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Abstract: In this paper, a mathematical model related to a problem of phase-change
process with periodic surface heat flux and space-dependent latent heat is considered.
We have used the homotopy analysis approach to acquire the solution to the problem.
To show the correctness of the calculated result, the comparisons have been discussed
with the existing exact solution in a particular case. The effect of various parameters
on the movement of the interface is also investigated.
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1 Introduction

In recent years, the phase change problem (the Stefan problem) involving diffusion process
and variable latent heat is of great interest from mathematical and physical points of
views. The research related to the diffusion process and its occurence can be found in
many works [1–3]. Physically, a variable latent heat term arises in the Stefan problem
governing the processes of movement of a shoreline in a sedimentary ocean basin due
to changes in various parameters [4]. Some solutions of the Stefan problems including
space-dependent latent heat have been reported in [5–7]. Zhou et al. [8] presented a
phase change model (the Stefan problem) that contains a variable latent heat term and
they discussed the similarity solution to the problem. After that Zhou and Xia [9] used
the Kummer functions to present the similarity solution to a Stefan problem containing a
more general variable latent heat term. Mathematically, the Stefan problem with periodic
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boundary is always interesting due to the difficulty associated with its solution. From the
literature, it is found that the exact solution to the phase change problem with periodic
heat-flux is not known even in its simplest form and a sophisticated scheme is required
to solve these problems [10]. Therefore, various numerical [11–13] and approximate
analytical techniques [7,14] have been used by the researchers to solve the phase change
problem containing the boundary conditions of periodic nature.

In this study, we consider a Stefan problem containing space-dependent latent heat
and a periodic boundary condition. The solution of the problem is obtained by a well-
known approximate technique, the homotopy analysis technique, introduced by Liao [12].
From the literature [16–22], it can be seen that this scheme is used by many researchers
to solve various problems occurring in science and industries. In this paper, Wolfram
Mathematica 8.0.1 has been used for all the computations with the aid of [23]. For
the validity of proposed solution, the comparisons have been made with the analytical
solution in a particular case. Dependence of movement of interface on some parameters
is also analysed.

2 Mathematical Formulation

This section presents a phase change problem involving melting/freezing process in the
half plane, i.e. x > 0. Motivated by the work of Zhou et al. [8] and Zhou and Xia [9],
we have assumed that the latent heat is space-dependent. Moreover, a periodic surface
heat flux is supposed in the problem. The mathematical model describing the process is
given below:

∂T

∂t
= α

∂2T

∂x2
, 0 < x < s(t), t > 0, (1)

T (s(t), t) = 0, t > 0, (2)

k
∂T (0, t)

∂x
= −q(1 + ε sinωt), t > 0, (3)

k
∂T (s(t), t)

∂x
= −γsds

dt
, t > 0, (4)

s(0) = 0, (5)

where T (x, t) is the temperature profile, x represents the space variable, t is the time, α
denotes the thermal diffusivity, s(t) denotes the tracking of moving phase front, k is the
thermal conductivity, ω is the oscillation frequency, ε is the amplitude, q(1 + ε sinωt) is
the periodic heat flux and γs is the latent heat term per unit volume which depends on
space.

3 Solution of the Problem

According to the homotopy analysis method (HAM) [17,18], we assume

N [φ(x, t; p)] =
∂

∂t
φ(x, t; p)− α ∂2

∂x2
φ(x, t; p), (6)

and

L [φ(x, t; p)] =
∂2

∂x2
φ(x, t; p) (7)
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as the non-linear and linear operators, respectively. For equation (1), we first construct
the following homotopy:

(1− p)L [φ(x, t; p)− T0(x, t)] = pµH(x, t)N [φ(x, t; p)] , (8)

where p ∈ [0, 1] denotes the embedding parameter, T0(x, t) represents the initial guess,
µ 6= 0 is the auxiliary parameter, H(x, t) 6= 0 is the auxiliary function.

