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1 Introduction

We consider the following nonlinear parabolic problem:

(P)


∂u
∂t − div

(
a(x, t, u,∇u) + Φ(u)

)
+ g(x, t, u,∇u) = f in Q,

u = 0 on ∂Q = ∂Ω× [0, T ],

u(x, 0) = u0 on Ω,

where A(u) = −div(a(x, t, u,∇u)) is an operator of Leray-Lions type, the lower order
term Φ ∈ C0(R,RN ), g is a nonlinearity term which satisfies the growth and the sign
condition and the data f belong to L1(Q). Under these assumptions the term div(Φ(u))
may not exist in the distributions sense, since the function Φ(u) does not belong to
(L1

loc(Q))N .
In the setting of classical Sobolev spaces, the existence of a weak solution for the

problem (P) has been proved in [10] in the case of Φ ≡ g ≡ 0. It is well known that this
weak solution is not unique in general (see [16] for a counter-example in the stationary
case).
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In order to obtain well-posedness for this type of problems the notion of renormalized
solution has been introduced by Lions and DiPerna [12] for the study of Boltzmann
equation (see also Lions [13] for a few applications to fluid mechanics models). This
notion was then adapted to the elliptic version by Boccardo et al. [11]. At the same
time, the equivalent notion of entropy solutions has been developed independently by
Bénilan et al. [5] for the study of nonlinear elliptic problems.

The existence and uniqueness of a renormalized solution has been proved by D. Blan-
chard and F. Murat [8] in the case where a(x, t, s, ξ) is independent of s, with Φ ≡ 0 and
g ≡ 0, by D. Blanchard, F. Murat and H. Redwane [9] with the large monotonicity on
a. For measure data, u = b(x, u) and Φ ≡ 0, the existence of renormalized solution for
the problem (P) has been proved by Y. Akdim et al.[3] in the framework of weighted
Sobolev space, by L. Aharouch, J. Bennouna and A. Touzani [1], and by A. Benkirane
and J. Bennouna [6] in the Orlicz spaces and degenerated spaces.

In the Musielak framework, the existence of a weak solution for the problem (P) has
been proved by M.L. Ahmed Oubeid, A. Benkirane and M. Sidi El Vally in [2] where
Φ ≡ 0, the existence of entropy solutions for the problem (P) has been studied by A.
Talha, A. Benkirane and M.S.B. Elemine Vall in [19].

As an example of equations to which the present result can be applied, we give

∂u

∂t
− div

(m(x, |∇u|)
|∇u|

.∇u+ u|u|σ
)

+
sign(u)

1 + u2
ϕ(x, |∇u|) = f ∈ L1(Q),

where m is the derivative of ϕ with respect to t.

2 Preliminaries

2.1 Musielak-Orlicz-Sobolev spaces.

Let Ω be an open set in RN and let ϕ be a real-valued function defined in Ω× R+, and
satisfying the following conditions:
a) ϕ(x, ·) is an N-function,
b) ϕ(·, t) is a measurable function.

The function ϕ is called a Musielak–Orlicz function. For a Musielak-orlicz function
ϕ we put ϕx(t) = ϕ(x, t) and we associate its nonnegative reciprocal function ϕ−1

x , with
respect to t that is ϕ−1

x (ϕ(x, t)) = ϕ(x, ϕ−1
x (t)) = t. The Musielak-orlicz function ϕ is

said to satisfy the ∆2-condition if for some k > 0 and a non negative function h integrable
in Ω, we have

ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for all x ∈ Ω and t ≥ 0. (1)

When (1) holds only for t ≥ t0 > 0; then ϕ is said to satisfy the ∆2-condition near
infinity.

Let ϕ and γ be two Musielak-orlicz functions. We say that γ grows essentially less
rapidly than ϕ at 0 (resp. near infinity), and we write γ ≺≺ ϕ, if for every positive
constant c we have

lim
t−→0

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0, (resp. lim

t−→∞

(
sup
x∈Ω

γ(x, ct)

ϕ(x, t)

)
= 0).

We define the functional ρϕ,Ω(u) =

∫
Ω

ϕ(x, |u(x)|)dx, where u : Ω −→ R is a Lebesgue

measurable function.
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We define the Musielak-Orlicz space (the generalized Orlicz spaces) by

Lϕ(Ω) =
{
u : Ω −→ R measurable

/
ρϕ,Ω

( |u(x)|
λ

)
< +∞, for some λ > 0

}
.

