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Abstract: In this paper we use a matrix approach to investigate the distribu-
tion of particles in nucleation coalescence models with discrete lattices, both in
the irreversible coagulation case and in the reversible one. In the irreversible case
(A + A → A), the evolution of the particle distribution is described by means of a
simple recursive procedure. In two particular cases the model is analytically solv-
able: with high density and particles that always fuse into one, and in the case of
constant density. In the reversible case (A+A 
 A) offspring production is allowed,
and the system can reach a stationary distribution, which is jointly calculated with
the equilibrium density. The particular case, in which meeting particles react with
probability one, admits an exact solution.
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1 Introduction

In the last decades, diffusion-controlled coalescence processes have attracted much re-
search interest [1], [2], [3], [4], [5], [6] (see [7] and [8] for literature reviews). The models
of these processes are applied to the analysis of phenomena involving particles in a solid,
chemical species which randomly hop and react with adjacent ones, or non-equilibrium
processes ranging from fluorescence to explosions. This kind of models is increasingly
being used in biology, chemistry, genetics, sociology or finance, see [9], [10], [11] and [12],
in which variations of the Ising model are used. We apply a simple matrix approach
to the analysis of one-dimension coalescence models that usually require sophisticated
mathematical tools (or Monte-Carlo simulations) to be solved.
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In one-dimension diffusion-limited reactions, the reaction time is much shorter than
the diffusion time, so it is often assumed to be instantaneous. The physical system has
a high number of particles, which can nucleate, and the distances between particles in a
nucleus are negligible if compared to the distances between nuclei, which do not interact.
The attractive interaction between particles is small, so the particles can diffuse into
neighbor regions. Lastly, the energy of nucleated particles is very small, so reactions
among the particles are neglected. Then, it is sensible to model the physical system
by means of a discrete lattice where separate cells (sites) contain an integer number
of particles. Two different situations can be considered: (i) In the case of irreversible
coagulation, A+A→ A, the particle input is not allowed and particles diffuse until two of
them meet and fuse (or not) into one. The fusion happens with some probability k, which
reflects the fact that reactions are not necessarily instantaneous (k = 1 means that the
reaction occurs instantaneously). (ii) If the back reaction is possible, particles can give
birth to another particle (offspring production, A→ A+A). In the reversible coalescence
process, A + A 
 A, the system can reach an equilibrium state, often characterized by
the existence of a phase transition. Some well-known results in low-dimension diffusion-
limited reaction models are: (i) the mean-field approximation for reaction kinetics breaks
down (in the mean-field approximation, the particle density goes with the inverse of
time, ρ ∼ t−1, a dependence derived from the dynamics equation dρ/dt ∝ ρ2); (ii) in the
irreversible case (coagulation), the system is temporarily described by the classical limit;
but in the long-time regime, when the mean distance between particles is very large, it
follows a diffusion limited decay, with ρ ∼ t−1/2 ; (iii) the one-dimensional single-species
reversible reaction, A+A
 A, is characterized by a second-order phase transition.

In this paper we use a one-dimensional discrete model to derive the particle distri-
bution in two nucleation models: the irreversible coalescence model, and the reversible
model with back reaction. J. C. Lin [3] also uses a discrete formalism, but centers his
attention on the time-dependent probability that an interval with n sites is empty at
time t, and Doering and Ben-Avraham [2] use the same interparticle distribution func-
tion in continuous formalism. Instead of analyzing the interparticle distribution as in [2]
and [3], we propose a simple matrix approach to calculate the occupation probabilities
and the particle density. The method offers a description of the system where the particle
distribution can be obtained, valid whenever the particle density is not too low. This is
so since we implicitly neglect spatial correlations (so, in particular, the occupation num-
bers in adjacent sites are uncorrelated). In the irreversible case, in which the number of
particles never increases, we describe the occupation dynamics (which represents a non-
equilibrium state unless k = 0). In the two particular cases of high density with k = 1,
and non-reacting particles (k = 0, the number of particles does not vary) the steady state
distribution is given in closed-form. In the reversible case, the particle input is allowed,
we describe the stationary distribution. In the particular case, where particles always
react (k = 1), the model is solved in closed-form. The appearance of a phase transition
is predicted.