If we substitute p = 0 and p = 1 in equation (8), then we simply obtain φ(x, t; 0) =
T0(x, t) and φ(x, t; 1) = T (x, t), respectively. This indicates that when p tends to 1 from
0, the initial estimate T0(x, t) shifts towards T (x, t) which satisfies the proposed problem.

For equation (1), we can get the m− th order deformation equation [17,18] as given
below:

L [Tm(x, t)− χmTm−1(x, t)] = µH(x, t)Rm(~Tm−1), (9)

where

Rm(~Tm−1) =
∂Tm−1(x, t)

∂t
− α∂

2Tm−1(x, t)

∂x2

and

χm =

{
0, m < 2,
1, m ≥ 2.

According to Rajeev et al. [3], we consider the following initial approximation of T (x, t):

T0(x, t) =
q

k
((1 + ε sinωt)(s0 − x)) , (10)

where s0 =
(

2q
γ

(
t− ε

ω cosωt+ ε
ω

)) 1
2

.

Using equation (10) in equation (9), we obtain

T1(x, t) =µ

(
q2

kγ
(1 + ε sinωt)2s−1

0

)
x2

2
+ µ

( q
k
ωε cosωts0

) x2
2

− µ
( q
k
ωε cosωt

) x3
6
, (11)

T2(x, t) =T1(x, t)− αµ2q2(1 + ε sinωt)2s−1
0

kγ

x2

2
− αµ2qωε cosωts0

k

x2

2

+
αµ2qωε cosωt

k

x3

6
+
µ2q2

kγ

{
− q
γ

(1 + ε sinωt)3s−3
0

+ 2(1 + ε sinωt)ωεs−1
0 cosωt

}
x4

24
+
µ2q

k

{
ωq

γ
ε cosωt(1 + ε sinωt)s−1

0

− (ω2ε sinωt)s0

}
x4

24
+
µ2qω2ε sinωt

k

x5

120
(12)

and similarly, other components of T (x, t) can be calculated.
Now, the solution T (x, t) to the problem can be given by

T (x, t) = T0(x, t) + T1(x, t) + T2(x, t) + ... (13)
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Now, by choosing the following linear and non-linear operators, we have

L [ψ(t; p)] =
dψ(t; p)

dt
, (14)

and

N [ψ(t; p)] = k
∂T (ψ(t; p), t)

∂x
+ γψ(t; p)

dψ(t; p)

dt
. (15)

We construct the following homotopy for the equation (4):

(1− p) [ψ(t; p)− s0(t)] = p~N [ψ(t; p)] . (16)

From equation (16), we can easily find

ψ(t; 0) = s0, (17)

and

ψ(t; 1) = s(t). (18)

According to [17,18], the m-th order deformation equation in the context of equation (4)
is

L [sm(t)− χmsm−1(t)] = ~N [sm−1(t)] . (19)

By considering the expression of s0 (the initial approximation for the moving interface)
and equations (13), (19) and (17), the various components of s(t), i.e. s1(t), s2(t),..., can
be calculated. Hence, the approximate solution for s(t) is given by

s(t) = s0(t) + s1(t) + .... (20)

4 Comparisons and Discussions

To show the accuracy of the obtained solution, we discuss the comparisons of our results
for the temperature profile T (x, t) and the location of moving phase front s(t) with the
exact solution at ε = 0 in Tables 1 and 2, respectively. In case of ε = 0, the equations
(1)-(5) become a shoreline problem with a fixed line flux and a constant ocean level [4].
In this paper, the comparisons of our calculated results have been made with the exact
solution established by Voller et al. [4]. Table 1 represents relative errors of temperature
distribution between the obtained results and the exact result (given in [4]) at α = 1,
ε = 0, k = 1 and t = 5.5. The absolute errors and relative errors of moving phase front
are depicted in Table 2 at α = 1, ε = 0 and k = 1. From both tables, it is clear that the
obtained computational results agree well with the result of exact solution.
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q x TN (x, t) TE(x, t) Absolute Error Relative Error
0.5 0.1 0.212321 0.211090 1.20 e-03 5.80 e-03

