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Abstract: In this paper, a new 3D chaotic system is introduced. Basic dynamical
characteristics and properties of this new chaotic system are studied, namely the
equilibrium points and their stability, the Lyapunov exponent, Lyapunov exponent
spectrum and the Kaplan-Yorke dimension. Also, we derive new control results via
the adaptive control method based on Lyapunov stability theory and the adaptive
control theory of this new chaotic system with unknown parameters. The results are
validated by numerical simulation using Matlab.
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1 Introduction

In mathematics and physics, chaos theory deals with the behavior of certain nonlinear
dynamical systems that under certain conditions exhibit a phenomenon known as chaos,
which is characterised by a sensitivity to initial conditions [1]. Chaos as an important
nonlinear phenomenon has been studied in mathematics, engineering and many other
disciplines. Since Lorenz discovered a three-dimensional autonomous chaotic system [2],
many other systems have been introduced and analysed, we mention the Chen, Rössler
and Lü systems [3,4,5]. After that hyperchaotic systems were constructed using many
different methods. The synchronization of two chaotic systems was introduced in the
work of Pecora and Carroll [6], then many different methodologies have been developed
for synchronization of chaotic systems such as the OGY method [7], active contol method
[8], sliding mode control [9], backstepping control [10], function projective method [11],
adaptive control [12-14], etc.

In this work, a new chaotic system is introduced and we derive new control results
via the adaptive control method based on Lyapunov stability theory and the adaptive
control theory for this new chaotic system with unknown parameters. The results are
validated by numerical simulation using Matlab.
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1.1 Description of the novel chaotic system

In this research work, we propose a new 3D chaotic system with two quadratic nonlin-
earities, which is given in the system form as

dx1

dt = a(x2 − x1),
dx2

dt = cx1 + x1x3,
dx3

dt = −x1x2 + b(x1 − x3),

(1)

where a, b, c are positive reals parameters. In the first part of this paper, we shall show
that the system (1) is chaotic when the system parameters a, b and c take the values:

a = 13, b = 2.5, c = 50. (2)

1.2 Basic properties

In this section, some basic properties of system (1) are given. We start with the equili-
brum points of the system and check their stability at the initial values of the parameters
a, b, c.

1.3 Equilibrum points

Putting equations of system (1) equal to zero, i.e.

a(x2 − x1) = 0, cx1 + x1x3 = 0, −x1x2 + b(x1 − x3) = 0, (3)

gives the three equilibrium points

p0 = (0, 0, 0) , p1,2 =

(
1

2
b∓ 1

2

√
4bc+ b2,

1

2
b∓ 1

2

√
4bc+ b2,−c

)
. (4)

1.4 Stability

In order to check the stability of the equilibrum points we derive the Jacobian matrix at
a point p (x, y, z) of the system (1)

J(p) =

 −a a 0
c+ z 0 x
b− y −x −b

 . (5)

For p0, we obtain J(p0) =

 −a a 0
c 0 0
b 0 −b

, with the characteristic polynomial equation

λ3 + (a+ b)λ2 + (ab− ac)λ− abc = 0, which has three eigenvalues

λ1 = 19. 811, λ2 = −2.5, λ3 = −32.811. (6)

Since all the eigenvalues are real, the Hartma-Grobman theorem implies that p0 is a
saddle point which is unstable according to the Lyapunov theorem of stability.

By the same method, the eigenvalues of the Jacobian at p1 are:

λ1 = 0.993 85− 12. 895i, λ2 = 0.993 85 + 12. 895i, λ3 = −17.488. (7)
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The eigenvalues of the Jacobian at p2 are:

λ1 = 0.763 22− 14. 634i, λ2 = 0.763 22 + 14. 634i, λ3 = −17. 026. (8)

Then p1 and p2 are two unstable saddle-foci because none of the eigenvalues have zero
real part and λ1, λ2 are complex.

