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1 Introduction

In the last few decades, various engineering and scientific problems involving fractional
calculus were discussed. For example, electrochemical process [1, 2], earthquakes [3],
economics [4], bioengineering [5], orthogonal splin collocation [6] and fractional optimal
control problems [7, 8]. There are several analytical and numerical methods for solving
one-dimensional and two-dimensional differential and integral equations of fractional or-
der such as the Adomian decomposition [9], Variational iteration method [10,11], Trans-
form method [12], Homotopy perturbation method [13], and the methods of Harr and
Chebyshev wavelet [14,15] and Bernstein polynomials [16,17].

The Bernstein polynomials play a conspicuous role in several areas of mathematics.
These polynomials have been commonly used in the solution of differential equations,
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integral equations, fractional optimal control problems and approximation theory [7, 8,
17–23]. In this work, we consider the following type of 2DVIEFO

u(x, y)− Iq0up(x, y) = g(x, y), q = (α, β) ∈ (0,∞)× (0,∞), (1)

where g(x, y) is a known function and Iq0u(x, y) is the left-sided mixed Riemann-Liouville
integral of order q which is defined as [24]

(Iq0u)(x, y) =
1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− ξ)α−1(y − τ)β−1u(ξ, τ) dτ dξ. (2)

Note: For α > 0, the Riemann-Liouville integral (Iα) on the Lebesgue space L1[a, b]
is defined as

(Iα0 u)(t) = (Iαu)(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(τ) dτ. (3)

In particular, for (2), we have

1. (I0
0u)(x, y) = u(x, y),

2. (Iσ0 u)(x, y) =

∫ x

0

∫ y

0

u(ξ, τ) dτ dξ, (x, y) ∈ J, σ = (1, 1),

3. (Ir0u)(x, 0) = (Ir0u)(0, y) = 0, x ∈ [0, a], y ∈ [0, b],

4. Ir0x
λyω = Γ(1+λ)Γ(1+ω)

Γ(1+λ+α)Γ(1+ω+β)x
λ+αyω+β , (x, y) ∈ J, λ, ω ∈ (−1,∞).

We are looking for u ∈ L1(J), J := [0, a]× [0, b]. The existence and uniqueness of (1) is
investigated in [25].

We want to obtain the numerical solution of (1) by using two-dimensional Bern-
stein polynomials and block pulse functions. The rest of this paper is organized as
follows. First, we briefly review some general concepts concerning one-dimensional and
two-dimensional Bernstein polynomials, block pulse functions and derive the Bernstein
polynomials operational matrix of two-dimensional integration of fractional order. In Sec-
tion 3, the method is applied to solve linear or nonlinear 2DVIEFO. Section 4 exhibits
an error estimation for the presented method. Section 5 illustrates several numerical
examples to show the convergence and accuracy of the proposed method.

2 Bernstein Polynomials and Block Pulse Functions

2.1 One dimensional Bernstein polynomials (1D-BPs)

The nth degree Bernstein polynomials (BPs) on the interval [0, 1] are defined as

Bi,n(τ) =

(
n
i

)
τ i(1− τ)n−i, 0 ≤ i ≤ n. (4)

The BPs on [0, 1] have the following properties [7]:

1. Bi,n(τ) ≥ 0, i = 0, 1, . . . , n, τ ∈ [0, 1],

2.

n∑
i=0

Bi,n(t) = 1,
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3. Bi,n(τ) = (1− τ)Bi,n−1(τ) + τBi−1,n−1(τ), i = 0, 1, . . . , n,

4. Bi,n(τ) =

n−i∑
k=0

(−1)k
(
n
i

)(
n− i
k

)
τ i+k, i = 0, 1, . . . , n.

Theorem 2.1 [26] Suppose that H = L2[0, 1] is a Hilbert space with the inner
product and X = Span {B0,n(t), B1,n(t), . . . , Bn,n(t)} is a closed subspace with finite
dimensions, therefore X is a complete subspace of H. So, if u ∈ H is an arbitrary
element, it has a unique best approximation out of X such as x0, that is

∃ x0 ∈ Y s.t. ∀x ∈ X, ‖ u− x0 ‖2≤‖ u− x ‖2, (5)

where ‖ u ‖2=
√
< u, u > , < u, v >=

∫ 1

0

u(τ)v(τ) dτ .

