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Abstract: In this work we study the fractional-order jerk system stability by using
the fractional Routh-Hurwitz conditions. These conditions have also been used to
control the chaos of the proposed systems towards their equilibrium. It has been
shown that the fractional-order systems are controlled at their equilibrium point un-
like those of fractional order. The synchronization between two different coupled
fractional systems is also achieved via the auxiliary system approach. The numerical
simulation coincides with the theoretical analysis.
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1 Introduction

Fractional calculus is a topic more than 300 years old. The idea of fractional calculus has
been known since the regular calculus, with the first reference probably being associated
with Leibniz and L’Hospital in 1695. Its applications to physics and engineering are just
a recent focus of interest. It was found that many systems in interdisciplinary fields can
be elegantly described with the help of fractional derivatives. In 1996, Hans Gottlieb
thought,’What is the simplest jerk equation that gives chaos ?’, by which he meant an
equation of the form

···
x = f(

··
x,
·
x, x).
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The term ‘jerk’ comes from the fact that in a mechanical system in which x is the

displacement,
·
x is the velocity, and

··
x is the acceleration, the quantity

···
x is called the

‘jerk’ (Schot, 1978). It is the lowest derivative for which an ODE with smooth continuous
functions can give chaos.

In this paper, we investigate the chaotic behaviors of the fractional-order simple
autonomous jerk system with cubic non-linearity. The system is a linear transformation
of the MO4 and MO11 models introduced for the first time in [14]. We find that chaos
exists in the fractional-order model MO4 and MO11 systems with an order less than
3. Many other studies on the dynamics in fractional-order systems are presented, in
particular, in [13–15]. In addition, the auxiliary system method, generalized to the
fractional-order, is also presented to synchronize the fractional chaotic order between
MO4 and MO11. Both approaches, based on the theory of the stability of fractional
order systems, are simple and theoretically rigorous. The results of the simulation are
used to visualize and illustrate the effectiveness of the proposed synchronization methods.

2 Preliminaries

2.1 Fractional calculus

Fractional calculus is a generalization of integration and differentiation to the noninteger-
order fundamental operator aD

t
α, where a and t are the bounds of the operation and

α ∈ R. The continuous integro-differential operator is defined as

aD
t
α =


dα

dtα , α > 0,
1, α = 0,∫ t
a

(dτ)
α
, α < 0.

In this paper, we will use the Caputo fractional derivatives defined by

aD
t
αf (t) =

1

Γ (n− α)

∫ t

a

fn (τ)

(t− τ)
α−n+1 dτ for n− 1 < α < n.

2.2 Numerical method for solving fractional differential equations

For numerical simulation of the fractional-order system a predictor-corrector method has
also been proposed [16]. It is suitable for Caputo’s derivative because it just requires
the initial conditions and for the unknown function it has a clear physical meaning. The
method is based on the fact that the fractional differential equation{

Dt
αx(t) = f(t, x(t)), 0 ≤ t < T,

x(k) (0) = x
(k)
0 , k = 0, 1, ..., n− 1,

is equivalent to the Volterra integral equation

x(t) =

[α]−1∑
k=0

x
(k)
0

tk

k!
+

1

Γ (α)

∫ t

0

(t− τ)
α−1

f (τ, x (τ)) dτ. (1)
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Set h = T
N , tn = nh, n = 0, 1, ..., N , then (1) can be discredited as follows:

xh (tn+1) =

[α]−1∑
k=0

x
(k)
0

tkn+1

k!
+

hα

Γ (α+ 2)
f (tn+1, x

p
h (tn+1))

+
hα

Γ (α+ 2)

n∑
j=0

aj,n+1f (tj , xh (tj)) ,

where

aj,n+1 =


nα+1 − (n− α) (n+ 1)

α
, j = 0,

(n− j + 2)
α+1

+ (n− j)α+1 − 2 (n− j + 1)
α+1

, 1 ≤ j ≤ n,
1, j = 1,

xph (tn+1) =

[α]−1∑
k=0

x
(k)
0

tkn+1

k!
+

1

Γ (α)

n∑
j=0

bj,n+1f (tj , xh (tj)) ,

bj,n+1 =
hα

α
((n+ 1− j)α + (n− j)α) , 0 ≤ j ≤ n .

This method, the error is estimated as

ε = max
j=0,1,...,N

|x (tj)− xh (tj)| = o (hp) ,

where p = min (2, 1 + α) .

2.3 Fractional-order Routh-Hurwitz stability conditions

Let us consider the following three-dimensional fractional-order commensurate system:

Dαx = f (x) ,

where α ∈ ]0, 1] , x ∈ R3. We suppose that xeq is an equilibrium point of this system,
then its characteristic equation is given as

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0,

its discriminant is given by

D(P ) = 18a1a2a3 + (a1a2)2 − 4a3(a1)3 − 4(a2)3 − 27(a3)2.

