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Abstract: The present paper reports an investigation on dual phase synchroniza-
tion results among chaotic systems with nonlinear observer controller. The dual
phase synchronization is achieved using the nonlinear state observer technique and
the stability theory. The Qi system and the Newton-Leipnik system are considered
during the demonstration of dual phase synchronization. The nonlinear state ob-
server technique is found to be very effective and convenient to achieve dual phase
synchronization of various types of chaotic systems. Numerical simulation and graph-
ical results demonstrate the effectiveness of the control technique during dual phase
synchronization among chaotic systems.
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1 Introduction

Chaos theory is a developing field since 1970 and still the theory has not yet been un-
derstood very well. If a dynamical system is bounded and has infinite recurrences with
dependency on initial conditions, then it is known as chaotic [1]. Several researchers
have studied chaotic dynamical systems in various fields and effect of chaos in nonlinear
dynamics is studied during the last few years. This effect is most common and has been
detected in a number of dynamical systems of various types of physical nature. Chaos
theory is also used to analyze the problems of dynamical and non-linear dynamical sys-
tems related with complex networks which are generally used in biological and social
systems in ecology, medicine and in the field of business strategy. The most important
achievement in the research of chaos is that chaotic systems can be made to synchronize
with each other. The first idea of synchronization of two identical chaotic systems was
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analyzed by Pecora and Carrols [2]. In 2011, Runzi et al. [3] discussed combination syn-
chronization using two master and one slave systems, before that synchronization was
confined to one master and one slave systems. Yadav et al. [4] obtained dual function
projective synchronization of fractional order complex chaotic systems.

In recent years, a lot of methods have been used to analyse synchronizations of the
chaotic systems theoretically and experimentally, viz., the active control method, ob-
server based method, backstepping method, nonlinear control method etc. Also, these
methods are applied to study some new types of synchronizations, viz., combination
synchronization, combination-combination synchronization, compound synchronization,
multi-switching synchronization, compound-combination synchronization etc. ( [5]- [9]).
Juan and Xing-yuan [10] discussed nonlinear observer based phase synchronization of
chaotic systems. Singh et. al. [11] explained dual combination synchronization of the
fractional order complex chaotic systems.

The purpose of this paper is the investigation of dual phase synchronization of chaotic
systems with nonlinear observer controllers. Dual synchronization is a special circum-
stance in synchronization in which two identical/non-identical pairs of chaotic systems
are synchronized. The dual synchronization of systems plays an important role in many
fields including chaotic secure communication. But it has received less attention of the
researchers. There are only a few results available in the literature on dual synchroniza-
tion between chaotic systems ( [12]– [13]). In phase synchronization, the coupled chaotic
systems keep their phase difference bounded by a constant while their amplitudes remain
uncorrelated. The phase synchronization is usually applied upon two waveforms of the
same frequency with identical phase angles with each cycle. However it can be applied if
there is an integer relationship of frequency such that the cyclic signals share a repeating
sequence of phase angles over consecutive cycles. There are few results about the phase
synchronizations for the chaotic systems ( [14]– [17]). Observer design, having vital im-
portance in the area of systems and control theory, arises whenever some components of
the state are not directly measured. After the solution of multivariate problems in the
linear time invariant case by Luenberger [18], many researchers were motivated to extend
the basic ideas of his work to the nonlinear context. Though the applications of linear
observer theory to nonlinear problems had been a success, still the researchers were re-
duced to construct nonlinear observers using tools from nonlinear systems theory. A brief
introduction to some of these nonlinear approaches to the problem of observer design can
be found in the paper of Primbs [19]. In 2012, Beikzadeh and Taghirad [20] presented
a novel nonlinear continuous-time observer based on differential state-dependent Riccati
equation filter with guaranteed exponential stability of the estimation error dynamics
utilising Lyapunov stability analysis which is used to obtain the required conditions for
exponential stability of the estimation error dynamics.

These results have motivated the authors to study the dual phase synchronization be-
tween two identical pairs of different chaotic systems with nonlinear state observer algo-
rithm using stability theory.The numerical example is provided to illustrate the obtained
results. Dual phase synchronization between the systems with time delays ( [21]– [25])
using the similar method will be considered for future study.

2 Problem Formulation

Let us consider the following two chaotic systems:

ẋ = Ax+Bf(x), (1)
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ẏ = Cy +Dg(y), (2)

where x, y ∈ Rn are the state vectors of the systems (1) and (2). A,B ∈ Rn×n,C,D ∈
Rn×m are the constant matrices and f, g : Rn → Rm are the nonlinear functions.
Suppose the dynamical systems (1) and (2) with the output are represented as

s(x) = f(x) +Kjx, (3)

S(y) = g(y) +K ′jy, (4)

where Kj ,K
′
j ∈ Rm×n denote the feedback gain matrices. Let us define the observer as

˙̂x = Ax̂+Bf(x̂) +B[s(x)− s(x̂)], (5)

˙̂y = Cŷ +Dg(ŷ) +D[S(y)− S(ŷ)]. (6)

The synchronization errors among the systems (1), (2) and (5), (6) are defined as

exx̂ = x− x̂, (7)

eyŷ = y − ŷ. (8)

Then the error systems can be obtained as

ėxx̂ = ẋ− ˙̂x = Aexx̂ +Bf(x)−Bf(x̂)−B[s(x)− s(x̂)],

ėyŷ = ẏ − ˙̂y = Ceyŷ +Dg(y)−Dg(ŷ)−D[S(y)− S(ŷ)].