For a Musielak-Orlicz function we put: ψ(x, s) = supt≥0 {st− ϕ(x, t)}. ψ is called the
Musielak-Orlicz function complementary to ϕ in the sense of Young with respect to the
variable s. In the space Lϕ(Ω) we define the following two norms:

‖u‖ϕ,Ω = inf
{
λ > 0/

∫
Ω

ϕ
(
x,
|u(x)|
λ

)
dx ≤ 1

}
,

which is called the Luxemburg norm and the so-called Orlicz norm by

‖|u|‖ϕ,Ω = sup
‖v‖ψ≤1

∫
Ω

|u(x)v(x)|dx,

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent [14]. The closure in Lϕ(Ω) of the bounded measurable functions with compact
support in Ω is denoted by Eϕ(Ω).

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω)

if there exists a constant k > 0 such that limn→∞ ρϕ,Ω

(
un−u
k

)
= 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) =
{
u ∈ Lϕ(Ω) : ∀|α| ≤ m, Dαu ∈ Lϕ(Ω)

}
and

WmEϕ(Ω) =

{
u ∈ Eϕ(Ω) : ∀|α| ≤ m, Dαu ∈ Eϕ(Ω)

}
,

where α = (α1, ..., αn) with nonnegative integers αi, |α| = |α1|+...+|αn| and Dαu denote
the distributional derivatives. The space WmLϕ(Ω) is called the Musielak-Orlicz-Sobolev
space. Let

ρϕ,Ω(u) =
∑
|α|≤m ρϕ,Ω

(
Dαu

)
and ‖u‖mϕ,Ω = inf

{
λ > 0 : ρϕ,Ω

(
u
λ

)
≤ 1
}
.

For u ∈ WmLϕ(Ω) these functionals are a convex modular and a norm on WmLϕ(Ω),

respectively, and the pair
(
WmLϕ(Ω), ‖‖mϕ,Ω

)
is a Banach space if ϕ satisfies the following

condition [14] :

there exists a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c. (2)

The space WmLϕ(Ω) will always be identified with a subspace of the product∏
|α|≤m Lϕ(Ω) = ΠLϕ, this subspace is σ(ΠLϕ,ΠEψ) closed. We denote by D(Ω) the

space of infinitely smooth functions with compact support in Ω and by D(Ω)) the restric-
tion of D(RN ) on Ω. Let Wm

0 Lϕ(Ω) be the σ(ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω).
Let WmEϕ(Ω) be the space of functions u such that u and its distribution derivatives
up to order m lie in Eϕ(Ω), and Wm

0 Eϕ(Ω) is the (norm) closure of D(Ω) in WmLϕ(Ω).
The following spaces of distributions will also be used:

W−mLψ(Ω) =
{
f ∈ D′(Ω); f =

∑
|α|≤m(−1)|α|Dαfα with fα ∈ Lψ(Ω)

}
and
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W−mEψ(Ω) =
{
f ∈ D′(Ω); f =

∑
|α|≤m(−1)|α|Dαfα with fα ∈ Eψ(Ω)

}
.

We say that a sequence of functions un ∈ WmLϕ(Ω) is modular convergent to u ∈
WmLϕ(Ω) if there exists a constant k > 0 such that limn→∞ ρϕ,Ω

(
un−u
k

)
= 0.

The inhomogeneous Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows:

W 1,xLϕ(Q) =
{
u ∈ Lϕ(Q) : ∀|α| ≤ 1 Dα

xu ∈ Lϕ(Q)
}

and
W 1,xEϕ(Q) =

{
u ∈ Eϕ(Q) : ∀|α| ≤ 1 Dα

xu ∈ Eϕ(Q)
}
.

The last space is a subspace of the first one, and both are Banach spaces under the
norm ‖u‖ =

∑
|α|≤m ‖Dα

xu‖ϕ,Q. We have the following complementary system(
W 1,x

0 Lϕ(Q) F

W 1,x
0 Eϕ(Q) F0

)
,

F being the dual space of W 1,x
0 Eϕ(Q). It is also, except for an isomorphism, the quotient

of ΠLψ by the polar set W 1,x
0 Eϕ(Q)⊥, and will be denoted by F = W−1,xLψ(Q) and it

is shown that
W−1,xLψ(Q) =

{
f =

∑
|α|≤1D

α
xfα : fα ∈ Lψ(Q)

}
.

This space will be equipped with the usual quotient norm ‖f‖ = inf
∑
|α|≤1 ‖fα‖ψ,Q,

where the inf is taken on all possible decompositions f =
∑
|α|≤1D

α
xfα, fα ∈ Lψ(Q).

The space F0 is then given by

F0 =
{
f =

∑
|α|≤1D

α
xfα : fα ∈ Eψ(Q)

}
= W−1,xEψ(Q).

Let us give the following lemma which will be needed later.

