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Abstract: This paper introduces a numerical technique for solving minimum time
control problems. These problems are addressed to linear time invariant systems in
feedforward and feedback control. The mathematical formulation of the control prob-
lem is expanded in several piecewise orthogonal bases, namely, the Walsh, block-pulse
and Haar wavelets. Operational matrices are used to transform the integration pro-
cedure into a product. A numerical optimization problem is formulated to determine
the final time and the control sequence (switching times) necessary to steer the sys-
tem from an initial to a target position. The used numerical method shows that the
employed piecewise orthogonal function generates better results than other functions.

Keywords: orthogonal functions; operational matrices; minimum time control; lin-
ear systems; closed loop scheme.

Mathematics Subject Classification (2010): 93C35, 93D15.

1 Introduction

After the introduction of human operated machines, there was a need to enhance further
the productivity and reduce costs. Therefore, automatic machines (i.e. robots) were
designed and introduced. Today, many engineering systems, from manufacturing ma-
chines to vehicles and airplanes, require optimal control algorithms in order to operate
efficiently. Pontryagin [1] developed the theoretical background needed to formulate and
then solve these problems. Nevertheless, due to the nature of these engineering systems,
finding a solution to these control problems remains a challenging task and requires
multidisciplinary knowledge, from ordinary differential equation (ODE) discretization to
optimisation so that to obtain a numerical solution. The control problems can be derived
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in two categories: linear and nonlinear. The nonlinear problems feature nonlinear ODEs
and are not the scope of this paper. This paper focuses on solving an optimal control
problem for linear systems(i.e. the ODE is linear in states and control, even though the
problem formulation is non-linear), and particularly, on the determination of a minimum
time optimal control.

Finding a solution to the minimum time control problem is a difficult task. The
intent of these problems is to steer a system from a given initial state to a target state in
minimum time. Often, and due to the complexity of the mathematical formulation, it is
difficult to find an analytical solution even for linear systems. In fact, very few examples
have an analytical solution obtained through the Pontryagin maximum principle, it is well
known that when constrains over system inputs are considered, the obtained minimum
time control is necessarily of a bang-bang form [2].

Nevertheless, the minimum control problem could be undertaken with numerical ap-
proaches based on nonlinear optimization techniques like the shooting method [3]. Other
approaches in literature are typically based on geometric or graphical resolution [4], how-
ever, despite of accuracy, these techniques are of limited usage to low order LTI systems.

The orthogonal functions constitue a considerable tool to solve various optimal control
problems [5]. Generally, when orthogonal polynomials are used, it is called a pseudo-
parametrization technique. In fact, that issue could be an interesting alternative to the
securitization technique and could save considerably computational effort since it reduces
unknown parameters in the nonlinear optimization problem.

There are different types of orthogonal functions:

• Piecewise functions (block-pulse, Walsh and Haar wavelets) [6, 7];

• Polynomials (Legendre, Chebyshev,...) [8];

• Trigonometric functions (sine, cosine,...) [9].

Researchers have tried to solve the minimum time control problem using the Chebyshev
orthogonal functions for open loop linear systems [8], multivariable systems [10] and PID
control [11].

Since the type of control is known a priori (i.e. the bang-bang control), it is suitable
to use piecewise orthogonal functions thus allowing the capture of discontinuities in the
inputs. This method is simpler compared to the methods proposed in [8] and [10] where
the Chebyshev orthogonal polynomials had been used. In fact, in those works a set
of equalities are derived where each one contains two unknown variables. Then, the
authors [11] formulated a parameter optimisation problem to find the final time tf and
using the latter variables they determine the control sequence also.

In this effort, we use a simpler method that exploits the operational matrix of inte-
gration [6], and thus, there is no need to find the coefficient in [8,10] making the problem
formulation easier. Furthermore, in addition to the open loop optimization, a closed loop
algorithm is formulated.