From equations (3) and (4), the error systems reduce in the following form

ėxx̂ = [A−BKj ]exx̂, (9)

ėyŷ = [C −DK ′j ]eyŷ. (10)

In order to make systems (9) and (10) controllable with the controllable matrices
[B,AB, ....An−1B] and [D,CD, ....Cn−1D] of full ranks, the choices of the feedback gain
matrices,Kj ,K

′
j will be in such a way that the characteristic polynomials of the matrices

[A−BKj ] and [C −DK ′j ] must have all the eigenvalues with negative real parts. Then
the error systems will be stabilized and the dual synchronization among the systems
under consideration is achieved. If there is any eigenvalue of the error system equal to
zero, then another type of synchronization phenomenon called the phase synchronization
occurs, in which the difference between various states of synchronized systems may not
necessarily converge to zero, but is less than or equal to a constant.

3 Systems’ Descriptions

3.1 Qi chaotic system

Consider the following Qi system [26]:

ẋ1 = a1(x2 − x1) + x2x3; ẋ2 = a3x1 − x2 − x1x3; ẋ3 = −a2x3 + x1x2, (11)

where x1, x2, x3 are the state variables. The phase portrait of the system (11) for the
parameter values a1 = 35, a2 = 8/3, a3 = 80 and the initial condition (3, 2, 1) is depicted
in Fig. 1(a).
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3.2 Newton-Leipnik system

The Newton-Leipnik system [27] is defined as

ẏ1 = −b1y1 + y2 + 10y2y3; ẏ2 = −y1 − 0.4y2 + 5y1y3; ẏ3 = b2y3 − 5y1y2. (12)

The phase portrait of the Newton-Leipnik system (12) is depicted in Fig. 1(b) for the
values of the parameters b1 = 0.4, b2 = 0.175 and the initial condition (0.394, 0,−0.16).

4 Dual Phase Synchronization of Chaotic Systems

In this section we are taking two systems, viz., Qi and Newton-Leipnik, to perform dual
phase synchronization. The systems (11) and (12) can be rewritten asẋ1ẋ2

ẋ3

 =

−a1 a1 0
a3 −1 0
0 0 −a2

x1x2
x3

 +

1 0 0
0 −1 0
0 0 1

x2x3x1x3
x1x2

 (13)

and ẏ1ẏ2
ẏ3

 =

−b1 1 0
−1 −0.4 0
0 0 b2

y1y2
y3

 +

10 0 0
0 5 0
0 0 −5

y2y3y1y3
y1y2

 . (14)

Comparing equations (13) and (14) with equations (1) and (2), we get

A =

−a1 a1 0
a3 −1 0
0 0 −a2

 , B =

1 0 0
0 −1 0
0 0 1

 , C =

−b1 1 0
−1 −0.4 0
0 0 b2

 , D =

10 0 0
0 5 0
0 0 −5

 .
The observers of the systems (11) and (12) are designed as ˙̂x1

˙̂x2
˙̂x3

 =

−a1 a1 0
a3 −1 0
0 0 −a2

x̂1x̂2
x̂3

 +

1 0 0
0 −1 0
0 0 1

x̂2x̂3x̂1x̂3
x̂1x̂2

 +B[s(x)− s(x̂)], (15)

 ˙̂y1
˙̂y2
˙̂y3

 =

−b1 1 0
−1 −0.4 0
0 0 b2

ŷ1ŷ2
ŷ3

 +

10 0 0
0 5 0
0 0 −5

ŷ2ŷ3ŷ1ŷ3
ŷ1ŷ2

 +D[S(y)− S(ŷ)], (16)

where B[s(x)−s(x̂)], D[S(y)−S(ŷ)] are outputs of the systems. Now by defining the error
function towards dual synchronization as ex1x̂1

= x1−x̂1, ex2x̂2
= x2−x̂2, ex3x̂3

= x3−x̂3,
ey1ŷ1

= y1 − ŷ1, ey2ŷ2
= y2 − ŷ2, ey3ŷ3

= y3 − ŷ3, the error systems can be obtained asėx1x̂1

ėx2x̂2

ėx3x̂3

 =


−a1 a1 0
a3 −1 0
0 0 −a2

−
1 0 0

0 −1 0
0 0 1

K1


ex1x̂1

ex2x̂2

ex3x̂3

 , (17)

ėy1ŷ1

ėy2ŷ2

ėy3ŷ3

 =


−b1 1 0
−1 −0.4 0
0 0 b2

−
10 0 0

0 5 0
0 0 −5

K ′1


ey1ŷ1

ey2ŷ2

ey3ŷ3

 . (18)
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(a) (b)

Figure 1: Phase portraits of chaotic systems: (a) the Qi system; (b) the Newton-Leipnik
system.