We have the following fractional-order Routh–Hurwitz conditions:

1. If D(P ) > 0, then the necessary and sufficient condition for the equilibrium point
E to be locally asymptotically stable is a1 > 0, a3 > 0 and a1a2 − a3 > 0.

2. If D(P ) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, then E is locally asymptotically stable for
α < 2/3. However, if D(P ) < 0, a1 < 0, a2 < 0, α > 2/3, then E is unstable.

3. If D(P ) < 0, a1 > 0, a2 > 0, a1a2 − a3 = 0, then E is locally asymptotically stable
for all α ∈]0, 1[.

4. The necessary condition for the equilibrium point E to be locally asymptotically
stable is a3 > 0.
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3 Description and Analysis of the Models

3.1 First model

The mathematical model of the jerk system considered in this work is expressed by the
following set of three coupled first-order nonlinear differential equations:

dαx
dtα = y,

dαy
dtα = z,

dαz
dtα = −µz − y − βex + δ,

(2)

where the parameters µ, β and δ are positive reals and µ is the fractional-order of system
(2) which has the only equilibrium point, which is found by equating the right-hand sides

of system (2) to zero and is given as follows: E
(

ln δ
β 0, 0

)
.

3.1.1 Stability of the equilibrium point

Proposition 3.1 1. If µ <
√

3, then E is asymptotically stable for α < 2/3. In
addition to this condition, if β = µ, then E is locally asymptotically stable for all
α ∈]0, 1[.

2. If µ >
√

3 and β < 1
3µ −

2
27µ

3 + 2
27

√
(µ2 − 3)

3
, then the first stability condition

holds.

Proof. The characteristic polynomial of the equilibrium point E
(

ln δ
β 0, 0

)
is given

by

λ3 + µλ2 + λ+ β = 0,

so

a1 = µ > 0, a2 = 1 > 0, a3 = β > 0

and

DE (p) = −4µ3β + µ2 + 18µβ − 27β2 − 4.

1. If µ <
√

3, then DE (p) < 0. Thus achieving the second of the stability conditions,
therefore E is asymptotically stable for α < 2/3. Moreover, if β = µ is verified,
which means fulfilling the condition

a1 × a2 − a3 = 0.

From all of the foregoing, we arrive at the realization of the third stabilization
conditions and from it, we conclude that the equilibrium point E is locally asymp-
totically stable for all α ∈]0, 1[.

2. If µ >
√

3 and β < 1
3µ−

2
27µ

3+ 2
27

√
(µ2 − 3)

3
, both conditions result in satisfaction

of D(P ) > 0 and a1 > 0, a3 > 0 and a1a2−a3 > 0, then the first stability condition
holds.
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3.1.2 Chaos

For the parameter values µ = 0.5, β = 1 and δ = 5, the integer-order form of the system
(2) presents chaotic behavior, with the largest exponent of Lyapunov calculated numer-
ically LE = 0.035, and its equilibrium E(ln 5, 0, 0) is locally asymptotically stable when
α < 2/3 and their eigenvalues are given as: λ1 = −1. 678 7, λ2,3 = 0.589 33 ± 1. 622 1i.
The equilibrium point is a saddle point of index 2, thus the necessary condition for the

fractional-order system (2) to remain chaotic is α > 2
π arctan

(
|λ2,3|
Reλ2,3

)
. Consequently,

the lowest fractional order α, for which the fractional-order system (2) demonstrates
chaos at the above-mentioned parameters, is given by the inequality
α > 0.790 51, see Figs.1 and 2.

Figure 1: Phase plots of attractor generated by (2) y-z plane with µ = 0.5, β = 1 and δ = 5,
at α = 0.77.

Figure 2: Phase plots of attractor generated by (2) y-z plane with µ = 0.5, β = 1 and δ = 5,
at α = 0.97.
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3.1.3 Chaos control of the fractional-order systems

A three-dimensional fractional-order chaotic system and the control of chaos are described
as follows: {

dαX
dtα = F (X) ,

dαX
dtα = F (X)−K (X −X∗) ,

where α = (α1, α2, α3) ∈ R3, αi > 0, is the fractional order and the systems are chaotic.
K is a coupling matrix. For simplicity, let K have the form K = diag(k1, k2, k3), where
ki ≥ 0. The error is e = X − X∗ and the aim of the control is to design the coupling
matrix so that ||e(t)|| → 0 as t → +∞. Let us consider the system (2). The controlled
fractional-order system associated with the system (2) is given by

dαx
dtα = y − k1(x− x∗),
dαy
dtα = z − k2(y − y∗),
dαz
dtα = −αz − y − βex + δ − k3(z − z∗),

(3)

where (x∗, y∗, z∗) represents an arbitrary equilibrium point of system (2). The goal is
to drive the system trajectories to any of the three unstable equilibrium point E. For
simplicity, we are going to choose the feedback gains K = diag(0, k2, 0).