Lemma 2.1 [7]. Let Ω be a bounded Lipschitz domain in RN and let ϕ and ψ be two
complementary Musielak-Orlicz functions which satisfy the following conditions:
i) There exists a constant c > 0 such that infx∈Ω ϕ(x, 1) ≥ c,
ii) There exists a constant A > 0 such that for all x, y ∈ Ω with |x− y| ≤ 1

2 we have

ϕ(x, t)

ϕ(y, t)
≤ t

( A

log( 1
|x−y|

)
, ∀t ≥ 1. (3)

iii)

If D ⊂ Ω is a bounded measurable set, then

∫
D

ϕ(x, 1)dx <∞. (4)

iv) There exists a constant C > 0 such that ψ(x, 1) ≤ C a.e in Ω.
Under these assumptions, D(Ω) is dense in Lϕ(Ω) with respect to the modular topology,
D(Ω) is dense in W 1

0Lϕ(Ω) for the modular convergence and D(Ω) is dense in W 1Lϕ(Ω)
for the modular convergence.

Consequently, the action of a distribution S in W−1Lψ(Ω) on an element u of
W 1

0Lϕ(Ω) is well defined. It will be denoted by < S, u >.

Lemma 2.2 (Poincaré inequality) [18] Let ϕ be a Musielak-Orlicz function which
satisfies the assumptions of Lemma 2.1, suppose that ϕ(x, t) decreases with respect to one
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of coordinates of x. Then, there exists a constant c > 0 depending only on Ω such that∫
Ω

ϕ(x, |u(x)|) dx ≤
∫

Ω

ϕ(x, c|∇u(x)|) dx, ∀u ∈W 1
0Lϕ(Ω). (5)

3 Assumptions and Main Result

Let Ω be a bounded open set on RN satisfying the segment property and T > 0, we denote
Q = Ω× [0, T ], and let ϕ and γ be two Musielak-Orlicz functions such that γ ≺≺ ϕ and
ϕ satisfies the conditions of Lemma 2.2. Let A : D(A) ⊂ W 1,x

0 Lϕ(Q) −→ W−1,xLψ(Q)
be a mapping given by A(u) = −div(a(x, t, u,∇u)), where a : a(x, t, s, ξ) : Ω× [0, t]×R×
RN −→ RN is a Carathéodory function satisfying, for a.e (x, t) ∈ Q and for all s ∈ R
and all ξ, ξ′ ∈ RN , ξ 6= ξ′,

|a(x, t, s, ξ)| ≤ β
(
c(x, t) + ψ−1

x ϕ(x, ν|ξ|)
)
, (6)(

a(x, t, s, ξ)− a(x, t, s, ξ′)

)
(ξ − ξ′) > 0, (7)

a(x, t, s, ξ).ξ ≥ αϕ(x, |ξ|), (8)

where c(x, t) is a positive function, c(x, t) ∈ Eψ(Q) and β, ν, α ∈ R∗+ .
Let g : Ω × [0, t] × R × RN −→ RN be a Caratheodory function satisfying for a.e.
(x, t) ∈ Ω× [0, t] and ∀s ∈ R, ξ ∈ RN ,

|g(x, t, s, ξ)| ≤ b(|s|)(c2(x, t) + ϕ(x, |ξ|)), (9)

g(x, t, s, ξ)s ≥ 0, (10)

where c2(x, t) ∈ L1(Q) and b : R+ −→ R+ is a continuous and nondecreasing function.
Furthermore, let

Φ ∈ C0(R,RN ), (11)

f ∈ L1(Q) and u0 is an element of L1(Q). (12)

For ` > 0 we define the truncation at height `: T` : R −→ R by

T`(s) =

{
s if |s| ≤ `,
` s|s| if |s| > `.

(13)

The definition of a renormalized solution for problem (P) can be stated as follows.

Definition 3.1 A measurable function u defined on Q is a renormalized solution of
Problem (P) if

T`(u) ∈W 1,x
0 Lϕ(Q), (14)∫

{(x,t)∈Q;m≤|u(x,t)|≤m+1}
a(x, t, u,∇u) · ∇u dxdt −→ 0 as m −→∞, (15)

and if, for every function S in W 2,∞(R) which is piecewise C1 and such that S′ has a
compact support, we have

∂S(u)

∂t
− div (a(x, t, u,∇u)S′(u)) + S′′(u)a(x, t, u,∇u) · ∇u

− div (Φ(u)S′(u)) + S′′(u)Φ(u) · ∇u+ g(x, t, u,∇u)S′(u) = fS′(u) in D′(Q),

S(u)(t = 0) = S(u0) in Ω. (16)
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We will prove the following existence theorem.