A matrix approach to systems of interacting particles with random dynamics is al-
ready used in [13], but applied to different phenomena (the authors analyze the one-
dimensional fully asymmetric exclusion model, where the particles hop in a preferred
direction with hard core interactions). J.M. Cushing [14] also applies a matrix approach
to analyze a bifurcation phenomenon for a class of nonlinear matrix models, describing
the evolutionary dynamics of a structured population.

Section 2 presents a simple coalescence model where the particle input is forbidden, so
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the number of particles cannot increase. We analytically show some results derived in [15]
by means of Monte-Carlo simulations. In Section 3, the particle input is allowed. The
equilibrium distribution is obtained, and the appearance of a dynamic phase transition
is analyzed. Section 4 summarizes the paper results and concludes.

2 Irreversible Coagulation: A+A→ A

Consider a system with N identical particles located in a lattice containing L identical
sites. The initial distribution can be approximated by a Poisson one with the parameter
ρ = N/L. The choice is natural: if each particle initially occupies a site chosen at
random, the occupation number (the random number of particles in an arbitrary site)
follows a binomial distribution, which tends to the Poisson one as N and L tend to +∞.
Particles leap from one site to an adjacent one. Then, the reaction can take place (with
probability k) or not, which reflects that reactions are not instantaneous. If the reaction
takes place, the number of particles in the system decreases by one unity; the occupation
number in the former site of the leaping particle is one unit less; and the site, where
the particle leaps, has the same occupation number since the reaction takes place and
one particle disappears. If the reaction does not take place, the particle just changes its
location, so the number of particles in the system remains the same. The model is more
complex than the hard-core model, where sites can be occupied by only one particle,
see [15]. [8] offers a simple explanation of why a particle in a many-particle quantum
system can behave as a classical object that occasionally hops from one lattice cell to
another.

The interval of time between two leaps is assumed to be the inverse of the number of
particles: δt = 1/N(t). We center our attention on the number of particles in a represen-
tative site, and calculate the transition probabilities associated to the representative site.
The transition probabilities are put in an infinite matrix that resembles a Markov chain
matrix (see the matrix below). However, probabilities depend on time since N varies
with time, so we must notice that, strictly speaking, it is not a Markov chain unless
k = 0 (N remains then constant). In spite of this limitation, we use the Markov chain
formalism to describe the particle distributions in discrete one-dimensional coagulation
systems. The transition matrix at time t is

M ≡ (M j
i )i,j=0,1,2,...,N = (Iji )i,j=0,1,2,...,N + (Aji )i,j=0,1,2,...,N (1)

with (Iji )i,j=0,1,2,...,N being the identity matrix and (Aji )i,j=0,1,2,...,N=

=



− 1
L

1
L 0 0 0 ...

1
N − 1

N −
1
L (1− k) 1

L (1− k) 0 0 ...
0 2

N − 2
N −

1
L (1− k) 1

L (1− k) 0 ...
0 0 3

N − 3
N −

1
L (1− k) 1

L (1− k) ...
0 0 0 4

N − 4
N −

1
L (1− k) ...

...
...

...
...

...
...


.

Stricto sensu, matrix M has finite dimension. However, given that the number of
particles is very large, matrix M can be thought of as defined in RN with N → +∞, a
vector space of infinite dimension, and the particle distribution can be taken as a Poisson
one. The master equation of the system can be obtained from the transition matrix (1).
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As in any stochastic matrix, the sum of elements in a row is equal to one. We observe
that transitions can only occur to adjacent sites; the transition matrix is then systolic,
like all the transition matrices in the paper. The probability that a site with j(≥ 1)
particles turns to be occupied by j+ 1 particles when the system contains N(t) particles
is equal to Pj→j+1 ≡ M j+1

j = (1/L)(1− k), independently of N , while the probability

of remaining with j particles is Pj→j ≡M j
j = 1− j/N − (1/L)(1− k). Next, we explain

how the diagonal element (j, j) in matrix M (with j ≥ 1) is obtained. Let us look at the
adjacent elements: on the one hand, if the representative site has j particles at time t,
the element (j, j − 1) in matrix M , denoted by M j−1

j , which represents the probability
associated to the event ”the site will have j − 1 particles at t + δt”, is equal to j/N ;
this means that one of the j particles in the site is the one which hops between t and
t+ δt. On the other hand, the site can be occupied by j+ 1 particles after the next hop.
Taking into account that a particle can hop from any adjacent site, and that a particular
particle hops with probability 1/N , the probability that an additional particle will occupy

the site considered is M j+1
j = 1−k

N [0.5
∑N
j=1 jP (j) + 0.5

∑N
j=1 jP (j)] = 1−k

N ρ = 1−k
L .

