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Abstract: This paper presents an LMI approach to optimal fuzzy control based on
the quadratic performance function to enhance the transient stability and achieve
voltage regulation for multimachine power systems. First, the dynamic model of the
power system has been modeled by Takagi-Sugeno fuzzy systems using the method
of sum of products of linearly independent functions. The optimal fuzzy controller
proposed is designed by solving the minimization problem that minimizes the up-
per bound of a given quadratic performance function. The stability conditions are
represented in terms of LMIs. The proposed controller is applied to a two-machine
three-bus power system. Simulation results illustrate the performance of the devel-
oped approach regardless of the system operating conditions.
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1 Introduction

System stability is the most important issue for power systems; traditionally, transient
and voltage instability have been the most widespread stability problems. They concern
the maintenance of the synchronism between generators as well as a steady acceptable
voltage under normal operating and disturbed conditions.

Modern power systems are highly complex and nonlinear, and their operating con-
ditions can vary over a wide range, therefore, the nonlinear characteristics of the power
system and, hence, the nonlinear dynamic model of the system should be used in the
analysis of transient stability and voltage regulation.
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One of many design techniques developed for modeling and control of nonlinear sys-
tems is the Takagi-Sugeno (T-S) one [1–7]. The approach mainly consists of three stages.
The first stage is the fuzzy modeling for nonlinear controlled objects. There are two ma-
jor ways in fuzzy modeling. One is the fuzzy model identification [2,3] using input-output
data. The other is the fuzzy model construction (fuzzy IF-THEN rules) based on the idea
of sector nonlinearity. The second stage is the fuzzy control rule derivation that mirrors
the rule structure of a fuzzy model. It is realized by the so-called parallel distributed
compensation (PDC) [4–6]. The third stage is the fuzzy controller design, i.e., the de-
termination of feedback gains stated in terms of linear matrix inequalities (LMI) [5]; the
stability is investigated using the quadratic Lyapunov function. Generally, such a design
focuses on the stability issue only and does not satisfy certain performance criteria and
constraints in an optimal fashion.

In the control design, it is often of interest to synthesize a controller to satisfy, in an
optimal fashion, certain performance criteria and constraints in addition to stability [5].

In the linear case, the optimization problem is resolved by determining an optimal
feedback of a Ricatti equation [8–10] . This type of controller is known under the name
of a linear quadratic regulator problem (LQR). For the nonlinear systems, the problem
requires the resolution of the Hamilton-Jacobi-Bellman (HJB) equation which represents
a partial derivative equation [11,12].

In the field of the power system stability, Kharaajoo in [13] has used an aproxima-
tive solution of the HJB equation to enhance the transient stability and achieve voltage
regulation of a single-machine infinite-bus power system. The global control law is rep-
resented by the average of two control laws weighted by a sensitivity indicator such that
the closed-loop power system is transiently stable when subjected to a fault, and restores
the steady pre-fault voltage value after the disturbance. The analytical solution of this
HJB equation was very difficult to be found, so an approximate method using the Taylor
series expansion is used.

As the Takagi-Sugeno (T-S) fuzzy system is an efficient approach to model the non-
linear systems, Tanaka [5] proposed an alternative approach to nonlinear optimal control
based on fuzzy logic. The optimal fuzzy control methodology presented is designed by
solving a minimization problem that minimizes the upper bound of a given quadratic
performance function. In strict sense, this approach is a suboptimal design. One of the
advantages of this methodology is that the design conditions are represented in terms of
LMIs.

This paper presents an optimal fuzzy controller design via convex optimization tech-
niques based on LMIs to enhance the transient stability and achieve voltage regulation
of multimachine power systems. The DFL technique has been used to linearize and de-
couple a nonlinear n-machine power system to n independent DFL compensated models.
Then these compensated models are described by continuous-time T-S models. The fuzzy
system is stabilized by the PDC fuzzy controller based on the minimization of the upper
bound of a quadratic performance function.