This paper is organized as follows. The second section is reserved to the formulation
of the minimum time control problem. In the third section, a description of the orthog-
onal functions used and their algebraic properties are provided. The formulation of the
proposed method and simulation results are presented in the fourth section. Finally,
conclusions and future works are given in the last section.
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2 Time-Optimal Constrained Feedforward Control Problem

We consider an LTI system described by the following state space model:{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(1)

where y ∈ Rp is the output, u ∈ Rm is the input control signal and x ∈ Rn is the state
vector. In general, if the final state is not zero, we define a new system state X given in
equation (2) such that the system becomes normalized and the target remains the origin
of state space. Then the system (1) can be written as

X = x− xf ,
Ẋ = AX +Bu+Axf ,
X0 = x0 − xf ,

(2)

where x0 is the initial position of the system and xf is the target position to reach.
To minimize the final time, the cost function is taken as [12]

J = tf − t0 =

∫ tf

t0

dt. (3)

Applying the Pontryagin maximum principle (PMP) [1], we define the Hamiltonian [13]
for (1)

H(.) = −1 + λT (AX +Axf +Bu). (4)

The canonical equation of Hamilton is given by

Ẋ = Hλ = AX +Axf +Bu, (5a)

λ̇ = −Hx = −ATλ. (5b)

The target state being the origin is

X(tf ) = 0. (6)

Minimizing the Hamiltonian we obtain the following control signal:

u(t) = sign(λTB). (7)

This can be written as follows:

u(t) =

{
umin, if λTB < 0,
umax, if λTB > 0.

(8)

Thus, the obtained control is bang-bang.

3 Orthogonal Functions and Algebraic Properties

Using orthogonal functions to construct operational matrices was firstly proposed in the
study of dynamic systems for modeling [14], identification [15] and control purposes [16].
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3.1 Principle

Let φi(t) be a set of orthogonal polynomials, piecewise functions. Any analytical function
absolutely integrable on the time interval [0, T ] can be approximated as follows:

f(t) =

∞∑
i=0

fiφi(t), (9)

where the coefficients fi are evaluated by the following scalar product:

fi =

∫ T

0

f(t)φi(t)dt. (10)

For numerical purposes, a truncation of equation (9) until a convenient number of ele-
mentary functions is considered in practice.

f(t) ∼=
N−1∑
i=0

fiφi(t) = FTNΦN (t), (11)

where ΦTN = [ϕ0(t)ϕ1 · · ·ϕN−1(t)] is the orthogonal basis and FTN = [f0f1 · · · fN−1] is
the coefficient vector.

Integrating equation (11), we obtain:∫
f(t) ∼= FTNPNΦN (t), (12)

where PN ∈ Rn×n is the operational matrix of integration depending on the considered
orthogonal basis. As a result, the differential equations describing dynamic processes can
be reduced into algebraic relations allowing important simplifications in the synthesis
problems.

In this paper, we focus on three types of piecewise orthogonal functions, which are
block-pulse, Walsh and Haar wavelets. They present different characteristics. The main
difference and properties of each one will be detailed in the next section.

3.2 Block-pulse functions

Block-pulse functions constitute a complete set of orthogonal functions and are defined
as follows [7, 17]:

bi(t) =

 1, if t ∈ [iT , (i+ 1)T ],
i = 0, ..., N − 1,

0, otherwise.
(13)

A function f(t) can be approximated by

f(t) '
N−1∑
i=0

fibi(t) = FTNB(t), (14)

with: FN = [f0, f1, ..., fN−1]T is the coefficient vector, B(t) = [b0(t), b1(t), ..., bN−1(t)]T

is the block-pulse basis vector and fi are given by

fi = N

∫ iT

(i−1)T
f(t)bi(t)dt, (15)
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where N is the order of block-pulse functions.

The operational matrix for the block-pulse functions denoted PN,bp is given by [5]

PN,bp =
T

N



1
2 1 1 . . . 1
0 1

2 1 . . . 1
...