Consequently, for j ≥ 1, the element (j, j) in M must be M j
j = 1− j/N − (1/L)(1− k).

By means of the transition matrix M in (1) we obtain the evolution of the particle
distribution, from which we calculate the particle density: the product of the initial
distribution (a vector) by the time-dependent matrices (written in terms of N(t)) gives
us the particle distribution across time (a vector), and its scalar product with vector

(0,1,2,3,...) gives us the particle density ρ(t) =
∑N
j=1 jP (j) , which changes with time.

The distributions are written in terms of N (or, alternatively, ρ), and are readily obtained
by a simple recursive procedure. The evolution of the density and particle distribution
can be explicitly written in terms of time by using the fact that δN(t) = −k((1− P (0))
and δt = 1/N(t). The method works when the particle density is not very low. In
the long-time regime, however, the mean distance between particles is very large, so the
occupation numbers are low and not independent of the occupation numbers of adjacent
sites. So, correlations between the number of particles in adjacent sites are not negligible,
which is confirmed by the well-known dynamics corresponding to the long-term regime,
see [15], [16]. Consequently, the method proposed does not work in the long-run and in
general with very low densities.

The numerical experiments performed by implementing the recursive method based
on matrix M show that the time-dependent particle distribution quickly departs from
the initial Poisson distribution (unless the reaction constant k is very low). In partic-
ular, the proportion of empty sites, P (0), is well below the Poisson probability, while
P (j ≥ 1) can be greater or lower than its Poisson counterpart, depending on the partic-
ular values of k, ρ and j. Let us check it for the two first probabilities. Recall that the
first three probabilities of a Poisson distribution are: PPOI(0) = e−ρ , PPOI(1) = ρe−ρ,
PPOI(2) = ρ2e−ρ/2!. Let us denote by P (j|X) the probability that the representative
cell has j particles when the system has X particles. If the system initially contains N
particles, after the first iteration the probability of null occupation remains unchanged,
P (0|N − δN) = PPOI(0|N). However, in expectation the number of particles has de-
creased (from N to N − δN), so the density has also decreased (in expectation). This
implies that the Poisson distribution overestimates the true probability of null occupa-
tion (so, there are more occupied cells actually than the Poisson pattern establishes). For
P (1), however, we obtain P (1|N − δN) = PPOI(1|N) + kρe−ρ/L, so in this case the true
probability P (1|N − δN) can be above or below the Poisson one, PPOI(1|N − δN) (ob-
serve that ρe−ρ is not a monotone function of ρ). In general, the deviation of P (j ≥ 1)
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from the Poisson case has not a definite sign. For a typical parameter configuration,
k=0.5, L = 105 and N(0) = 3L, for ρ = 1.5 we obtain P (0)=0.179, P (1)=0.391 and
PPOI(0)=0.223, PPOI(1)=0.335, in concordance with the explanation above. These re-
sults are in excellent agreement with the Monte-Carlo simulations of Figs. 1 and 2 in [15].

In two particular cases the particle distribution admits a closed-form solution.

Case 1: ρ � 1 and k = 1: density is high and particles always react fusing into one.
Next, we show that the particle distribution obeys a Poisson distribution as long as
density remains high (say, above 5). Obviously, in the distant future, inequality ρ � 1
will not hold since the number of particles decreases with time, and the approximation
then fails. The proof resembles that in [17], where in a different context the authors first
calculate the infinitesimal generator of the transition, and then derive the equilibrium
condition of the system and the steady-state probability distribution. Condition ρ � 1
implies P (0) ≈ 0, so N diminishes in one unity every time step with probability close to
one (recall that k = 1), and the transition probability P0→1 can be neglected. Then, the
transition matrix M reduces to

M = (Iji ) + 1
N



0 0 0 0 0 ...
1 −1 0 0 0 ...
0 2 −2 0 0 ...
0 0 3 −3 0 ...
0 0 0 4 −4 ...
...