To begin with, in Section 2, the background materials concerning the T-S fuzzy
model and model-based fuzzy controller are introduced. In Section 3, the optimal fuzzy
controller design is presented. The equivalent T-S fuzzy model of the multimachine
power system is developed in Section 4. In Section 5, the control scheme proposed
is implemented in a two-machine three-bus power system and simulation results are
provided to demonstrate the performance of the proposed optimal voltage controller.
Finally, conclusions are drawn in Section 6.
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2 T-S Fuzzy Model and Control

2.1 T-S fuzzy model

A nonlinear system can be approximated by a T-S fuzzy model. The T-S model consists
of a set of IF-THEN rules. Each rule represents the local linear input-output relation of
the nonlinear system and has the following form:

Plant Rule i: {
If z1(t) is Mi,1.... and zp(t) is Mi,p,

then ẋi = Aix(t) +Biu(t), i = 1, 2, ..., r.
(1)

Here z(t) = {z1(t), ..., zp(t)} are known as premise variables, i.e., the nonlinear terms
appeared in the system equations. Those premise variables are usually functions of the
state variables. Also, Mi,j is the fuzzy set, r is the number of model rules, Ai and Bi are
the system and input matrices, respectively. It is assumed that (Ai,Bi) is a controllable
pair. Also, x(t) is the system state vector, and u(t) is the input vector. The overall
system dynamics is then described as

ẋ =

r∑
i=1

hi(z(t))(Aix(t) +Biu(t)). (2)

2.2 T-S model-based fuzzy control

The concept of PDC, following the terminology of [5], is utilized to design fuzzy state-
feedback controllers on the basis of the T-S fuzzy models (1). In the PDC design, each
control rule is designed from the corresponding rule of a T-S fuzzy model. The designed
fuzzy controller shares the same fuzzy sets with the fuzzy model in the premise parts.
For the fuzzy models (1), we construct the following fuzzy controller via the PDC:

Control rule i: {
If z1(t) is Mi,1....... and zp(t) is Mi,p,

then u(t) = −Kix(t), i = 1, 2, ..., r,
(3)

where Ki is a linear state feedback gain for the i-th subsystem. The overall fuzzy con-
troller is represented by

u(t) = −
r∑

i=1

Kix(t), i = 1, 2, ..., r. (4)

Substituting equation(4) into equation (2), the fuzzy control system (FCS) can be
represented by (closed-loop)

u(t) = −
r∑

i=1

r∑
i=j

hi(z(t))hj(z(t))(Ai −BiKj)x(t). (5)

3 Optimal Fuzzy Controller Design

This section presents an optimal fuzzy controller design which consists in the determi-
nation of the control laws that minimize the upper bound of the following quadratic
performance function:
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J =

∫ ∞
0

(xT (t)Wx(t) + uT (t)Ru(t) )dt, (6)

where W and R are assumed to be a semi-positive definite matrix and a positive definite
matrix, respectively [5]. Weighting matrices W and R are important components in
the optimizing process of the fuzzy controller since they have great influences on system
performance. Sufficient optimality conditions derived by Tanaka [5] for ensuring stability
of (5) are given as follows

Theorem 3.1 [5] The feedback gains to minimize the upper bound of the perfor-
mance function can be obtained by solving the following LMIs. From the solution of the
LMIs, the feedback gains are obtained as

Ki = YiQ
−1

for all i. Then, the performance function satisfies J < xT (0)Px(0) < γ,

minimize γ
Q, Y1, ......Yr subject to

Q > 0,

(
1 xT (0)

x(0) Q

)
> 0, (7)

QAT
i +AiQ− Y T

i B
T
i −BiYi Q

√
W (−Y T

i )
√
R√

WQ −I 0√
R(−Yi) 0 −I

 < 0, (8)


T Q

√
W

√
2
2 (−Y T

i )
√
R

√
2
2 (−Y T

j )
√
R√

WQ −I 0 0√
R(−Yi)

√
2
2 0 −I 0√

R(−Yj)
√
2
2 0 0 −I

 < 0, (9)

where T = (
QAT

i +AiQ
2 ) +

QAT
i +AjQ
2 − Y T

i BT
j +BjYi

2 − Y T
j BT

i +BiYj

2 .

4 T-S Fuzzy Model of Power System

4.1 Dynamic model of power system

As the global control objective in this paper is to maintain the transient stability and
achieve proper post-fault voltage of the multimachine power system, the dynamic model
of the i-th generator adopted is given by the following equations:

˙∆Vti(t) = fi1(t)∆ωi(t)−
fi2 (t)

T ′
d0i

∆Pei(t) +
fi2 (t)

Td0i
vfi(t),

˙∆ωi(t) = − Di

2Hi
∆ωi(t)− ω0

2Hi
∆Pei(t),

˙∆Pei(t) = − 1
T ′
d0i

∆Pei(t) + 1
T ′
d0i
vfi(t).