Theorem 3.1 Assume that (6) to (11) hold true. Then, there exists a renormalized
solution u of problem (P) in the sense of Definition 3.1.

Proof. The proof of Theorem 3.1 is divided into five steps.
Step 1: Approximate problem. Let consider us the following approximate problem

(Pn)


∂un
∂t − div

(
a(x, t, un,∇un) + Φn(un)

)
+ gn(x, t, un,∇un) = fn in D′(Q),

un = 0 on ∂Ω× (0, T ),

un(t = 0) = u0n on Ω,

where (fn) ∈ L1(Q) is a sequence of smooth functions such that fnfn →
f in L1(Q)f in L1(Q), Φn(s) = Φ(Tn(s)) and gn(x, t, s, ξ) = Tn(g(x, t, s, ξ)). Note
that gn(x, t, s, ξ)s ≥ 0, |gn(x, t, s, ξ)| ≤ |g(x, t, s, ξ)| and |gn(x, t, s, ξ)| ≤ n. Since Φ is
continuous, we have Φ(Tn(s)) ≤ cn, then the problem (Pn) has at least one solution
un ∈W 1,x

0 Lϕ(Q) (see e.g. [2]).
Step 2: A priori estimates. We take T`(un)χ(0,τ) as a test function in (Pn), we

get for every τ ∈ (0, T )∫
Ω

T̂`(un(τ)) dx+

∫
Qτ

a(x, t, T`(un),∇T`(un)) · ∇T`(un) dxdt+

∫
Qτ

Φn(un) · ∇T`(un)dxdt

=

∫
Qτ

fnT`(un) dxdt−
∫
Qτ

gn(x, t, un,∇un)T`(un) dxdt+

∫
Ω

T̂`(u0n) dx, (17)

where

T̂`(s) =

∫ s

0

T`(σ)dσ =

{
s2

2 , if |s| ≤ `,
`|s| − s2

2 , if |s| > `.
(18)

The Lipshitz character of Φn and the Stokes formula together with the boundary condi-
tion un = 0 on (0, T )× ∂Ω make it possible to obtain∫

Qτ

Φn(un) · ∇T`(un) dxdt = 0. (19)

Due to the definition of T̂` and (12) we have

0 ≤
∫

Ω

T̂`(u0n) dx ≤ `
∫

Ω

|u0n| dx ≤ `||u0||L1(Ω). (20)

Using the same argument as in [15], we can see that∫
Q

gn(x, t, un,∇un) dxdt ≤ Cg. (21)

Here and below Ci denotes positive constants not depending on n and `. By using (12),
(19), (20), (21) we can deduce from (17) that∫

Ω

T̂`(un(τ)) dx+

∫
Qτ

a(x, t, T`(un),∇T`(un)) · ∇T`(un) dxdt ≤ `C0. (22)
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By using (22), (7) and the fact that T̂`(un) ≥ 0, we deduce that∫
Qτ

ϕ(x, |∇T`(un)|) dxdt ≤ 1

α

∫
Qτ

a(x, t, T`(un),∇T`(un)) · ∇T`(un) dxdt ≤ `C1, (23)

we deduce from the above inequality (22) that∫
Ω

T̂`(un(τ)) dx ≤ `C0, for almost any τ in (0, T ). (24)

On the other hand, thanks to Lemma 2.2, there exists a constant λ > 0 depending only
on Ω such that∫

Qτ

ϕ(x, |v|) dxdt ≤
∫
Qτ

ϕ(x, λ|∇v|) dxdt, ∀v ∈W 1
0Lϕ(Ω). (25)

Taking v = T`(un)
λ in (25) and using (23), one has∫

Qτ

ϕ(x,
|T`(un)|

λ
) dxdt ≤ `C1. (26)

Then we deduce by using (26), that

meas{|un| > `} ≤ 1

inf
x∈Ω

ϕ(x, `λ )

∫
Qτ

ϕ(x,
1

λ
|T`(un)|) dxdt

≤ C1`

inf
x∈Ω

ϕ(x, `λ )
∀n, ∀` ≥ 0.