...
...

...
...

...


, so the transition matrix can be ex-

pressed as M = I + Gδt, with I being the identity matrix, G being the infinitesimal
generator of the transition, and 1/N=δt being the time step. Next, we calculate the
exponential matrix exp(GT ). It corresponds to the finite transformation corresponding
to the time interval T , and gives the solution to the Kolmogorov forward equation when
applied to the initial distribution vector. Time T is the sum of incremental time intervals:

T=
∑
δt=

∑N(T )
N=N(0) 1/N ≈

∫ N(T )

N(0)
(1/x)dx=ln(N(0)/N(T )). The matrix exp(GT ) is cal-

culated by diagonalizing G, which can be expressed as G = PDP−1, where D represents
the diagonal matrix constructed with the eigenvalues of G, D=diag (0,−1,−2,−3, ...),
and P is constructed with the eigenvectors of G. The eigenvectors form a basis under
which G becomes diagonal and are obtained (up to constants) by solving a system of
linear equations, whose solution gives us a possible choice for matrix P . We choose the
basis written in terms of the binomial coefficients, (P )ji =

(
i
j

)
≡ i!

j!(i−j)! . The inverse

matrix is given by (P−1)ji = (−1)i+j
(
i
j

)
. The exponential matrix is then written as

exp(GT ) = P exp(DT )P−1 with

P =



1 0 0 0 0 ...
1 1 0 0 0 ...
1 2 1 0 0 ...
1 3 3 1 0 ...
1 4 6 4 1 ...
...

...
...

...
...

...


, P−1 =



1 0 0 0 0 ...
−1 1 0 0 0 ...
1 −2 1 0 0 ...
−1 3 −3 1 0 ...
1 −4 6 −4 1 ...
...

...
...

...
...

...


,
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exp(DT )=



1 0 0 0 0 ...
0 α 0 0 0 ...
0 0 α2 0 0 ...
0 0 0 α3 0 ...
0 0 0 0 α4 ...
...

...
...

...
...

...


, where α :=exp(−T ).

Finally, performing the product of the three matrices above we obtain

exp(GT )=


1 0 0 0 0 ...

1− α α 0 0 0 ...
1− 2α+ α2 2α− 2α2 α2 0 0 ...

1− 3α+ 3α2 − α3 3α− 6α2 + 3α3 3α2 − 3α3 α3 0 ...
...

...
...

...
...

...

.

The element j of the first column in exp(GT ) obeys the form
∑j
i=0

(
j
i

)
(−1)iαi, with

j ≥ 0. The element j in the second column obeys the form
∑j
i=1 j

(
j−1
i−1
)
(−1)i+1αi, with

j ≥ 1, et cetera. The (matrix) product of the initial distribution vector and exp(GT )
gives the particle distribution at T , valid whenever k=1 and ρ is high. We can show
that if the initial distribution follows a Poisson distribution with parameter ρ(0), the
time-dependent distribution of particles follows a Poisson distribution with parameter
ρ(t). Let us check it for the two first probabilities of the distribution. Consistently with
the Poisson assumption, we take N → +∞:

P (0) =
∑∞
j=0 PPOI(j)

∑j
i=0

(
j
i

)
(−1)iαi [making −α ≡ β]

=
∑∞
j=0 e

−ρ0(ρ0
j/j!)

∑j
i=0

(
j
i

)
βi =

∑∞
i=0 β

ie−ρ0
∑∞
j=i(ρ0

j/j!)
(
j
i

)
=e−ρ0

∑∞
i=0(βi/i!)

∑∞
j=i

ρj0
(j−i)! =e−ρ0

∑∞
i=0 (βi/i!)ρi0e

ρ0

=
∑∞
i=0 (βi/i!)ρi0 = eρ0β .

Recalling that β := −α= −exp(−T ) =−N(T )/N(0), we finally obtain
P (0) =exp(−ρ(t)). Similarly we obtain P (1):

P (1) =
∑∞
j=0 PPOI(j)

∑j
i=1 j

(
j−1
i−1
)
(−1)i+1αi = (−1)

∑∞
j=1

je−ρ0ρ0
j

j!

∑j
i=1β

i (j−1)!
(i−1)!(j−i)!