(10)
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where

ufi(t) =
1

kciIqi(t)
(vfi(t)− T ′d0iE′qiİqi(t) + Pmi) +

1

kci
((xdi − x′di)Idi(t)), (11)

is the direct feedback linearization (DFL)control law and vfi(t) is the feedback control
law

vfi(t) = −kvi∆Vi(t)− kωi
∆ωi(t)− kpei

∆Pei(t) (12)

and 
∆Vti(t) = Vti − Vti0,
∆ωi(t) = ωi − ω0,

∆Pei(t) = Pei(t)− Pmi,

(13)

∆Vti(t) = Vti − Vti0,∆ωi(t) = ωi − ω0,∆Pei(t) = Pei(t)− Pmi, (14)

fi1 = −
(1 + x′diBii)(−E′2qi(t)Bii −Qei(t)Vti(t))

Vti(t)Iaqi(t)
− x′di(1 + x′diBii)Pei(t)

Vti
, (15)

fi2 = − (1 + x′diBii)Vti(t)

VtiIqi(t)
, (16)

where δi(t) is the angle of the i-th generator, in radian; ωi(t) is the relative speed of
the i-th generator, in rad/sec; Pmi is the mechanical input power, in p.u.; Pei (t) is the
electrical power, in p.u.; ω0 is the synchronous machine speed, in rad/sec, ω0 = 2πf0; Di
is the per unit damper constant; Hi is the inertia constant, in sec; E’qi(t) is the transient
EMF in quadrature axis of the i-th generator, in p.u.; Efi(t) is the equivalent EMF in
the excitation coil, in p.u.; Tdoi is the direct axis transient open circuit time constant,
in second; Eqi is the EMF in quadrature axis of the i-th generator, in p.u.; Vti is the
generator terminal voltage, in p.u.; xdi is the direct axis reactance of the ith generator,
in p.u.; x′di is the direct axis transient reactance of the i-th generator, in p.u.; Idi is the
direct axis current, in p.u.; Iqi is the quadrature axis current, in p.u.; kci is the gain of the
excitation amplifier, in p.u.; ufi(t) is the input of the SCR amplifier of the i-th generator;
xadi is the mutual reactance between the excitation coil and the stator coil of the i-th
generator; Yij=Gij+jBij is the i-th row and j-th column element of nodal admittance
matrix, in p.u.; Qei is the reactive power, in p.u.; Ifi is the excitation current; fi1(t) and
fi2(t) are highly nonlinear functions.

The classical third-order single-axis dynamic generator model used in this paper is
referred in [14].

4.2 T-S fuzzy model of power system

Bae et al. in [15] presented a method of constructing the T-S fuzzy model using the sum
of a product of linearly independent functions. The T-S fuzzy model of the power system
adopted is constructed according to the improved Bae method [15]. From (15) and (16),
we can find that fi1(t) andfi2(t) are dependent on the operating conditions but bounded
with a certain operating region. The following bounds of fi1(t) andfi2(t) are considered:

−3.526 ≤ f11 ≤ −0.259,
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0.266 ≤ f12 ≤ 3.794,

−2.832 ≤ f21 ≤ −0.233,

0.241 ≤ f22 ≤ 3.670.

According to [14], the nonlinear state equation (10) is expressed by

ẋi(t) = [Fi0 +

2∑
j=0

fij (z(t))Fij ]ηi(t), (17)

where
xi(t) = [∆Vti(t),∆ωi(t),∆Pei(t)]

T , (18)

ηi(t) = [∆Vti(t),∆ωi(t),∆Pei(t), vfi(t)]
T , (19)

Fi0 =

0 0 0 0
0 − Di

2Hi
− ω0

2Hi
0

0 0 − 1
T ′
doi

1
T ′
doi

 , Fi1 =

0 1 0 0
0 0 0 0
0 0 0 0

 , Fi2 =

0 0 − 1
T ′
d0i

1
T ′
d0i

0 0 0 0
0 0 0 0

 .