(27)

By using the definition of ϕ, we can deduce

lim
`−→∞

(meas{(x, t) ∈ Qτ : |un| > `}) = 0 (28)

uniformly with respect to n. Moreover, we have from (26) that T`(un) is bounded in
W 1,x

0 Lϕ(Q) for every ` > 0. Consider now in C2(R) a nondecreasing function ζ`(s) = s
for |s| ≤ `

2 and ζ`(s) = ` sign (s). Multiplying the approximating equation by ζ ′`(un), we
obtain

∂(ζ`(un))

∂t
= div

(
a(x, t, un,∇un)ζ ′`(un)

)
− ζ ′′` (un)a(x, t, un,∇un) · ∇un

+ div (Φn(un)ζ ′`(un)
)
− ζ ′′` (un)Φn(un) · ∇un − gn(x, t, un,∇un)ζ ′`(un) + fnζ

′
`(un)

in the sense of distributions. Thanks to (26) and the fact that ζ ′` has a compact sup-

port, ζ ′`(un) is bounded in W 1,x
0 Lϕ(Q) while its time derivative ∂(ζ`(un))

∂t is bounded in

W−1,x
0 Lϕ(Q) + L1(Q), hence Corollary 4.5 of [2] allows us to conclude that ζ`(un) is

compact in L1(Q). Due to the choice of ζ`, we conclude that for each `, the sequence
T`(un) converges almost everywhere in Q. Therefore, following [8,9,15], we can see that
there exists a measurable function u ∈ L∞(0, T ;L1(Ω)) such that for every ` > 0 and a
subsequence, not relabeled,

un → u a. e. in Q, (29)
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and
T`(un) ⇀ T`(u) weakly in W 1,x

0 Lϕ(Q) for σ(ΠLϕ,ΠEψ), (30)

strongly in L1(Q) and a. e. in Q.

Now we shall to prove the boundness of (a(x, t, T`(un),∇T`(un)))n in (Lψ(Q))N .
Let φ ∈ (Eϕ(Q))N with ||φ||ϕ,Q = 1. In view of the monotonicity of a one easily has,∫

Q

[
a(x, t, T`(un),∇T`(un))− a(x, t, T`(un), φ)

][
∇T`(un)− φ

]
dxdt ≥ 0, (31)

which gives∫
Q

a(x, t, T`(un),∇T`(un)) · φ dxdt ≤
∫
Q

a(x, t, T`(un),∇T`(un)) · ∇T`(un) dxdt

+

∫
Q

a(x, t, T`(un), φ) ·
[
∇T`(un)− φ

]
dxdt.

(32)

Using (6) and (23), we easily see that∫
Q

a(x, t, T`(un),∇T`(un)) · φ dxdt ≤ C3. (33)

And so, we conclude that (a(x, t, T`(un),∇T`(un)))n is a bounded sequence in (Lψ(Q))N .
Now, we prove that

lim
m−→∞

lim
n−→∞

∫{
m≤|un|≤m+1

} a(x, t, un,∇un) · ∇un dxdt = 0. (34)

Using in (Pn) the test function v = T1(un − Tm(un)), we obtain

〈∂un
∂t

, v〉+

∫
{m≤un≤m+1}

a(x, t, un,∇un) · ∇un dxdt+

∫
Q

gn(x, t, un,∇un)v dxdt

+

∫
Q

div

[ ∫ un

0

Φn(r)T ′1(un − Tm(un))dr

]
dxdt =

∫
Q

fnv dxdt.

(35)

By using
∫ un

0
Φn(r)T ′1(un − Tm(un))dr ∈W 1,x

0 Lϕ(Q) and the Stokes formula, we get∫
Ω

Umn (un(T )) dx+

∫
{m≤un≤m+1}

a(x, t, un,∇un) · ∇un dxdt

≤
∫
Q

(|fn + gn(x, t, un,∇un)|)|T1(un − Tm(un))| dxdt+

∫
Ω

Umn (x, u0n) dx,

(36)

where Umn (r) =
∫ un

0
∂un
∂t T1(s− Tm(s))ds. In order to pass to the limit as n tends to +∞

in (36), we use Umn (un(T )) ≥ 0, (12) and (21), we obtain that

lim
n−→∞

∫
{m≤un≤m+1}

a(x, t, un,∇un) · ∇un dxdt

≤
∫
{|un|>m}

(|f |+ Cg) dxdt+

∫
{|u0|>m}

|u0| dx.
(37)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 19 (1) (2019) 97–110 105

Finally, by(12) and (37) we obtain (34).
Step 3: Almost everywhere convergence of the gradients. Fix ` > 0 and let

φ(s) = s exp(δs2), δ > 0. It is well known that when δ ≥ ( b(`)2α )2 one has

φ′(s)− b(`)

α
|φ(s)| ≥ 1

2
for all s ∈ R. (38)

Let vj ∈ D(Q) be a sequence which converges to u for the modular convergence in

W 1,x
0 Lϕ(Q) and let ωi ∈ D(Q) be a sequence which converges strongly to u0 in L2(Ω).