1.5 Dissipativity

A dissipative dynamical system satisfies the condition

∇.V =
∂

.
x

∂x
+
∂

.
y

∂y
+
∂

.
z

∂z
< 0. (9)

In the case of the system (1), we have

∇.V = −(a+ b). (10)

For a = 13, b = 2.5, c = 50 we obtain ∇.V = −15. 5 < 0, and threfore dissipativity
condition holds for this system. Also,

dV

dt
= e−(a+b) = 1. 855 4× 10−7. (11)

Then the volume of the attractor decreases by a factor of 0.00000018554.

2 Lyapunov Exponents and Kaplan-Yorke Dimension

Lyapunov exponents are used to measure the exponential rates of divergence and con-
vergence of nearby trajectoiries, which is an important characterstic to judge whether
the system is chaotic or not. The existence of at least one positive Lyapunov exponent
implies that the system is chaotic.

For the chosen parameter values (2), the Lyapunov exponents of the novel chaotic
system (1) are obtained using Matlab as:

L1 = 1.4375, L2 = −0.000166417, L3 = −16.9373. (12)

The Lyapunov exponents spectrum is shown in Fig. 1.
Since the spectrum of Lyapunov exponents (13) has a positive term L1, it follows

that the novel 3-D chaotic system (1) is chaotic. The Kaplan-Yorke dimension of system
(1) is calculated as

DKL = 2 +
L1 + L2

|L3|
= 2.0849. (13)

3 Adaptive Control of the Novel 3-D Chaotic System

This section describes an adaptive design of a globally stabilizing feedback controller for
the chaotic system (1) with unknown parameters. The design is carried out using the
adaptive control theory and Lyapunov stability theory.
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Figure 1: Lyapunov exponents spectrum.
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Figure 2: Projection of the strange attractor of the system (1) into the (z; x)-plane.

A controlled chaotic system of (1) is given by
dx1

dt = a(x2 − x1) + u1,
dx2

dt = cx1 + x1x3 + u2,
dx3

dt = −x1x2 + b(x1 − x3) + u3,

(14)

where a, b, c are unknown constant parameters, and u1, u2, u3 are adaptive controllers
to be found using the states x1, x2, x3 and estimates a1 (t) , b1 (t) , c1 (t) of the unknown
parameters a, b, c, respectively.

We take the adaptive control law defined by u
1

= −a1 (t) (x2 − x1)− k1x1,
u

2
= −c1 (t)x1 − x1x3 − k1x2,

u
3

= x1x2 − b1 (t) (x1 − x3)− k3x3,
(15)
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where k1, k2, k3 are positive gain constants.
Substituting (15) into (14), we obtain the closed-loop control system as

dx1

dt = (a− a1 (t)) (x2 − x1)− k1x1,
dx2

dt = (c− c1 (t))x1 − k2x2,
dx3

dt = (b− b1 (t)) (x1 − x3)− k3x3.
(16)

We define the parameter estimation errors as

ea (t) = a− a1 (t) , ec (t) = c− c1 (t) , eb (t) = b− b1 (t) . (17)

By using (17), we rewrite the closed-loop system (16) as
dx1

dt = ea (t) (x2 − x1)− k1x1,
dx2

dt = ec (t)x1 − k2x2,
dx3

dt = eb (t) (x1 − x3)− k3x3.
(18)

Differentiating (17) with respect to t, we obtain
dea(t)

dt = −da1(t)
dt ,

dec(t)
dt = −dc1(t)

dt ,
deb(t)
dt = −db1(t)

dt .

(19)

To find an update law for the parameter estimates, we shall use the Lyapunov stability
theory. We consider the quadratic Lyapunov function given by

V (x1, x2, x3, ea, eb, ec) =
1

2

(
x21 + x22 + x23 + e2a + e2b + e2c

)
. (20)

which is a positive definite function on R6.
Differentiating V along the trajectories of the systems (18) and (19), we obtain the

following:

V̇ = −
3∑

i=1

kix
2
i +ea

(
x1x2−x21−

da1 (t)

dt

)
+eb

(
x1x3−x23−

db1 (t)

dt

)
+ec

(
x1x2−

dc1 (t)

dt

)
.