=−e−ρ0
∑∞
i=1

ρi0β
i

(i−1)!
∑∞
j=i

ρj−i0

(j−i)! =−
∑∞
i=1

ρi0β
i

(i−1)! = −ρ0βeρ0β = ρ(t)e−ρ(t).

The rest of probabilities, P (j ≥ 2), are similarly obtained and correspond to a Poisson
distribution of parameter ρ. In [15], the authors use Monte-Carlo simulations to show
that the particle distribution is sensibly described by means of a Poisson distribution (of
parameter equal to the system density) when densities are high. We have shown this
result analytically.

Case 2: k=0 (particles never react, so N(t)=N). Now the transition matrix (1) is
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(M j
i ) = (Iji ) +



− 1
L

1
L 0 0 0 ...

1
N − 1

N −
1
L

1
L 0 0 ...

0 2
N − 2

N −
1
L

1
L 0 ...

0 0 3
N − 3

N −
1
L

1
L ...

0 0 0 4
N − 4

N −
1
L ...

...
...

...
...

...
...


.

The stationary distribution corresponds to the eigenvector with eigenvalue 1. Solving
the system of equations xM = x we obtain: δ1 = ρδ0, δ2 = ρδ1/2, δ3 = ρδ2/3, ...,
δj = ρδj−1/j and so on. Then, δj = ρjδ0/j!. Condition

∑
P (j) = 1 implies that

δ0
∑∞
j=0 ρ

j/j! = 1, so δ0=exp(−ρ): the stationary distribution is a Poisson one with
parameter ρ = N/L, the constant density. The result is independent of the initial
distribution. So, if the system initially follows a Poisson distribution, particles merely
diffuse, and the particle distribution remains; otherwise, the particle distribution evolves
over time towards the Poisson one.

3 Reversible Coalescence: A+A
 A

In this section we consider that particles can give birth to another particle at rate λ: in
the time interval between t and t+ δt any particle will give birth to a new particle with
probability λδt. Then both the offspring production (A → A+A) and the coagulation
processes (A+A→ A) coexist. We assume that the new particle stays in the same site
as the generating one, in contrast with [3], where the new particle appears in an adjacent
site (an assumption made for the sake of tractability in order to make the model solvable).
We also assume that the particle born does not react (this is assumed without lost of
generality, as parameter λ can be redefined to account for the situation where the new
particle can react). We impose that inequality λ < k must hold; otherwise, the number
of particles would increase without boundary. As the time step is inversely related to
the current number of particles in the system, δt = 1/N , the probability that a given
particle gives birth to a new particle between t and t+ δt is λ/N . The disappearance of
one particle between t and t+δt occurs if a particle hops in such time interval and reacts.
So, the probability associated to the disappearance of an arbitrary given particle in the
interval δt is k/N if it jumps to a non-empty site, and 0 otherwise. In the stationary
state, Peq(0) is calculated by imposing that the number of particles in the system does
not change in expectation: E(δN)=λNδt− (1− Peq(0))k=λ− (1− Peq(0))k = 0, where
the minuend represents the probability of birth of a new particle in the interval (t, t+δt),
and the subtrahend represents the probability of disappearance of some particle in the
same interval (a hopping particle arrives at a non-empty site and reacts). Then, at
equilibrium, the probability associated to an empty site is P (0) = 1 − λ/k with λ < k.
The transition matrix is now

M ≡ (Iji ) + (Bji ) (2)

with (Iji ) being the identity matrix and (Bji ) =
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=



− 1
L

1
L 0 0 ...

1
N − 1

N −
1
L (1− k + λ/ρ) 1

L (1− k + λ/ρ) 0 ...
0 2

N − 2
N −

1
L (1− k + 2λ/ρ) 1

L (1− k + 2λ/ρ) ...
0 0 3

N − 3
N −

1
L (1− k + 3λ/ρ) ...

0 0 0 4
N ...

...
...

...
...

...


.

The stationary particle distribution corresponds to the eigenvector with eigenvalue
1. By solving the system of equations xM = x, with M being the matrix given in
(2), we obtain the following recursive relation: P (1) = ρP (0), P (2) = (ρ/2)(1 − k +
λ/ρ)P (1), ..., P (j) = (ρ/j)[1−k+(j−1)λ/ρ]P (j−1), with P (n) denoting the probabilities
of the stationary distribution; the equilibrium density, ρeq, is still to be determined.
Disentangling the recursive relation, the general term of the succession can be written as
P (j ≥ 2) = P (0)(ρj/j!)