Thus, there exist unique coefficients c0, c1, . . . , cn such that

u(t) ' x0 =

n∑
i=0

ciBi,n(t) = cTϕ(t), (6)

where cT = [c0, c1, . . . , cn] , ϕ(τ) = [B0,n(τ), B1,n(τ), . . . , Bn,n(τ)]T .

Lemma 2.1 If ϕn(τ) = [B0,n(τ), B1,n(τ), . . . , Bn,n(τ)]
T

is a complete basis, then
ϕn(t) = ATn(t), where A is an (n+ 1)× (n+ 1) upper triangular matrix with

ai+1,j+1 =

 (−1)j−i
(
n
i

)(
n− i
j − i

)
, i 6 j,

0, i > j,
(7)

for i, j = 0, 1, . . . , n and Tn(τ) = [1, τ, τ2, . . . , τn]T .

2.2 BPF and operational matrix

A set of BPF on [0, 1) is defined as follows:

bi(t) =

{
1, i

m ≤ t <
i+1
m , i, j = 0, 1, . . . ,m− 1,

0, otherwise.
(8)

The above functions are orthogonal and disjoint, i.e.

bi(t)bj(t) =

{
bi(t) i = j,
0 i 6= j,

and
∫ 1

0
bi(t)bj(t) dt =

1

m
δij , where δij is the Kronecker

delta.
If Bm(τ) = [b0(τ), b1(τ), . . . , bm−1(τ)]T , the block pulse operational matrix of the

fractional order integration Fα is [27]

IαBm(τ) = FαBm(τ),

where

Fα =
1

mα

1

Γ(α+ 2)



1 ξ1 ξ2 ξ3 . . . ξm−1

0 1 ξ1 ξ2 . . . ξm−2

0 0 1 ξ1 . . . ξm−3

...
...

. . .
. . .

. . .
...

0 0 . . . 0 1 ξ1
0 0 . . . 0 0 1


, (9)

with ξs = (s+ 1)α+1 − 2sα+1 + (s− 1)α+1.
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2.3 Operational matrix for fractional integral equation(1D)

If
ϕ(τ) = ϕn(τ) = [B0,n(τ), B1,n(τ), . . . , Bn,n(τ)]T ,

then for the fractional integral equation (3), we have

Iαϕn(τ) = Pαϕn(τ), (10)

with n = m− 1, the Bernstein polynomial might be expanded into an m-term BPF as

ϕm(τ) = φm×mBm(τ), (11)

now
Iαϕm(τ) = Iαφm×mBm(τ) = φm×mI

αBm(τ) = φm×mF
αBm(τ). (12)

From equations (11) and (12), we have

Iαϕm(τ) = φm×mF
αBm(τ) = φm×mF

αφ−1
m×mϕm(τ). (13)

Therefore,
Pαm×m = φm×mF

αφ−1
m×m. (14)

Pα is called an operational matrix for fractional integration based on the Bernstein
polynomials [28].

2.4 Two-dimensional Bernstein polynomials (2D-BPs)

The Bernstein polynomials of degree mn on the interval [0, 1]× [0, 1] are defined by

B(i,m)(j,n)(µ, ν) =

(
m
i

)(
n
j

)
µi(1− µ)m−iνj(1− ν)n−j (15)

for i = 0, 1, . . . ,m, j = 0, 1, . . . , n.