(21)
In view of (21), we take the parameter update law as follows

da1(t)
dt = x1x2 − x21,

db1(t)
dt = x1x3 − x23,

dc1(t)
dt = x1x2.

(22)

Theorem 3.1 The 3-D novel chaotic system (14) with unknown parameters is glob-
ally and exponentially stabilized by the adaptive feedback control law (15) and the param-
eter update law (22), where k1, k2, k3 are positive constants 3.1.

Proof. Substituting the parameter update law (21) into (20), we obtain the time
derivative of V as:

V̇ = −k1x21 − k2x22 − k3x23, (23)

which is a negative definite function on R6. By the direct method of Lyapunov [15], it
follows that x1, x2, x3, ea, eb, ec are globally exponentially stable. 2
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3.1 Numerical simulations

We used the classical fourth-order Runge-Kutta method with the step size h = 10−8 to
solve the system of differential equations (14) and (22), when the adaptive control law
(15) is applied.

The parameter values of the novel 3-D chaotic system (14) are chosen as in the chaotic
case (2). The positive gain constants are taken as ki = 3, for i = 1, 2, 3.

The initial conditions of the novel chaotic system (14) are chosen as x1(0) =
6.4, x2(0) = −4.7, x3(0) = 2.5. Furthermore, as initial conditions of the parameter esti-
mates of the unknown parameters, we have chosen: a1(0) = 2.5, b1(0) = 5.3, c1(0) = 4.8.

In Figs. 3-4, the exponential convergence of the controlled states x1(t), x2(t), x3(t)
and the time-history of the parameter estimates a1(t); b1(t); c1(t) are depicted, when the
adaptive control law (15) and parameter update law (22) are implemented.
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Figure 3: Exponential convergence of the controlled states x1(t);x2(t);x3(t).

4 Adaptive Synchronization of the Identical Novel 3-D Chaotic Systems

In this section, we derive an adaptive control law for globally and exponentially synchro-
nizing the identical novel 3-D chaotic systems with unknown system parameters. Thus,
the master system is given by the novel chaotic system dynamics

dx1

dt = a(x2 − x1),
dx2

dt = cx1 + x1x3,
dx3

dt = −x1x2 + b(x1 − x3).

(24)

Also, the slave system is given by the novel chaotic system dynamics
dy1

dt = a(y2 − y1) + u1,
dy2

dt = cy1 + y1y3 + u2,
dy3

dt = −y1y2 + b(y1 − y3) + u3.

(25)
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Figure 4: Time-history of the parameter estimates a1(t); b1(t); c1(t).

In (24) and (25), the system parameters a, b, c are unknown and the design goal is
to find an adaptive feedback controls u1, u2, u3 using the states x1, x2, x3 and estimates
a1 (t) , b1 (t) , c1 (t) of the unknown parameters a, b, c, respectively. The synchronization
error between the novel chaotic systems (24) and (25) is defined as

e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3. (26)

Then (26) implies  ė1 = ẏ1 − ẋ1,
ė2 = ẏ2 − ẋ2,
ė3 = ẏ3 − ẋ3.

(27)

Thus, the synchronization error dynamics is obtained as ė1 = a(e2 − e1) + u1,
ė2 = ce1 + y1y3 − x1x3 + u2,
ė3 = b(e1 − e3)− y1y2 + x1x2 + u3.

(28)

We take the adaptive control law defined by u1 = −a1(e2 − e1)− k1e1,
u2 = −c1e1 − y1y3 + x1x3 − k2e2,
u3 = −b1(e1 − e3) + y1y2 − x1x2 − k3e3.