3.1.4 Stabilizing the equilibrium point

Sufficient conditions for the stabilization of the controlled systems (3) are given in the
following proposition.

Proposition 3.2 If k2 = − 1
2µ

(
−
√
−2µ2 + µ4 + 4µβ + 1 + µ2 + 1

)
and the param-

eter β satisfies β > 0, then the trajectories of the controlled system (3) are driven to the
unstable equilibrium point E.

Proof. The characteristic equation of the controlled system (3) at E is given as

λ3 + (k2 + µ)λ2 + (µk2 + 1)λ+ β.

Choose the parameter β > µ and the feedback control gain

k2 = − 1

2µ

(
−
√
−2µ2 + µ4 + 4µβ + 1 + µ2 + 1

)
.

If D(p) < 0 for the found value of the parameter k2, then the stability condition (3) holds
and the trajectories of the controlled system (3) are driven to the stable equilibrium point
E for all α ∈]0, 1[.

3.1.5 Numerical results

In this section, we apply the result in the previous system (2) for the purpose of control
chaos, we take µ = 0.5 , β = 1, δ = 5 and the fractional order q = 0.97, by Proposition
3.2 we have k2 = 0.35078, k1 = k3 = 0. It follows that D(p)=−22.25 < 0, a1 > 0, a2 > 0,
a1a2 = a3. Therefore, the stability conditions (3) and (4) are checked. This implies that
the trajectories of the controlled fractional-order system (3) converge to the equilibrium
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point as shown in Fig. 3. But in the integer-order case, there are two pure imaginary
eigenvalues of the characteristic equation. This means that the integer-order form of the
controlled system (3) is not stabilized to the same equilibrium point when choosing the
above-mentioned parameter values and feedback control gains see Fig. 4.

Figure 3: The trajectories of the controlled system (3), µ = 0.5 ,β = 1, δ = 5 and the controllers
k2 = 0.35078, k1 = k3 = 0. Stabilized to the equilibrium point E for α = 0.97.

Figure 4: The trajectories of the controlled system (3), µ = 0.5 , β = 1, δ = 5 and the
controllers k2 = 0.35078, k1 = k3 = 0. Not stabilized to the equilibrium point E for α = 1.

3.2 Second model

The mathematical model of the jerk system considered in this work is expressed by the
following set of three coupled first-order nonlinear differential equations:

dαx
dtα = y,

dαy
dtα = z,

dαz
dtα = −µz − y − σx (x− 1) ,

(4)
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where the parameters µ and σ are positive reals and α is the fractional-order. The system
(4) has two equilibrium points which are found by equating the right-hand sides of (4)
to zero and are given as follows: E1 (0, 0, 0) , E2 (1, 0, 0) .

3.2.1 Stability of the equilibrium points

The characteristic polynomial of the equilibrium point E1 is given by

λ3 + µλ2 + λ− σ = 0.

So a3 = −σ < 0, then E2 is unstable. The characteristic polynomial of the equilibrium
point E2 is given by

λ3 + µλ2 + λ+ σ = 0.

So a1 = µ > 0, a2 = 1 > 0, a3 = σ > 0 and µ2 + 18µσ − 27σ2 − 4.
If µ <

√
3, then DE (p) < 0 and E2 is asymptotically stable for α < 2/3. However,

if σ = µ, then E2 is locally asymptotically stable for all α ∈]0, 1[ according to the third
condition of the Routh-Hurwitz criterion.

If µ >
√

3 and σ < 1
3µ−

2
27µ

3 + 2
27

√
(µ2 − 3)

3
, then the first condition of the Routh-

Hurwitz criterion holds. From which stability is achieved.

3.2.2 Chaos

For the parameter values µ = 0.5 and σ = 1, the integer-order form of the system (4)
presents chaotic behavior, with the largest exponent of Lyapunov calculated numerically
LE = 0.094, and its equilibrium E1 is unstable and E2(1, 0, 0) is locally asymptotically
stable when α < 2/3 and their eigenvalues are given as E2:λ1 = −0.803 76, λ2,3 =
0.151 88 ± 1. 105i E2 : λ1 = 0.601 49, λ2,3 = −0.550 75 ± 1. 165 9i . The equilibrium
point E2 is a saddle point of index 2, thus the necessary condition for the fractional-

order system (4) to remain chaotic is α > 2
π arctan

(
|λ2,3|
Reλ2,3

)
. Consequently, the lowest

fractional order α, for which the fractional-order system (4) demonstrates chaos at the
above-mentioned parameters, is given by the inequality α > 0.913 84, see fig. 5 and 6.