(20)
As the number of linearly independent functions is 2 and for each function fi1(t)

andfi2(t) two triangular fuzzy sets are assigned, 4 fuzzy rules are formulated. The T-S
fuzzy model of the nonlinear system (10) is such that

ẋi(t) =

4∑
j=1

hij (z(t))(Aijx(t) +Biju(t)), (21)

where
hi1 = Mi10Mi20 ,hi2 = Mi10Mi21 , hi3 = Mi11Mi20 ,hi4 = Mi11Mi21 ,

Mij0(z(t)) =
(fij1−fij (z(t))
(fij1−fij0 )

,Mij1(z(t)) =
(fij (z(t))−fij0 )

(fij1−fij0 )
,

[Ai1 , Bi1 ] = Fi0 + fi10Fi1 + fi20Fi2 ,[Ai2 , Bi2 ] = Fi0 + fi10Fi1 + fi21Fi2 ,
[Ai3 , Bi3 ] = Fi0 + fi11Fi1 + fi20Fi2 ,[Ai2 , Bi2 ] = Fi0 + fi11Fi1 + fi21Fi2 .

5 Simulation Results

To evaluate the above control scheme for transient stability enhancement and voltage
regulation, the example of two-machine three-bus power system is represented in Figure
2. The generator and the transmission line parameters are listed in Table 1 [14].

The performance of the proposed controller is tested under the following temporary
fault sequence:
. Stage 1: The system is in a pre-fault steady state.
. Stage 2: A fault occurs at t=1s.
. Stage 3: The fault is removed by opening the breakers of the faulted line at t=1.15s.
. Stage 4: A mechanical input power of the generator1 has a 30% step increase at t =
2s.
. Stage 5: The system is in a post-fault state.
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Figure 1: Two-machine infinite bus power system.

Generator 1 2
xd(p.u.) 1.863 2.36
x′d(p.u.) 0.257 0.319
xT (p.u.) 0.129 0.11
xad(p.u.) 1.712 1.7126
T ′do(sec) 6.9 7.96
H(s) 4.0 5.1
D(p.u.) 5.0 3
kc(p.u.) 1.0 1.0
x12(p.u.) 0.55
x13(p.u.) 0.53
x23(p.u.) 0.6
ω0(rad/d) 314.159

Table 1: System parameters.

The following cases are considered.
• Case 1: Different sets of operating points: Two different operating points are
considered:

Operating point 1:

δ10 = 46.00◦;Pm10 = 0.87p.u., Vt10 = 1.0p.u.
δ20 = 44.69◦;Pm20 = 0.86p.u., Vt20 = 1.0p.u.

Operating point 2:
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δ10 = 34.89◦;Pm10 = 0.65p.u., Vt10 = 1.02p.u.
δ20 = 35.75◦;Pm20 = 0.61p.u., Vt20 = 1.09p.u.

The fault location is λ = 0.02. The corresponding closed loop system responses are
shown in Figure 2 and Figure 3, respectively.
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Figure 2: Power system responses for Case 1, operating point 1.
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Figure 3: Power system responses for Case 1, operating point 2.

• Case 2: Fault location.
To test the ability of the proposed controller to achieve the proposed control task, two dif-
ferent fault locations are proposed λ = 0.01 and λ = 0.5. The operating point considered
is

δ10 = 18.51◦;Pm10 = 0.3p.u., Vt10 = 0.95p.u.
δ20 = 23.68◦;Pm20 = 0.4p.u., Vt20 = 0.95p.u.
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The corresponding closed loop system responses are shown in Figure 4 and Figure 5,
respectively.
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Figure 4: Power system responses for Case 2, fault location λ = 0.01.
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Figure 5: Power system responses for Case 2, fault location λ = 0.5.

Figures 2-5 show the system performances when subjected to different faults. It can
be concluded from the simulation results that the proposed optimal voltage controller
exhibits good transient performance: the oscillations are damped out effectively; the
terminals voltages of generators are well regulated to their pre-fault values regardless of
the operating points, change in the mechanical input power and fault locations.

6 Conclusion

In this paper, the design of optimal nonlinear state feedback voltage regulator for power
systems based on the Takagi-Sugeno fuzzy model and parallel distributed compensation
(PDC) scheme was presented. The proposed methodology reformulates the stability as
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convex optimization problems with linear matrix inequality (LMI). To demonstrate the
effectiveness of the proposed controller, a two-machine three-bus power system has been
considered. Simulation results show that both transient stability and voltage quality can
be improved effectively regardless of the system operating conditions.
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