Set ωµi,j = T`(vj)µ + exp(−µt)T`(wi), where T`(vj)µ is the mollification with respect to
time of T`(vj). Note that ωµi,j is a smooth function having the following properties:

∂

∂t
(ωµi,j) = µ(T`(vj)− ωµi,j), ω

µ
i,j(0) = T`(ωi), |ωµi,j | ≤ `, (39)

ωµi,j → T`(u)µ + exp(−µt)T`(wi) in W 1,x
0 Lϕ(Q) (40)

for the modular convergence as j →∞,

T`(u)µ + exp(−µt)T`(wi)→ T`(u) in W 1,x
0 Lϕ(Q) (41)

for the modular convergence as µ → ∞. Let now the function ρm on R with m ≥ ` be
defined by

ρm(s) =

 1, if |s| ≤ m,
m+ 1− |s|, if m ≤ |s| ≤ m+ 1,

0, if |s| ≥ m+ 1.
(42)

We set θµ,ni,j = T`(un) − ωµi,j . Using the admissible test function Zµ,mi,j,n = φ(θµ,ni,j )ρm(un)
as test function in (Pn) and since gn(x, t, un,∇un)φ(θµ,ni,j )ρm(un) ≥ 0 on {|un| > `}, we
arrive at

〈∂un
∂t

, Zµ,mi,j,n〉+

∫
Q

a(x, t, un,∇un) · (∇T`(un)−∇ωµi,j)φ
′(θµ,ni,j )ρm(un) dxdt

+

∫
{m≤|un|≤m+1}

a(x, t, un,∇un) · ∇unφ(θµ,ni,j )ρ′m(un) dxdt

+

∫
{m≤|un|≤m+1}

Φn(un) · ∇unφ(θµ,ni,j )ρ′m(un) dxdt

+

∫
Q

Φn(un) · (∇T`(un)−∇ωµi,j)φ
′(θµ,ni,j )ρm(un) dxdt

+

∫
{|un|≤`}

gn(x, t, un,∇un)φ(θµ,ni,j )ρm(un) dxdt ≤
∫
Q

fnZ
µ,m
i,j,n dxdt.

(43)

Denote by ε(n, j, µ, i) any quantity such that lim
i→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ε(n, j, µ, i) = 0.

The very definition of the sequence ωµi,j makes it possible to establish the following lemma.

Lemma 3.1 (cf.[2]) Let Zµ,mi,j,n = φ(θµ,ni,j )ρm(un), we have for any ` ≥ 0

〈∂un
∂t

, Zµ,mi,j,n〉 ≥ ε(n, j, i). (44)
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Concerning the right-hand of (43), by the almost everywhere convergence of un, we have
φ(T`(un)−ωµi,j)ρm(un) ⇀ φ(T`(u)−ωµi,j)ρm(u) weakly-* in L∞(Q) as n→∞, and then∫

Q

fnφ(T`(un)− ωµi,j)ρm(un) dxdt→
∫
Q

fφ(T`(u)− ωµi,j)ρm(n) dxdt,

so that φ(T`(u)− ωµi,j)ρm(u) ⇀ φ(T`(u)− T`(u)µ − exp(−µt)T`(wi))ρm(u)
weakly star in L∞(Q) as j →∞, and finally,

φ(T`(u)− T`(u)µ − exp(−µt)T`(wi))ρm(u) ⇀ 0 weakly star as µ→∞.

Then, we deduce that

〈fn, φ(T`(un)− ωµi,j)ρm(un)〉 = ε(n, j, µ). (45)

Similarly, Lebesgue’s convergence theorem shows that

Φn(un)ρm(un)→ Φ(u)ρm(u) strongly in (Eψ(Q)N ) as n→∞,

and

Φn(un)χ{m≤|un|≤m+1}φ
′(T`(un)− ωµi,j)→ Φ(u)χ{m≤u≤m+1}φ

′(T`(u)− ωµi,j)

strongly in (Eψ(Q)N ). Then by virtue of ∇T`(un) ⇀ ∇T`(u) weakly star in (Lϕ(Q)N ),
and ∇unχ{m≤|un|≤m+1} = ∇Tm+1(un)χ{m≤|un|≤m+1} a. e. in Q, one has∫

Q

Φn(un) · (∇T`(un)−∇ωµi,j)φ
′(T`(un)− ωµi,j)ρm(un) dxdt

→
∫
Q

Φ(u)∇(∇T`(u)−∇ωµi,j)φ
′(T`(u)− ωµi,j)ρm(u) dxdt

as n→∞, and ∫
{m≤|un|≤m+1}

Φn(un)φ(T`(un)− ωµi,j)∇unρ
′
m(un) dxdt

→
∫
{m≤|un|≤m+1}

Φ(u)φ(T`(un)− ωµi,j)∇uρ
′
m(u) dxdt

as n → +∞. Thus, by using the modular convergence of ωµi,j as j → +∞ and letting µ
tend to infinity, we get∫