. . . 1
2 . . . 1

...
. . .

. . .
...

0 . . . . . . 0 1
2

 . (16)

The representation of this basis for N = 8 can be described in Figure 1.
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Figure 1: A set of block-pulse functions.

3.3 Walsh functions

Walsh functions belong to the family of piecewise orthogonal functions [18]. They can
have only two values +1 or -1 over the interval of interest.

A function f(t), absolutely integrable in [0, 1], may be expanded into the Walsh series
as

f(t) '
N−1∑
i=0

fiwi(t) = FTNW (t). (17)

The Walsh functions w0(t), w1(t), · · · , wN−1(t) are orthonormal square waves.

To determine the operational matrix, i.e. PN,w, of integration, the equation (18) is
used:

PN,w =

[
PN

2 ×
N
2

−1
2N IN

2 ×
N
2

1
2N IN

2 ×
N
2

0

]
, (18)

Where I is the identity matrix. Then the same state space transformation for the block-
pulse function is used.

In fact there is a matrical relation between block-pulse and Walsh operational matrix
of integration [17]:

PN,w = WN×N × PN,bp ×W−1N×N , (19)
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where W denotes the transition matrix from block-pulse to Walsh basis. For N = 4 the
Walsh transformation is

W4×4 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (20)

This basis can be described in Figure 2 with N=8.
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Figure 2: A set of Walsh functions.

3.4 Haar wavelets

The orthogonal set of Haar functions defined in [19] is a group of square waves with
magnitude of ±1 in some intervals and zeros elsewhere. The first function is h0 = 1
∀x ∈ [0, 1]. It is commonly referred to as the scaling function. The second is the
fundamental square or the mother wavelet which spans the hole interval [0, 1], for N=4,
for example,

h1(t) = [1 1 − 1 − 1]φ4(t). (21)

All the other subsequent curves are generated from h1(t) with two operations: translation
and dilation. h2(t) is obtained from h1(t) with dilation, namely, h1(t) is compressed from
the whole interval [0, 1] to the half interval [0, 1/2] to generate h2(t). h3(t) is the same as
h2(t) but shifted to the right by 1/2. Similarly, h2(t) is compressed from the half interval
to the quarter interval to generate h4(t). h4(t) is translated to the right by 1/4, 1/2 and
3/4 to generate h5(t), h6(t) and h7(t), respectively.

The general description of the square waves is given as follows:

h0(t) = 1,

hi(t) =


2j/2, k−12j ≤ t <

k−1/2
2j ,

−2j/2, k−12j ≤ t <
k−1/2

2j ,

0, otherwise in[0, 1).

(22)
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The index i = 1, 2, . . . , N −1, j and k represent the integer decomposition of i as follows:
i = 2j + k − 1.

The description of the Haar wavelets can be seen in Figure 3 for N=8.

Figure 3: A set of Haar functions.

The operational matrix of integration for the Haar wavelets denoted PN,h is given as
follows:

PN,h =
1

2N

[
2NPN

2 ×
N
2
−HN

2 ×
N
2

H−1N
2 ×

N
2

0

]
, (23)

where
HN×N ,

[
hN (t0) hN (t1) · · · hN (tN−1)

]
.

As the Walsh function, the operational matrix of the Haar wavelets can be expressed by
the block-pulse operational matrix [17]

PN,h = HN×N × PN,bp ×H−1N×N . (24)

For N=4, HN×N is as follows:

H4×4 =


1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2

 . (25)

4 Orthogonal Function Based Minimum Time Control Problem Formulation

4.1 The original open loop problem

Minimum time control is an open loop control problem. It is described by Figure 4, where
X(0) is the known initial system state and u(t) is the control vector. This framework
is dedicated to the class of systems described by equation (1). Here x(t) is the system
state trajectory that is needed to search for a prefixed target state in a minimum time
tf to be calculated.