Similar to the 1D case, we have [19]:
1. B(i,m)(j,n)(µ, ν) ≥ 0,
2. B(i,m)(j,n)(µ, ν) = B(i,m)(µ)B(j,n)(ν),

3. B(i,m)(j,n)(µ, ν) =

m−i∑
k=0

n−j∑
t=0

(−1)r+t
(
m
i

)(
n
j

)(
m− i
k

)(
n− j
t

)
µi+kνj+t,

4. Q =< B(i,m)(j,n)(µ, ν), B(k,m)(t,n)(µ, ν) >

=

∫ 1

0

∫ 1

0

B(i,m)(j,n)(µ, ν)B(k,m)(t,n)(µ, ν) dµdν =

(
m
i

)(
n
j

)(
m
k

)(
n
t

)
(2m+ 1)(2n+ 1)

(
2m
i+ k

)(
2n
j + t

) ,

for i, k = 0, 1, . . . ,m, j, t = 0, 1, . . . , n.
Now, if we define (m+ 1)× (n+ 1)-vector

ϕmn(µ, ν) = [B(0,m)(0,n)(µ, ν), . . . , B(0,m)(n,n)(µ, ν),

. . . , B(m,m)(0,n)(µ, ν), . . . , B(m,m)(n,n)(µ, ν)]T , (16)

where (µ, ν) ∈ [0, 1]× [0, 1], then ϕmn(µ, ν) is a complete basis.
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2.5 Function expansion with 2D-BPs

We expand u(µ, ν) ∈ L2([0, 1]× [0, 1]) by 2D-BPs as

u(µ, ν) =

∞∑
i=0

∞∑
j=0

uijϕij(µ, ν) '
m∑
i=0

n∑
j=0

uijϕij(µ, ν) = UTϕ(µ, ν) = ϕT (µ, ν)U, (17)

where ϕ(µ, ν) and U are (m+ 1)(n+ 1) vectors. Components uij of U are obtained as

uij =< u(µ, ν), ϕ(µ, ν) >=

∫ 1

0

∫ 1

0

u(µ, ν)B(i,m)(j,n)(µ, ν) dµ dν. (18)

Similarly, let k(µ, ν, s, t) be defined on [0, 1] × [0, 1] × [0, 1] × [0, 1]. It can be expanded
with respect to 2D-BPs as

k(µ, ν, s, t) ' ϕT (µ, ν)Kψ(s, t), (19)

where ϕ(µ, ν) and ψ(s, t) are 2D-BPs vectors of dimension (m1 + 1)(n1 + 1) and (m2 +
1)(n2 +1), respectively, and K is the (m1 +1)(n1 +1)× (m2 +1)(n2 +1) two-dimensional
Bernstein polynomials coefficient matrix.

2.6 Operational matrix for fractional integral equation(2D)

Suppose B(i,m)(µ) = A1Tm(µ) and B(j,n)(ν) = A2Tn(ν). Then

ϕmn(µ, ν) = MTmn(µ, ν),

where

Tmn(µ, ν) = [1, ν, ν2, . . . , νn, µ, µν, . . . , µνn, . . . , µm, µmν, . . . , µmνn]
T
,

and M = A1 ⊗A2 and ⊗ denotes the Kronecker product.
Now, we present two-dimensional Bernstein polynomials operational matrices of frac-
tional mode. Let ϕmn(µ, ν) be defined as in (16). The fractional integration of the
ϕmn(µ, ν) can be approximately obtained as

1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− ξ)α−1(y − τ)β−1ϕmn(ξ, τ) dξ dτ ' P rϕmn(µ, ν), (20)

where P r is a (m+ 1)(n+ 1)× (m+ 1)(n+ 1) matrix and is called an operational matrix.
Let operational matrices Pα and P β satisfy (14), i.e.

Iαϕm(µ) = Pαϕm(µ) = φm×mF
αφ−1

m×mϕm(µ),

Iβϕn(ν) = P βϕn(ν) = φn×nF
βφ−1

n×nϕn(ν). (21)

From the disjointness property of two-dimensional Bernstein polynomials, we get

1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− ξ)α−1(y − τ)β−1ϕmn(ξ, τ) dξ dτ =
1

Γ(α)

∫ x

0

(x− ξ)α−1ϕm(ξ) dξ

× 1

Γ(β)

∫ y

0

(y − τ)β−1ϕn(τ) dτ.