∏j−1
n=1(1− k + nλ/ρ).

Finally, ρeq is obtained by imposing that the sum of probabilities is one. We must
observe that the system can reach an arbitrarily high population even though the birth
rate is below the nucleation rate (λ < k).

A particular case deserves attention. If k = 1 (meeting particles always react and
fuse into one), we obtain an exact solution. Let us see it. The computation of P (j ≥ 2)
reduces to

P (j ≥ 2) = P (0)(ρj/j!)

j−1∏
n=1

(nλ/ρ) = ρP (0)λj−1/j.

The equilibrium density is calculated as follows:

1 =

∞∑
j=0

P (j) = 1− λ+ ρ(1− λ) +

∞∑
j=2

P (j) =

= (1 + ρ)(1− λ) + (P (1)/λ)(

∞∑
j=1

λj/j − λ) =

= (1 + ρ)(1− λ) + (P (1)/λ)

∞∑
j=1

λj/j − P (1).

Taking into account the fact that P (1) = ρP (0) = ρ(1− λ) and that∑∞
j=1 λ

j/j = λ+ λ2/2 + λ3/3 + ... = −ln(1− λ) if λ < 1, we finally obtain:

ρeq =
λ2

(1− λ)[−ln(1− λ)]
. (3)

This equilibrium density is a positive number that can be above 1 (if λ > 0.606)
or below 1 (if λ < 0.606). The quantity −ln(1 − λ), denoted by ρ∗ henceforth, is
necessarily smaller than ρeq (inequality ρ∗ < ρeq is easily shown using the fact that
−ln(1− λ) = λ+ λ2/2 + λ3/3 + ... ). This inequality is relevant later on.

The particular case k = 1 (which leads to (3)) is not as restrictive as it may seem,
since the condition k < 1 represents that reactions are not instantaneous, so time can be
re-scaled to kt. Then we can also re-scale the birth rate λ (changing it to λ/k) to have a
model similar to the previous one. After re-scaling, the simpler model (k = 1) gives a good
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approximation to ρeq when k < 1. Both models are not mathematically identical, but

qualitatively similar. The approximation ρeq =
(λ/k)2

(1− (λ/k))[−ln(1− (λ/k))]
obtained

from (3) is very good if the ratio λ/k is small.
An apparent paradox arises: both ρ(t) and Pt(0) can be increasing functions of time.

Consider, for example, L = 105, N = 0.7 × 104, k = 1 and λ = 0.5; then ρ(t) increases
from ρ(0) = 0.7 to ρeq = 0.7213 and P (0) increases from P0(0)=e−ρ(0) = 0.4966 to
Peq(0) = 1 − λ = 0.5. Can both the density and the number of empty sites simultane-
ously increase? The answer is affirmative. The paradox is not such since the particle
distribution follows a Poisson one only at t = 0, but in equilibrium the system has more
empty sites than in the Poisson case (oppositely to the irreversible model, A+A→ A).
A distinguishing feature of the model is that the particle density does not necessarily
evolve monotonically towards the equilibrium. This fact is related to the existence of a
kinetic phase transition. Let us see it.

At any time t, the system density decreases if the birth rate λ is smaller than the
disappearance rate kC(t), with C(t) ≡ 1− P (0) being the system concentration. Take
k = 1 and assume ρ0 = ρeq for simplicity, with ρeq given in (3). At t = 0, the density
decreases if λ < kC(t) = 1 − e−ρ0 ; recall that k = 1 and the initial distribution is a
Poisson one. Inequality λ < 1− e−ρ∗ is equivalent to −ln(1− λ) < ρ∗, which necessarily
holds because ρ∗ ≡ −ln(1− λ) is smaller than ρeq (see above). So, starting at ρ0 = ρeq,
the density initially decreases and then increases (towards ρeq). In the case where ρ0 is
below ρ∗, the density initially increases instead, since λ > kC(t) necessarily holds. In
sum: ρ∗ is lower than ρeq, as in [3] and [18], and for initial densities lying between ρ∗

and ρeq, ρ(t) first decreases and then increases. If, for example, λ = 0.2, the equilibrium
density is ρeq = 0.2241; if the initial density is between 0.2231 and 0.2241, equal to
−ln(1−λ) and ρeq respectively, the system density initially decreases and then increases
towards ρeq. The concentration evolves from C(0) = 1− e−ρ0 = 0.2007 to λ = 0.2.