The matrices [B,AB,A2B] and [D,CD,C2D] are in full ranks, so the systems (15) and
(16) are the global observers of systems (13) and (14) through proper choices of the
feedback gain matrices towards the synchronization

K1 =

−34 35 0
−80 0 0

0 0 −5/3

 , K ′1 =

−3/50 1/10 0
−1/5 3/25 0

0 0 −0.235

 .
For phase synchronization of the above-mentioned systems, the feedback gain matrices

are taken as

K1 =

−35 35 0
−80 1 0

0 0 −8/3

 , K ′1 =

−2/50 1/10 0
−1/5 −2/25 0

0 0 −0.035

 .
5 Numerical Simulation and Results

During numerical simulation the earlier considered parameters of the chaotic sys-
tems are taken. For the dual phase synchronization the initial conditions of the
master systems I, II and slave systems I, II are taken as (x1(0), x2(0), x3(0)) =
(18, 12, 10), (y1(0), y2(0), y3(0)) = (0.349, 1.5,−0.16) and (x̂1(0), x̂2(0), x̂3(0)) =
(−15, 5, 1), (ŷ1(0), ŷ2(0), ŷ3(0)) = (0.5, 2.5, 0.5), respectively. Hence the initial conditions
of error system for dual phase synchronization will be (33, 7, 9,−0.151,−1,−0.66). Dur-
ing dual synchronization of the systems, the time step size is taken as 0.005. Now, by
choosing λ1 = 0, λ2 = −1, λ3 = −1, λ4 = −1, λ5 = −1, λ6 = −1, the phase synchro-
nization between signals x1(t) and x̂1(t) is achieved. It should be noted that, when
λ1 = 0, λ2 = −1, λ3 = −1, λ4 = −1, λ5 = −1, λ6 = −1, the signals x2(t) and x̂2(t)
and x3(t) and x̂3(t) and y1(t) and ŷ1(t) and y2(t) and ŷ2(t) and y3(t) and ŷ3(t) be-
come synchronized. Similarly, if λ1 = −1, λ2 = 0, λ3 = −1, λ4 = −1, λ5 = −1, λ6 =
−1;λ1 = −1, λ2 = −1, λ3 = 0, λ4 = −1, λ5 = −1, λ6 = −1;λ1 = −1, λ2 = −1, λ3 =
−1, λ4 = 0, λ5 = −1, λ6 = −1;λ1 = −1, λ2 = −1, λ3 = −1, λ4 = −1, λ5 = 0, λ6 = −1
and λ1 = −1, λ2 = −1, λ3 = −1, λ4 = −1, λ5 = −1, λ6 = 0 are taken, phase synchro-
nizations between signals x2(t) and x̂2(t) and x3(t) and x̂3(t) and y1(t) and ŷ1(t) and
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y2(t) and ŷ2(t) and y3(t) and ŷ3(t) are obtained, respectively. State trajectories of the
dual phase synchronization of chaotic systems are depicted in Fig. 2(a)-(f). The plot of
the error function for dual synchronization is depicted in Fig. 2(g), which shows that
error states converge to zero when time becomes large. This implies that the dual phase
synchronization between identical pairs of different chaotic systems consisting of the Qi
and Newton-Leipnik systems occurs with the help of nonlinear observers.

(a) (b)

(c) (d)

(e) (f)
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(g)

Figure 2: Phase synchronization for signals (a) between x1(t) and x̂1(t), (b) between x2(t)
and x̂2(t), (c) between x3(t) and x̂3(t), (d) between y1(t) and ŷ1(t), (e) between y2(t) and ŷ2(t),
(f) between y3(t) and ŷ3(t), (g) The evolution of the error functions of chaotic systems during
synchronization.

6 Conclusion

The present paper has successfully demonstrated the dual phase synchronization between
the Qi and Newton-Leipnik systems using the nonlinear observer based technique. Based
on the stability analysis, the dual phase synchronization of chaotic systems through
nonlinear controller input parameters on the respective systems has been achieved and
the components of the error system tend to zero as time becomes large, which helps to
find the time required for dual phase synchronization between different chaotic systems.
Numerical simulations are given to exhibit the reliability and effectiveness of the proposed
dual combination synchronization scheme towards predicting the accuracy of the theory.
The authors are optimistic that the outcome of this chapter will be utilized by the
researchers involved in the field of chaotic systems.
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