By using (21), we have
P r = Pα ⊗ P β . (22)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 10–20 15

2.7 Product operational matrix

In view of (1), we have up(x, y). So, we need to evaluate the product of ϕ(x, y) and
ϕT (x, y), which is called the product matrix.

Lemma 2.2 Suppose that C(m+1)(n+1) is an arbitrary vector. The operational matrix

of product Ĉ(m+1)(n+1)×(m+1)(n+1) using BPs can be given as follows [29] :

ϕ(x, y)ϕT (x, y)C ' ĈTϕ(x, y). (23)

Corollary 2.1 Suppose u(x, y) = UTϕ(x, y) = ϕT (x, y)U and Û is the operational
matrix of product. Then

(u(x, y))k = ϕT (x, y)Uk, (24)

where k ∈ N and Uk = Ûk−1U .

Proof. By using Lemma 2.2, for k = 2, we get

(u(x, y))2 = UTϕ(x, y)ϕT (x, y)U = ϕT (x, y)ÛU = ϕT (x, y)U2.

Also, if k = 3 ,

(u(x, y))3 = UTϕ(x, y)ϕT (x, y)ÛU = ϕT (x, y)Û2U = ϕT (x, y)U3.

So, by induction we have

(u(x, y))k = UTϕ(x, y)ϕT (x, y)Ûk−2U = ϕT (x, y)Ûk−1U = ϕT (x, y)Uk.

3 Solving 2DFOVIE

In this section, two-dimensional Bernstein polynomials are applied to solve equation(1).
Using the procedures mentioned in Section 2, we approximate functions (u(x, y))p,
k(x, y, s, t) and f(x, y) as follows:

(u(x, y))p = ϕT (x, y)Up = U
T

p ϕ(x, y),

f(x, y) = ϕT (x, y)F = FTϕ(x, y), (25)

k(x, y, s, t) = ϕT (x, y)Kϕ(x, y),

where the (m+ 1)(n+ 1)× 1 vectors Up, F and (m+ 1)(n+ 1)× (m+ 1)(n+ 1) matrix
K are 2D-BPs coefficients of (u(x, y))p, f(x, y) and k(x, y, s, t) respectively. Substituting
equations(25) in equation(1), we have:

ϕT(x, y)U− 1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x−s)α−1(y−t)β−1ϕT(x, y)Kϕ(s, t)ϕT(s, t)Up dt ds=ϕT(x, y)F.

By using (23), we get

ϕT (x, y)U −
ϕT (x, y)K Û

T

p

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− s)α−1(y − t)β−1ϕ(s, t) dt ds = ϕT (x, y)F.
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From equation(20) and the above equation, we obtain

ϕT (x, y)U − ϕT (x, y)K Û
T

p P
rϕ(x, y) = ϕT (x, y)F,

or

U −K Û
T

p P
rϕ(x, y) = F. (26)

Now, we collocate equation(26) in (m+ 1)(n+ 1) Newton-Cotes nodes as

xi =
2i− 1

2(m+ 1)
, yj =

2j − 1

2(n+ 1)
, i = 1, 2, . . . ,m+ 1, j = 1, 2, . . . , n+ 1.

So, we have a linear(p = 1) or nonlinear(p ≥ 1) algebraic system

U −Bψ = F, (27)

where B = K Û
T

p P
r, and

ψ = [ϕ(x1, y1), ϕ(x1, y2), . . . , ϕ(x1, yn+1), . . . ϕ(xm+1, y1), . . . , ϕ(xm+1, yn+1)]
T
.

4 Error analysis

Theorem 4.1 Suppose u(x, y) is an exact solution of the equation (1) and û(x, y)
shows its approximate solution by Bernstein polynomials, and

1. | (x− ξ)α−1(y − τ)β−1k(x, y, ξ, τ) |< C,

2. (u(x, y))p is a Lipschitz continuous function, i.e.

|(u(x, y))p − (û(x, y))p| ≤ L|u(x, y)− û(x, y)|,

where L is a Lipschitz constant
3. m1=m2 = m.

Then û(x, y) converges to u(x, y), if 0 <
LC

Γ(α)Γ(β)
< 1.