In this work, we intent to develop a numerical method that is able to return the final
time tf and the control sequence (or precisely the control coefficient over an orthogonal
function basis), while the initial X(0) (i.e. its coefficients over the same basis) should be
provided to the algorithm.
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Figure 4: An open loop control structure.

4.2 Main developement

Finding the solution of (5b) means solving multiple differential equations, which is math-
ematically delicate. To overcome this difficulty we will make use of the set of orthogonal
functions described in the last section.

In order to derive the final time, a variable change is introduced:

t = τtf . (26)

This change of variable allows a transformation of the time domain from t ∈ [0, tf ] to
τ ∈ [0, 1], then system states becomes

X(t) = X̃(τ). (27)

Notice that the latter variable change leads to a constant time interval [0,1] for the used
series since the final time tf is unknown.

Consequently, we deduce

Ẋ(t) =
dX̃(τ)

dτ
.
dτ

dt
=

1

tf

˙̃X(τ). (28)

The original state equation of system (1) is now equivalent to

1

tf

˙̃X(τ) = AX̃(τ) +Bũ(τ). (29)

Using orthogonal functions consists in developing both, the system states and the input
over that basis:

X̃(τ) = X̃T
N · φN (τ), ũ(τ) = ũTN · φN (τ), (30)

where φN (τ) ∈ B(τ),W (τ), H(τ). Furthermore, integrating equation (29) leads to

1

tf
(X̃(τ)− X̃(0)) = A

∫ 1

0

(X̃(τ))dτ +B

∫ 1

0

ũ(τ)dτ. (31)

Introducing coefficients of X̃(τ), ũ(τ) and the operational matrix of integration we obtain∫ 1

0

X̃(τ)dτ = X̃N

∫ 1

0

φN (τ)dτ = X̃T
NPNφN (τ), x (32)

then we can write

(X̃T
N − X̃T

N0
)φN = tf (AX̃T

NPN +BŨTNPN )φN , (33)

thus
X̃T
N − X̃T

N0 = tf (AX̃T
NPN +BŨTNPN ), (34)

where X̃N0 is a projection of the initial state over orthogonal functions and depends on
the chosen set of functions.
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4.3 OFs Optimization problem formulation

To find the transition time from the initial to the target position, we need to solve the
following nonlinear problem:

Original optimization problem

min (tf ) (35)

subject to:
ẋ(t) = Ax(t) +Bu(t), 0 ≤ t ≤ tf ,
u ∈ [umin, umax],
x(0) = x0, x(tf ) = xf .

(36)

This problem is reported to the domain [0, τ ]. The optimization algorithm in the
orthogonal basis has the following form:

Orthogonal function optimization problem

min (tf ) (37)

subject to linear constraints: initial state expansion:

• for the block-pulse function

X̃N0,bp =
[
X̃(0) X̃(0) · · · X̃(0)

]
,

• for the Walsh functions and Haar wavelets

X̃N0,w = X̃N0,h =
[
X̃(0) 0 · · · 0

]
final state expansion:

• For the block-pulse functions:
ŨNmin ≤ ŨN ≤ ŨNmax,
X̃Nf,bp =

[
0 0 · · · X̃f

]
.

• For the Walsh functions:
ŨNmin ≤ ŨN φN,w ≤ ŨNmax,

X̃Nf,w =
[

0 0 · · · X̃f

]
WN×N .

• For the Haar functions:
ŨNmin ≤ ŨN φN,h ≤ ŨNmax,

X̃Nf,h =
[

0 0 · · · X̃f

]
HN×N ,

where X̃N,f denotes the projection of the final sate over orthogonal functions. WN×N
and HN×N are, respectively, the Walsh and Haar transition matrices,

nonlinear constraints:

X̃N − X̃N0 = tf (AX̃NPN +BŨNPN ). (38)

To solve this optimization problem, an interior point method the same as the one
implemented in the function ”fmincon” of Matlab is used.
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Figure 5: Example 1.
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(a) Control sequence for Example 1.
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(b) System trajectory for Example 1.