0.2 0.162679 0.160212 2.40 e-03 1.50 e-02
0.3 0.113274 0.109579 3.60 e-03 3.30 e-02
0.4 0.064106 0.059189 4.90 e-03 8.30 e-02
0.5 0.015176 0.009037 6.10 e-03 6.70 e-02

1.0 0.1 0.641957 0.637125 4.80 e-03 7.50 e-03
0.2 0.542968 0.533223 9.70 e-03 1.80 e-02
0.3 0.444652 0.430042 1.40 e-02 3.30 e-02
0.4 0.347007 0.327569 1.90 e-02 5.90 e-02
0.5 0.250031 0.225792 2.40 e-02 1.00 e-01

1.5 0.1 1.213060 1.202430 1.00 e-02 8.80 e-03
0.2 1.064920 1.043280 2.10 e-02 2.00 e-02
0.3 0.918012 0.885505 3.20 e-02 3.60 e-02
0.4 0.772339 0.729075 4.30 e-02 5.90 e-02
0.5 0.627896 0.573966 5.30 e-02 9.30 e-02

Table 1: Comparison between the exact value TE(x, t) and the numerical value TN (x, t) of
temperature distribution at γ = 20.

q t sN (t) sE(t) Absolute Error Relative Error
0.5 1 0.199681 0.198055 1.60 e-03 8.20 e-03

2 0.282205 0.280092 2.10 e-03 7.50 e-03
3 0.345453 0.343041 2.40 e-03 7.00 e-03
4 0.398724 0.396109 2.60 e-03 6.60 e-03
5 0.445619 0.442864 2.70 e-03 6.20 e-03

1.0 1 0.281571 0.277484 4.00 e-03 1.40 e-02
2 0.397457 0.392422 5.00 e-03 1.20 e-02
3 0.486084 0.480616 5.40 e-03 1.10 e-02
4 0.560600 0.554968 5.60 e-03 1.00 e-02
5 0.626098 0.620473 5.60 e-03 0.90 e-02

2.0 1 0.394948 0.385578 9.30 e-03 2.40 e-02
2 0.555582 0.545290 10.20 e-03 1.80 e-02
3 0.677665 0.667841 9.80 e-03 1.40 e-02
4 0.779793 0.771156 8.60 e-03 1.10 e-02
5 0.869169 0.862179 6.90 e-03 0.80 e-02

Table 2: Comparison between the exact value sE(t) and the numerical value sN (t) of moving
interface at γ = 25.

Figures 1 and 2 show the evolution of movement of phase front at the fixed value
of thermal diffusivity (α = 1.0), the oscillation amplitude (ε = 0.5 ) and the oscillation

frequency (ω =
π

2
). In Figure 1 and Figure 2, the effect of periodic heat flux on the

movement of phase front is depicted for different values of γ and q, respectively. From
Figure 1, it can be seen that the phase front propagates periodically and the movement of
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phase front becomes slow when we enhance the parameter γ. However, Figure 2 depicts
that the periodic propagation of moving boundary s(t) becomes fast as the value of q
rises. It is also observed that when we raise the value of q, it makes melting/freezing
process fast.

Figure 1: Plot of s(t) vs. t at α = 1.0, q = 1.0, ε = 0.5, ω = π/2.

Figure 2: Plot of s(t) vs. t at α = 1.0, γ = 20, ε = 0.5, ω = π/2.

5 Conclusion

In this work, we study a complicated phase-change problem with a periodic heat flux
and variable latent heat term. To the best of our knowledge, the exact solution to
the proposed problem is not available in literature yet. Therefore, a homotopy analysis
technique has been used to get an approximate analytical solution to the problem, and we
have seen that our computed results are sufficiently close to the analytical solution when
the surface heat flux is a constant, i.e. the oscillation amplitude is zero. In this paper,
we have seen that the movement of interface/phase front is profoundly affected due to
the change in various parameters like the oscillation amplitude, oscillation frequency, γ
and q. It is also seen that the homotopy analysis technique is a straightforward method.
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Moreover, this technique is sufficiently accurate and efficient to solve different types of
phase-change problems arising in the various industries.
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