Proof.
‖ u(x, y)− û(x, y) ‖∞= max

0≤x,y≤1
|u(x, y)− û(x, y)|

= max
0≤x,y≤1

| 1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x−ξ)α−1(y − τ)β−1k(x, y, ξ, τ)((u(ξ, τ))p−(û(ξ, τ))p)dξdτ |

≤ max
0≤x,y≤1

1

Γ(α)Γ(β)

∫ x

0

∫ y

0

|(x−ξ)α−1(y − τ)β−1k(x, y, ξ, τ)||(u(ξ, τ))p−(û(ξ, τ))p|dξdτ

≤ max
0≤x,y≤1

CL

Γ(α)Γ(β)

∫ x

0

∫ y

0

|u(ξ, τ)− û(ξ, τ)| dξdτ

≤ CLxy

Γ(α)Γ(β)
‖ u(ξ, τ)− û(ξ, τ) ‖∞≤

CL

Γ(α)Γ(β)
‖ u(ξ, τ)− û(ξ, τ) ‖∞ .
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Therefore we get

‖ u(x, y)− û(x, y) ‖∞≤
CL

Γ(α)Γ(β)
‖ u(ξ, τ)− û(ξ, τ) ‖∞ . (28)

Equation (28) shows that if 0 < LC
Γ(α)Γ(β) < 1, then ‖ u(ξ, τ)− û(ξ, τ) ‖∞−→ 0.

5 Numerical Examples

To demonstrate the validity and applicability of this scheme, we use the present
method for the following four examples. In view of (2), we rewrite (1) in the following
form of 2DFOVIE:

u(x, y)− 1

Γ(α)Γ(β)

∫ x

0

∫ y

0

(x− ξ)α−1(y − τ)β−1k(x, y, ξ, τ)up(ξ, τ) dξ dτ = g(x, y) (29)

Now, for different values of α, β, k(x, y, ξ, τ), p and g(x, y), we solve (29).

Example 5.1 Let α = 5
3 , β = 7

3 , k(x, y, ξ, τ) = ξτ
√
xy, p = 1 and g(x, y) = x3(y2 −

y)− x
17
3 y

13
3
√
xy(9y−16)

5000 The exact solution is u(x, y) = x3(y2−y). We applied the proposed
method to solve this example for various values of m and n. Also, we compare the
numerical results with the exact solution. The results are tabulated in Table 1.

x = y m = n =1 m = n =2 m = n =3
0.0 6.292 ×10−6 3.091 ×10−6 7.394 ×10−6

0.1 7.702 ×10−5 3.942 ×10−4 4.401 ×10−5

0.2 1.261 ×10−3 2.814 ×10−3 9.460 ×10−5

0.3 5.645 ×10−3 4.417 ×10−3 1.492 ×10−4

0.4 1.533 ×10−2 3.212 ×10−3 2.022 ×10−4

0.5 3.121 ×10−2 1.926 ×10−4 2.515 ×10−4

0.6 5.180 ×10−2 3.579 ×10−3 2.919 ×10−4

0.7 7.198 ×10−2 4.819 ×10−3 3.020 ×10−4

0.8 8.187 ×10−2 2.975 ×10−3 2.257 ×10−4

0.9 6.556 ×10−2 5.010 ×10−4 5.289 ×10−5

Table 1: The maximum absolute errors in Example 5.1.

Example 5.2 Let α = β = 5
2 , k(x, y, ξ, τ) =

√
xyξ, p = 2 and f(x, y) = x

√
y −

1

420
x

11
2 y4 with the exact solution u(x, y) = x

√
y. The maximum absolute errors are

shown in Table 2.