Q

Φn(un) · (∇T`(un)−∇ωµi,j)φ
′(θµ,ni,j )ρm(un) dxdt = ε(n, j, µ) (46)

and ∫
{m≤|un|≤m+1}

Φn(un) · ∇unφ(θµ,ni,j )ρ′m(un) dxdt = ε(n, j, µ). (47)

Concerning the third term of the right-hand side of (43) we obtain that

|
∫
{m≤|un|≤m+1}

a(x, t, un,∇un) · ∇unφ(θµ,in,j)ρ
′
m(un) dxdt |

≤ φ(2k)

∫
{m≤|un|≤m+1}

a(x, t, un,∇un) · ∇un dxdt.
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Then by (34) we deduce that

|
∫
Q

a(x, t, un,∇un) · ∇unφ(θµ,in,j)ρ
′
m(un) dxdt| ≤ ε(n, µ,m). (48)

Using the same technics as in the proof of Proposition 5.6 in [4], we obtain∫
Q

(
a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs)

)
×
(
∇Tk(un)−∇Tk(u)χs

)
dxdt≤ ε(n, j, µ, i, s,m).

(49)

To pass to the limit in (49) as n j, m, s tend to infinity, we obtain

lim
s→∞

lim
n→∞

∫
Q

(
a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u)χs)

)
×
(
∇Tk(un)−∇Tk(u)χs

)
dxdt = 0.

(50)

And thus, as in the elliptic case (see [18]), there exists a subsequence also denoted by un
such that

∇un → ∇u a.e. in Q. (51)

Then, for all k > 0, one has

a(x, t, Tk(un),∇Tk(un)) ⇀ a(x, t, Tk(u),∇Tk(u))

weakly star in (Lψ(Q))N for σ(ΠLψ,ΠEϕ). (52)

Step 4: In this step we prove that u satisfies (15). According to (50), one can
pass to the limit as n tends to +∞ for fixed m ≥ 0 to obtain

lim
n−→∞

∫{
m≤|un|≤m+1

} a(x, t, un,∇un)∇un dxdt

=

∫
Q

a(x, t, Tm+1(u),∇Tm+1(u))∇Tm+1(u) dxdt

−
∫
Q

a(x, t, Tm(u),∇Tm(u))∇Tm(u) dxdt

=

∫{
m≤|u|≤m+1

} a(x, t, u,∇u) · ∇u dxdt. (53)

Taking the limit as m→ +∞ in (53) and using the estimate (34) show that u satisfies
(15). Following the same technique as that used in [2], and by using (29), (50) and Vitali’s
theorem, we have

gn(x, t, un,∇un)→ g(x, t, u,∇u) strongly in L1(Q). (54)
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Step 5 : Passing to the limit. Let S be a function in W 2,∞(R) such that S′ has
a compact support. Let K be a positive real number such that supp(S′) ⊂ [−K,K].
Pointwise multiplication of the approximate equation (Pn) by S′(un) leads to

∂S(un)

∂t
− div

(
a(x, t, un,∇un)S′(un)

)
+ S′′(un)a(x, t, un,∇un) · ∇un

− div
(
S′(un)Φ(un)

)
+ S′′(un)Φ(un) · ∇un

+ gn(x, t, un,∇un)S′(un)

= fnS
′(un). (55)

In what follows we pass to the limit as n tends to +∞ in each term of (55).
• Since S is bounded and continuous, then the fact that un −→ u a.e. in Q, implies that
S(un) converges to S(u) a.e. in Q and L∞ weakly-∗. Consequently,

∂S(un)

∂t
−→ ∂S(u)

∂t
in D′(Q) as n tends to +∞.

• Since supp(S′) ⊂ [−K,K], we have for n ≥ K,

a(x, t, un,∇un)S′(un) = a(x, t, TK(un),∇TK(un))S′(un) a.e. in Q.

The pointwise convergence of un to u and (52) as n tends to∞ and the bounded character
of S′ permit us to conclude that

a(x, t, TK(un),∇TK(un))S′(un)−→a(x, t, TK(u),∇TK(u))S′(u) weakly star in (Lψ(Q))N

(56)
as n tends to infinity.
• Regarding the ’energy’ term, we have for n ≥ K

S′′(un)a(x, t, un,∇un) · ∇un = S′′(un)a(x, t, TK(un),∇TK(un)) · ∇TK(un) a.e. in Q.