4.4 Simulation and validation

In this subsection, a comparison between our results and some other results available in
the literature is presented.

4.4.1 Example 1

We consider a simple double integrator system in which its analytic solution using the
PMP is well known. Its state space representation is given in equation (39):

A =

[
0 1
0 0

]
, B =

[
0
1

]
. (39)

The system needs to be shifted from an initial state x(0) = [5, 2]T to the origin of state
space with the input constraint u ∈ [−1, 1]. The analytical solution for this system is as
follows: the system has one switching point at tc = 4.64 and the final time is tf = 7.29.
Determining the solution of the double integrator system using optimization algorithm for
a base of dimension N = 64, we obtain comparable results with the analytical solution.
From Figure 5(a) and Figure5(b), it is clear that the system has only one switching point
at tc = 4.594 which is almost the same one found by the analytical solution.

We can also see that the control sequence is bang-bang and that the final time tf =
7.3508 is also the same as the analytical solution.

4.4.2 Example 2

Take the example given in [10] which is a fourth order MIMO system with two real double
poles λ1 = 5, 2833 and λ2 = −0.0833. The state space representation of the system is
given as follows:

A =


− 1

10 0 0 0
0 − 1

15 0 0
0 0 − 1

15 0
0 0 0 − 1

10

 , B =


1
2 0
1
2 0
0 1

2
0 1

2

 , C =

[
3
5 0 8

15 0
0 2

3 0 3
5

]
.
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Figure 6: Example 2.
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(b) System trajectory for Example 2.

This system needs to be shifted from y = [0, 0]T to yf = [1, 1]T , the input constraints
are u1, u2 ∈ [−1, 1]T .

Computing the MIMO system including its constraints we obtain the control sequence
described in Figure 6(a).

We can see from Figure 6(a) that the control sequence is bang-bang, that u1 does not
contain any switching time and that u2 contains only one at tc = 2.5.

This proves that our method is also effective for MIMO constrained systems. By
comparing this result to the result obtained in [10] where tf = 54.1 we can see from
Figure 6(b) that the target is reached before at tf = 4.47.

It is clear that the obtained results through the orthogonal piecewise functions using
operational matrices are far better than the one obtained using the Chebyshev technique
[10].

5 Closed Loop Online Suboptimal Minimum Time Control Algorithm

In the past section we have elaborated an algorithm to compute the minimum time
control for open loop systems. Such solution can not recover from perturbations, so we
determined an offline suboptimal control structure. In this part, we introduce an online
suboptimal minimum time control.

5.1 Principle

The control problem is now described by Figure 7. Z is a perturbation that may affect
the system states, XT

N (kh) = [x0(kh) x1(kh) · · · xN−1(kh)] is the output state vector
at t = kh which represents the discrete time. Besides, h is chosen as small as possible in
order to take into account correctly an eventual disturbance over the system states.

The optimization problem formulation in the closed loop is similar to that in the open
loop case. However, it is computed k times. The initial state is continuously actualized
to the final state of the previous optimization step.
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Figure 7: Feedback control scheme.

5.2 Algorithm description

Algorithm 5.1 Minimum time closed-loop algorithm

begin
initialization
k ←− 0
h←− 10−2

X̃N0,bp = [X̃(0) X̃(0) · · · X̃(0)]
While x̃ 6= xf do

Find min(tf )
Subject to:
Linear constraints:
ŨNmin ≤ ŨN × φN ≤ ŨNmax
X̃N0 = [x̃0(kh) x̃1(kh) x̃N−1(kh)]
X̃N0,f = [0 0 · · · x̃f ]
Nonlinear constraints:
X̃N − X̃N0 = tf (AX̃NPN +BŨNPN )
k ←− k + 1

end
end

5.3 Simulation and comparison results

We consider the same system: a simple double integrator described previously.