Example 5.3 Let α = 5
2 , β = 7

2 , k(x, y, ξ, τ) = (y + ξ)e−2τ , p = 2 and

f(x, y) = xey − 1024x
9
2 y

7
2 (6x+ 11y)

1091475π
with the exact solution u(x, y) = xey. The

maximum absolute errors are shown in Table 3.
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x = y m = n =1 m = n =2 m = n =3
0.0 5.603 ×10−5 2.592 ×10−6 1.327 ×10−5

0.1 3.064 ×10−3 1.273 ×10−3 1.611 ×10−3

0.2 4.032 ×10−3 4.748 ×10−3 1.497 ×10−3

0.3 1.220 ×10−2 4.694 ×10−3 1.253 ×10−3

0.4 1.818 ×10−2 1.276 ×10−3 3.797 ×10−3

0.5 2.009 ×10−2 3.948 ×10−3 4.052 ×10−3

0.6 1.666 ×10−2 8.789 ×10−3 1.451 ×10−3

0.7 6.937 ×10−3 1.070 ×10−2 2.806 ×10−3

0.8 9.786 ×10−3 6.921 ×10−3 5.652 ×10−3

0.9 3.410 ×10−2 5.490 ×10−3 2.132 ×10−3

Table 2: The maximum absolute errors in Example 5.2.

x = y m = n =1 m = n =2 m = n =4
0.0 9.890 ×10−5 3.578 ×10−4 7.921 ×10−4

0.1 6.034 ×10−3 6.324 ×10−4 9.468 ×10−4

0.2 1.666 ×10−3 3.307 ×10−4 1.104 ×10−3

0.3 9.537 ×10−3 1.114 ×10−3 1.266 ×10−3

0.4 2.339 ×10−2 8.532 ×10−4 1.424 ×10−3

0.5 3.514 ×10−2 6.995 ×10−4 1.566 ×10−3

0.6 3.935 ×10−2 3.095 ×10−3 1.673 ×10−3

0.7 2.987 ×10−2 5.105 ×10−3 1.675 ×10−3

0.8 3.150 ×10−4 4.622 ×10−3 1.370 ×10−3

0.9 5.916 ×10−2 1.445 ×10−3 2.511 ×10−4

Table 3: The maximum absolute errors in Example 5.3.

Example 5.4 As the last example, let α = 3
2 , β = 5

2 , k(x, y, ξ, τ) =
√
xyτ, p = 2 and

f(x, y) =
√
y( −1

180x
3y

7
2 +

√
x
3 ) The exact solution of this example is u(x, y) =

√
3xy
3 . The

maximum absolute errors are shown in Table 4. Also, the obtained numerical results
are compared with the method of block pulse operational matrix (BPOM) proposed
in [23,30].

6 Conclusion

A new approach to obtain numerical solution of 2DFOVIE based on the operational
matrices of Bernstein polynomials has been presented. With the help of the operational
matrix of fractional integration P r and the collocation method, the given 2DFOVIE is
reduced to a linear or nonlinear system of algebraic equations. Illustrative examples show
that the proposed method can be a suitable method for solving these equations. All of
computations are done by Mathematica 9.
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x = y m = n =1 m = n =2 m = n =3 m1=m2=32
BPOM

0.0 4.091 ×10−2 1.701 ×10−2 9.354 ×10−3 9.386 ×10−3

0.1 1.171 ×10−2 4.572 ×10−3 5.766 ×10−3 1.561 ×10−2

0.2 1.017 ×10−2 1.183 ×10−2 3.740 ×10−3 8.812 ×10−3

0.3 2.472 ×10−2 9.513 ×10−3 2.911 ×10−3 1.630 ×10−2

0.4 3.196 ×10−2 1.934 ×10−3 7.428 ×10−3 8.239 ×10−3

0.5 3.186 ×10−2 7.003 ×10−3 7.270 ×10−3 1.410 ×10−2

0.6 2.444 ×10−2 1.382 ×10−2 2.893 ×10−3 7.665 ×10−3

0.7 9.702 ×10−3 1.545 ×10−2 3.149 ×10−3 1.430 ×10−2

0.8 1.236 ×10−2 9.258 ×10−3 6.781 ×10−3 7.091 ×10−3

0.9 4.176 ×10−2 6.980 ×10−3 2.666 ×10−3 1.260 ×10−2

Table 4: The maximum absolute errors in Example 5.4.
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