The pointwise convergence of S′(un) −→ S′(u) and (52) as n tends to +∞ and the
bounded character of S′′ permit us to conclude that

S′′(un)a(x, t, un,∇un)·∇un ⇀ S′′(u)a(x, t, TK(u),∇TK(u))·∇TK(u) weakly star in L1(Q).
(57)

Recall that S′′(u)a(x, t, TK(u),∇TK(u)) ·∇TK(u) = S′′(u)a(x, t, u,∇u) ·∇u a.e. in Q.
• Since supp(S′) ⊂ [−K,K], we have

S′(un)Φn(un) = S′(un)Φn(TK(un)) a.e. in Q. (58)

As a consequence of (11) and (29), it follows that

S′(un)Φn(un)→ S′(u)Φ(TK(u)) a.e. in (Eϕ(Q))N , (59)

we have ∇S′′(un) converges to ∇S′′(u) weakly in (Lϕ(Q))N as n tends to +∞, while
Φn(TK(un)) is uniformly bounded with respect to n and converges a. e. in Q to Φ(TK(u))
as n tends to +∞. Therefore

S′′(un)Φn(un)∇un ⇀ S′′(u)Φ(u)∇u weakly in Lϕ(Q), (60)
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• Since suppS′ ⊂ [−K,K] and from (54), we have

S′(un)gn(x, t, un,∇un) −→ g(x, t, u,∇u)S′(u) strongly in L1(Q). (61)

• Due to fn −→ f in L1(Q) and the fact that un −→ u a.e. in Q, we have

S′(un)fn −→ S′(u)f strongly in L1(Q). (62)

As a consequence of the above convergence results, we are in a position to pass to the
limit as n tends to +∞ in equation (55) and to conclude that

∂S(u)

∂t
− div

(
a(x, t, u,∇u)S′(u)

)
+ S′′(u)a(x, t, u,∇u) · ∇u

− div
(
S′(u)Φ(u)

)
+ S′′(u)Φ(u) · ∇u

+ g(x, t, u,∇u)S′(u)

= fS′(u). (63)

It remains to show that S(u) satisfies the initial condition.
To this end, firstly note that, S being bounded, S(un) is bounded in L∞(Q). Secondly,

(55) and the above considerations on the behavior of the terms of this equation show

that ∂S(un)
∂t is bounded in L1(Q) + V ∗. As a consequence, an Aubin’s type lemma (see,

e.g, [17]) implies that S(un) lies in a compact set of C0([0, T ], L1(Ω)). It follows that, on
the one hand, S(un)(t = 0) = S(u0n) converges to S(u)(t = 0) strongly in L1(Ω).

On the other hand, the smoothness of S implies that

S(u)(t = 0) = S(u0) in Ω.

As a conclusion of step 1 to step 6, the proof of Theorem 3.1 is complete.

Example 3.1 Let Ω be a bounded Lipschitz domain of RN and T > 0, we denote by
Q = Ω × [0, T ], and let ϕ and ψ be two complementary Musielak functions. Moreover,
we assume that ϕ(x, t) decreases with respect to one of coordinates of x (for example,

ϕ(x, t) = |t|p(x)log(1 + t3), p(x) = e(−x2
1+x2

2+···+x2
N ). We set

a(x, t, s, ζ) = (3 + cos2(ϕ(x, s)))ψ−1
x (ϕ(x, |ζ|)) ζ

|ζ|
,

g(x, t, s, ζ) = ϕ(x,|ζ|)
1+s2 , Φ(s) = (|s|r1−1s, ..., |s|rN−1s), 1 ≤ r1, ..., RN <∞.

It is easy to show that a(x, t, s, ζ) is the Caratheodory function satisfying the growth
condition (6), the coercivity (8) and the monotonicity condition, while the Caratheodory
function g(x, t, s, ζ) satisfies the condition (9) and (10), Finally, the hypotheses of The-
orem 3.1 are satisfied. Therefore, the following problem

lim
m−→∞

∫
{(x,t)∈Q;m≤|u(x,t)|≤m+1}

a(x, t, u,∇u) · ∇u dxdt = 0,

∂S(u)
∂t − div

(
a(x, t, u,∇u)S′(u)

)
+ S′′(u)a(x, t, u,∇u) · ∇u

−div
(
S′(u)Φ(u)

)
+ S′′(u)Φ(u) · ∇u+ g(x, t, u,∇u)S′(u) = fS′(u),

S(u)(t = 0) = S(u0) in Ω,

for every function S in W 2,∞(R) and such that S′ has a compact support in R
(64)

has at least one renormalised solution for any f ∈ L1(Q).
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