Then, the system evolution depends on the initial conditions. In particular, the time
until equilibrium behaves differently depending on whether the initial density is above
or below ρ∗: if T denotes the time elapsed until the density first reaches ρeq, it is easy to
show that in the neighborhood of ρ∗, ∂T/∂ρ0 < 0 if ρ0 < ρ∗ but ∂T/∂ρ0 > 0 if ρ0 > ρ∗.
The discontinuity in the derivative suggests the existence of a dynamic phase transition
at ρ0 = ρ∗, which confirms a result in [3]: the lattice effect is not important qualitatively
in predicting the transition. Equivalently, the dynamic phase transition corresponds to
an initial concentration C(0) = λ. In fact, the system concentration (rather than the
density) is the key to explain the system behavior, which shows a manifestation of the
lattice effect. The order of the phase transition requires the calculation of the relaxation
time, which is not available from the transition matrix; see [3] or [18] for its computation
in a different formulation.

If we assume instead that the particle input occurs in an adjacent site to the site
of the mother particle, the transition matrix is slightly different from the previous case
(in which the particle input occurs in the cell of the mother particle). The matrix
elements are now: M0

0 = 1 − (1/L)(1 + λ), M j
j = 1 − j/N − (1/L)(1 + λ)(1 − k) and

M j+1
j = (1/L)(1 + λ)(1 − k) for j ≥ 1, and the rest of elements are obtained by taking

into account the fact that the matrix is stochastic.
If k < 1, from the new matrix we obtain P (0) = 1 − λ

k(λ+1) , P (1) = ρ(1 + λ)P (0),

and the recursive relation P (j) = (ρ/j)(1 + λ)(1 − k)P (j − 1), which leads to P (j) =
[ρ(1+λ)(1−k)]j−1

j! P (1). By imposing that the sum of probabilities is one, we obtain an
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equation from which the equilibrium density ρeq can be computed. The density obtained
is below the equilibrium density obtained in the previous case, because now the new
particle is born in an adjacent site and can react, which is neglected by assumption
in the previous model (in which the particle remains in the site of the mother particle
without reacting).

If k = 1, then P (j ≥ 2) = 0, and the equilibrium density reduces to ρeq = λ/(1 + λ).
In equilibrium, sites are either empty or occupied by one particle, so, asymptotically, the
model resembles the hard-core model.

4 Concluding Remarks

In this paper we use a matrix method to analyze the particle distribution in nucleation
diffusion-limited models, both in the irreversible case (A+A→ A) and in the reversible
one (A+A
 A). In the irreversible case, the number of particles in the system cannot
increase with time. We focus our attention on the situation where the system density
is not too low and decays with ρ ∼ t−1. In the long-time regime, however, the decay
goes with ρ ∼ t−1/2, which remains out of our scope. In the reversible case particles give
birth to other particles, and the density reaches an equilibrium level for some parameter
configurations. According to the method proposed, the particle distribution can be
calculated by using a simple recursive procedure based on Markov chains, with the density
being part of the solution.

In some particular cases, exact solutions are obtained. In particular, in the irreversible
coagulation case, if density is high and particles react with probability 1 (i.e., ρ� 1 and
k = 1), then the time-dependent distribution is Poisson with parameter equal to the
time-dependent density. Also, if offspring production is not allowed and particles do not
react (k = 0, so the number of particles remains constant), the stationary distribution
also follows a Poisson one, in this case independently of the initial distribution. In the
reversible case, in which offspring production is allowed, an equilibrium stationary state
is reached if λ < k. The model admits an exact solution when particles always react,
k = 1. This simple model predicts a dynamic phase transition.

The matrix approach presented can be used in many other contexts. For example,
it can be used to analyze situations in which the porosity of a medium depends on the
particle distribution of its cells, which relates to percolation problems. It can also be
used to analyze other problems from physics, chemistry, biology or social sciences.
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