In this section we intent to apply the closed loop optimization procedure to the
system using the orthogonal block-pulse, Walsh or Haar wavelets for N = 64. This will be
considered for various cases, namely, the system without disturbance (here the closed loop
performance should meet the open loop one to prove the correctness of the algorithm),
and after that the presence of perturbation case is examined. That disturbance is seen
as an exterior event that discards the system state from its trajectory at time instant
denoted tp.

From Figure 8(a), it is clear that the system has only one switching point at tc = 4.594
which is almost the same one found by the analytical solution.

We can also see that the control sequence is bang-bang in the closed loop and that
the final time tf = 7.323 is also the same as the analytical solution. It is clear from
Figure 8(b) that the system without perturbations in the closed loop reaches the target
at the same time of the open loop.
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Figure 8: Example 1 without perturbation.
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(b) System trajectory for the example 1 without
perturbation.

Figure 9: Example 1 with perturbation.
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(a) System trajectory for the example 1 with
perturbation on the first state.
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(b) Control sequence for the example 1 with per-
turbation on the first state.

5.4 Example for perturbed system

In this part, the system is perturbed at tp = 4s. We can see from Figure 9(b) that the
control sequence is still bang-bang but there is a change of the switching time.

It is clear from Figure 9(a) that the system is able to recover from the perturbation
and reaches the target faster for the case of this perturbation. In fact, the perturbation
signal on the first state has brought it closer to the target. This explains why tf < tfol .

Another simulation context could be verified. In fact, the system described by the
state space form in (39) is perturbed at tp = 4s, where x = [x1 − 2;x2 − 3].

We can see from Figure 10(b) that the control sequence is still bang-bang but the
system needs two switches to steer the system to the origin.

It is clear from Figure 10(a) that the system is able to recover from the perturbation
and reaches the target. In fact, the perturbation signal on the two states has made the
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Figure 10: Example 1 with perturbation on two states.
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final time tf bigger than the one without perturbation. Then the perturbation signal has
a direct effect on the final time tf .

6 Conclusion

In this paper, we focused on the problem of a minimum time control determination for
linear systems in both cases of control structures: an open loop and a closed loop con-
trol. The key of the developed method is the approximation of the dynamic equation of
the system under consideration using a complete basis of orthogonal functions and its
operational properties. We have opted for the use of the piecewise orthogonal functions:
block-pulse, Walsh and Haar wavelets. The results suggest that the proposed develop-
ment yields a new formulation of the optimization problem which is simpler than those
developed in the literature.

Other advantages of the proposed method include a better final time estimate and
fewer switches for high order systems. The developed algorithm was also tested for a
number of examples (i.e. SISO and MIMO systems), the results showed perfect agreement
with the exact analytic results, which ensures the availability of the proposed technique.
In the closed loop case, two algorithms were introduced to take into account the effects
of perturbations on the system. They are: an offline algorithm which, compared to open
loop results, has a great deterioration of results, and an online one which has a slight
deterioration of performances even with perturbations.

In future work, we expect to generalize the proposed approach to the synthesis of
minimum time control laws for nonlinear and fuzzy systems using state variable obser-
vation [20].

References

[1] L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko. The Mathematical
Theory of Optimal Processes. Interscience Publishers, Inc. New York, 1962.



288 S. BICHIOU, M.K. BOUAFOURA AND N. BENHADJ BRAIEK

[2] L. Consolini and A. Piazzi. Generalized bang-bang control for feedforward constrained
regulation. Automatica 45 (10) (2009) 2234–2243.

[3] R. Bulirsh, F. Montrone and H. T. Pesch. Abort landing in the presence of windshear as
a minimax optimal control problem, part2: multiple shooting and homotopy. Journal of
optimization theory and applications 70 (2) (1991) 1–23.