(29)

where k1, k2, k3 are positive gain constants.
Substituting (29) into (28), we obtain the closed-loop error dynamics as ė1 = (a− a1)(e2 − e1)− k1e1,

ė2 = (c− c1)e1 − k2e2,
ė3 = (b− b1)(e1 − e3)− k3e3.

(30)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 68–78 75

The parameter estimation errors are defined as

ea (t) = a− a1 (t) , ec (t) = c− c1 (t) , eb (t) = b− b1 (t) . (31)

Differentiating (31) with respect to t, we obtain
dea(t)

dt = −da1(t)
dt ,

dec(t)
dt = −dc1(t)

dt ,
deb(t)
dt = −db1(t)

dt .

(32)

By using (31), we rewrite the closed-loop system (30) as ė1 = ea(e2 − e1)− k1e1,
ė2 = ece1 − k2e2,
ė3 = eb(e1 − e3)− k3e3.

(33)

We consider the quadratic Lyapunov function given by

V (x1, x2, x3, ea, eb, ec) =
1

2

(
x21 + x22 + x23 + e2a + e2b + e2c

)
. (34)

which is a positive definite function on R6.

Differentiating V along the trajectories of the systems (33) and (32), we obtain the
following:

V̇ = −
3∑

i=1

kie
2
i +ea

(
e1e2 − e21−

da1 (t)

dt

)
+eb

(
e1e3−e23−

db1 (t)

dt

)
+ec

(
e1e2−

dc1 (t)

dt

)
.

(35)

In view of (35), we take the parameter update law as follows:
da1(t)

dt = e1e2 − e21,
db1(t)
dt = e1e3 − e23,

dc1(t)
dt = e1e2.

(36)

Substituting (36) into (35), we get

V̇ = −
3∑

i=1

kie
2
i , (37)

which is a negative definite function on R3. Hence, by the Lyapunov stability theory [15],
it follows that ei(t) −→ 0 as t −→∞ for i = 1, 2, 3. Hence, we have proved the following
theorem.

Theorem 4.1 The novel 3-D chaotic systems (24) and (25) with unknown parame-
ters are globally and exponentially synchronized for all initial conditions by the adaptive
feedback control law (29) and the parameter update law (36), where k1, k2, k3 are positive
constants 4.1.
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Figure 5: Synchronization of the states x1(t) and y1(t).
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Figure 6: Synchronization of the states x2(t) and y2(t).

4.1 Numerical simulations

We used the classical fourth-order Runge-Kutta method with the step size h = 10−8 to
solve the system of differential equations (24), (25) and (36), when the adaptive control
law (29) is applied.

The parameter values of the novel 3-D chaotic system (24) are chosen as in the chaotic
case (2). The positive gain constants are taken as ki = 4, for i = 1, 2, 3.

The initial conditions for the master system (24) are chosen as x1(0) = 5, x2(0) =
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Figure 7: Synchronization of the states x3(t) and y3(t).
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Figure 8: Time-history of the synchronization errors e1(t), e2(t), e3(t).

−3, x3(0) = −10 and those for the slave system (25) are chosen as y1(0) = 14, y2(0) =
10, y3(0) = 5. Furthermore, as initial conditions of the parameter estimates of the un-
known parameters, we have chosen a1(0) = 10, b1(0) = 15, c1(0) = 20. In Figs. 5-7, the
synchronization of the states of the master system (24) and slave system (25) is depicted,
when the adaptive control law (29) and parameter update law (36) are implemented. In
Fig. 8, the time-history of the synchronization errors e1(t), e2(t), e3(t) is depicted.
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5 Conclusion

In this paper, a new chaotic system is introduced. Basic properties of this system are
studied, namely, the equilibrum points and their stability, the Lyapunov exponent and
the Kaplan-Yorke dimension. Moreover, adaptive control schemes have been proposed
to stabilize and synchronize such two new chaotic systems. Numerical simulations using
MATLAB have been made to illustrate our results for the new chaotic system with
unknown parameters.
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