ≤ BY + F , where

B =


0

∥∥ b1
b

∥∥ ∥∥a1
b

∥∥∥∥ b1
b

∥∥ 0
∥∥a1
a

∥∥
‖b‖ ‖a‖ 0

 .

Hence AY ≤ F , where A = E − B. Theorem conditions imply that A is an M-matrix
then Y ≤ A−1F , where A−1F is a constant vector which does not depend on the interval
I. Hence the solution of (2) with its derivative are bounded functions on [t0,∞), therefore
by Lemma 2.1 equation (1) is exponentially stable.
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Corollary 3.1 Assume that for some t0 ≥ 0 and t ≥ t0, a20 ≥ 4B0 and the following
condition holds

σ‖a‖[t0,∞)+τ
(∥∥∥∥ ba

∥∥∥∥
[t0,∞)

+σ‖b‖[t0,∞)

)
+σ

∥∥∥a
b

∥∥∥
[t0,∞)

(
‖a‖[t0,∞)

∥∥∥∥ ba
∥∥∥∥
[t0,∞)

+‖b‖[t0,∞)

)
< 1.

(10)
Then equation (1) is exponentially stable.

Proof. For simplicity we omit the index in the norm on functions. We have t− s ≤
t− g(t) ≤ σ for g(t) ≤ s ≤ t. Similarly, t− s ≤ t− h(t) ≤ τ for h(t) ≤ s ≤ t. Hence

a1(t) =

∫ t

g(t)

G(t, s)(t− s)ds ≤
∫ t

g(t)

G(t, s)σds = σa(t),

b1(t) =

∫ t

h(t)

H(t, s)(t− s)ds ≤
∫ t

h(t)

H(t, s)τds = τb(t).

Then

‖a‖
∥∥∥a1
a

∥∥∥+

∥∥∥∥b1b
∥∥∥∥(∥∥∥∥ ba

∥∥∥∥+ ‖b‖
∥∥∥a1
a

∥∥∥)+
∥∥∥a1
b

∥∥∥(‖b‖+ ‖a‖
∥∥∥∥ ba
∥∥∥∥)

≤ σ‖a‖+ τ

(∥∥∥∥ ba
∥∥∥∥+ σ‖b‖

)
+ σ

∥∥∥a
b

∥∥∥(‖a‖ ∥∥∥∥ ba
∥∥∥∥+ ‖b‖

)
< 1.

By Theorem 3.1 equation (1) is exponentially stable.

Corollary 3.2 Assume there exist

lim
t→∞

a(t) = a > 0, lim
t→∞

b(t) = b > 0, lim
t→∞

a1(t) = a1 > 0, lim
t→∞

b1(t) = b1 > 0.

If

a2 ≥ 4b, 3a1 +
b1(1 + a1)

a
< 1,

then the equation (1) is exponentially stable.

Limits in the corollary 3.2 exist, for example, for kernels of the form M(t−s)ne−γ(t−s)
where n ≥ 0 is a natural number.

Example 3.1 Consider the following equation

ẍ(t) +M1

∫ t

t−σ
e−α1(t−s)ẋ(s)ds+M2

∫ t

t−τ
e−α2(t−s)x(s)ds = 0, (11)

where α > 0, β > 0, σ > 0, τ > 0.
We have

a(t) = a = M1

∫ t

t−σ
e−α1(t−s)ds =

M1

α1

(
1− e−α1σ

)
,

b(t) = b = M2

∫ t

t−τ
e−α2(t−s)ds =

M2

α2

(
1− e−α2τ

)
,

a1(t) = a1 = M1

∫ t

t−σ
(t− s)e−α(t−s)ds =

M1

α

(
1

α
− e−ασ(σ +

1

α
)

)
,

b1(t) = b1 = M2

∫ t

t−τ
(t− s)e−α2(t−s)ds =

M2

α2

(
1

α2
− e−α2τ (τ +

1

β
)

)
.

Hence, if a2 ≥ 4b, 3a1 + b1(1+a1)
a < 1, then equation (11) is exponentially stable.
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Corollary 3.3 Assume for t ≥ t0

0 < a0 ≤ a(t) ≤ A0, 0 < b0 ≤ b(t) ≤ B0, a
2
0 ≥ 4B0,

0 < σ0 ≤ t− g(t) ≤ σ, 0 < τ0 ≤ t− h(t) ≤ τ

and
A0σ

3

2a0σ0
+

B2
0τ

3

2a0b0τ0σ0
(1 +

A0σ
2

2
) +

A0B0τσ2
2b0τ0

(
1 +

A0σ

a0σ0

)
< 1.

Then the equation (1) is exponentially stable.

Proof. The proof follows from the inequalities

a0σ0 ≤ a(t) ≤ A0σ, b0τ0 ≤ b(t) ≤ B0τ, a1(t) ≤ A0
σ2

2
, b1(t) ≤ B0

τ2

2

and Theorem 3.1.
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