[4] Z. Shen, P. Huang and S. B. Andersson. Calculating switching times for the time-optimal
control of single-input, single-output second-order systems. Automatica 49 (5) (2013) 1340–
1347.

[5] B. M. Mohan and S. K. Kar. Continuous time dynamical systems state estimation and
optimal control with orthogonal functions. CRC Press, 2012.

[6] K. B. Datta and B. M. Mohan. Orthogonal Functions in Systems and Control. World scien-
tific, Singapore, 1995.

[7] M. K. Bouafoura, O. Moussi, and N. Benhadj Braiek. A fractional state space realization
method with block pulse basis. Signal Processing 91 (3) (2011) 492–497.

[8] S. Piccagli and A. Visioli. Using a Chebyshev technique for solving the generalized bang-
bang control problem. 46th IEEE Conference on Decision and Control. New orleans, LA,
December 2007, 4743–4748.

[9] M. Razzaghi and S. Yousefi. Sine-cosine wavelets operational matrix of integration and its
applications in the calculus of variations. J. Syst. Sci. 33 (10) (2002) 805–810.

[10] S. Piccagli and A. Visioli. Using a Chebyshev approach for the minimum-time open-
loop control for constrained MIMO systems. International Conference on Control 2008
(UKACC), Manchester, UK, September 2008.

[11] S. Piccagli and A. Visioli. Minimum-time feedforward technique for PID control. IET Con-
trol Theory and Applications 3 (10) (2009) 1341–1350.

[12] D. E. Kirk. Optimal Control Theory: An Introduction. Dover Books on Electrical Engineer-
ing, 2012.

[13] E. R. Barnes. The Optimal Control of Hamiltonian Systems. IBM Thomas J. Watson Re-
search Division, 1975.

[14] M. K. Bouafoura, P. Lanusse and N. Benhadj Braiek. State space modeling of fractional
systems using Block-pulse fonction. In: Proceedings of 15th IFAC Symposium on system
Identification SYSID’2009. St Malo, France, 6-8 July 2009.

[15] G. P. Rao and L. Sivakumar. Transfer function matrix identification in MIMO systems via
Walsh functions. IEEE Proc. 69 (4) (1981) 465–466.

[16] B. M. Mohan and S. K. Kar. Orthogonal functions approach to optimal control of delay
systems with reverse time terms. Journal of the Franklin Institute 347 (9) (2010) 1723–
1739.

[17] J. L. Wu, C. H. Chen and C. F. Chen. A Unified Derivation of Operational Matrices for In-
tegration in Systems Analysis. International Symposium on Information Technology ITCC
Las Vegas, NV, USA, March 2000, 436–442.

[18] C. F. Chen, C. H. Hsiao. Design of piecewise constant gains for optimal control via Walsh
functions. IEEE Transactions on Automatic Control 20 (5) (1975) 596–603.

[19] C. F. Chen and C. H. Hsiao. Haar wavelet method for solving lumped and distributed-
parameter systems. IEEE Proc. Control Theory Appl. 144 (1) (1997) 87–94.

[20] A. Chibani, M. Chadli and N. Benhadj Braiek. A sum of squares approach for polynomial
fuzzy observer design for polynomial fuzzy systems with unknown inputs. International
Journal of Control, Automation and Systems 14 (1) (2016) 323–330.


	Introduction
	Time-Optimal Constrained Feedforward Control Problem
	Orthogonal Functions and Algebraic Properties
	Principle
	Block-pulse functions
	Walsh functions
	Haar wavelets

	Orthogonal Function Based Minimum Time Control Problem Formulation
	The original open loop problem
	Main developement
	OFs Optimization problem formulation
	Simulation and validation
	Example 1
	Example 2


	Closed Loop Online Suboptimal Minimum Time Control Algorithm
	Principle
	Algorithm description
	Simulation and comparison results
	Example for perturbed system

	Conclusion