Figure 5: Phase plots of attractor generated by (3) y-z plane with µ = 0.5 and σ = 1, at
α = 0.99.
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Figure 6: Phase plots of attractor generated by (3) y-z plane with µ = 0.5 and σ = 1, at
α = 0.99.

3.2.3 Chaos control of the fractional-order systems

The controlled fractional-order system assisted with system (4) is given by
dαx
dtα = y − k1(x− x∗),
dαy
dtα = z − k2(y − y∗),
dαz
dtα = −µz − y − σx (x− 1)− k3(z − z∗),

(5)

where (x∗, y∗, z∗) represents an arbitrary equilibrium point of system (4). The goal is to
drive the system trajectories to any of the two unstable equilibrium points E1 and E2.
As in the previous model we chose the feedback gains K = diag(0, k2, 0).

3.2.4 Stabilizing the equilibrium points

Sufficient conditions for the stabilization of the controlled systems (5) are given in the
following proposition.

Proposition 3.3 • The trajectories of the system (5) are not driven to the un-
stable equilibrium point E1.

• If k1 = − 1
2µ

(
−
√
−2µ2 + µ4 + 4µσ + 1 + µ2 + 1

)
and the parameter σ satisfies

σ > 0, then the trajectories of the controlled system (5) are driven to the stable
equilibrium point E1 for all q ∈]0, 1[.

Proof. • The characteristic equation of the controlled system at E1 is given as

λ3 + (k2 + µ)λ2 + (k2µ+ 1)λ− σ = 0.

We have a3 = −σ, according to the fourth condition of the Routh -Hurwitz criterion, the
system (5) can not be stable.
• By choosing the parameter σ > α and the feedback control gain

k2 = − 1

2µ

(
−
√
−2µ2 + µ4 + 4µσ + 1 + µ2 + 1

)
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and assuming that D(p) < 0, the stability condition (3) is satisfied and the trajectories of
the controlled system (5) are driven to the stable equilibrium point E2 for all α ∈]0, 1[.

3.2.5 Numerical results

In this section, we take α = 0.5 , σ = 1 and the fractional-order α = 0.98, by Proposition
3.3 we have k2 = 0.35078, k1 = k3 = 0. It follows that D(p) < 0, a1 > 0, a2 > 0, a1a2 =
a3. Therefore, the stability conditions (3) and (4) are checked. This implies that the
trajectories of the controlled fractional-order system (5) converge to the equilibrium
point E2 as shown in Fig. 7. But in the integer-order case, there are two pure imaginary
eigenvalues of the characteristic equation. This means that the integer-order form of the
controlled system (5) is not stabilized to the same equilibrium point when choosing the
above-mentioned parameter values and feedback control gains, Fig. 8.

Figure 7: The trajectories of the controlled system (5) for µ = 0.5 , σ = 1, k2 = 0.35078 and
k1 = k3 = 0. Stabilized to the equilibrium point E2 for α = 0.98.

Figure 8: The trajectories of the controlled system (5) for µ = 0.5 , σ = 1, k2 = 0.35078 and
k1 = k3 = 0. Not stabilized to the equilibrium point E2 for α = 1.
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4 Chaos Synchronization

In this section, we realize the synchronization between two different fractional-order
systems via the auxiliary system approach. We choose as a master system the following
system: 

dαx1

dtα = y1,

dαy1
dtα = z1,

dαz1
dtα = −µz1 − y1 − βex1 + δ,

(6)

and the slave system is
dαx2

dtα = y2 − k1(x2 − x1),

dαy2
dtα = z2 − k2(y2 − y1),

dαz2
dtα = −µz2 − y2 − σx2 (x2 − 1)− k3(z2 − z1).

(7)

The master system is coupled with the slave system only by the scalar x(t). We
choose the auxiliary system that is identical to the slave system (7) (with different initial
conditions) 

dαx3

dtα = y3 − k1(x3 − x1),

dαy3
dtα = z3 − k2(y3 − y1),

dαz3
dtα = −µz3 − y3 − σx3 (x3 − 1)− k3(z3 − z1).

(8)

The substraction of two systems (7) and (8) yields the fractional-order synchronization
error system which can be written as follows:

dqe1
dtq = e2 − k1e1,
dqe2
dtq = e3 − k2e2,
dqe3
dtq = −αe3 − e2 − σe1x3 − σe1x2 − e1−k3e3,

(9)

where e1 = x3 − x2, e2 = y3 − y2 and e3 = z3 − z2. Further (9) can be written as

dαe

dtα
= Ae+ ϕ(x2,3, y2,3, z2,3), (10)

where e = [e1, e2, e3]
T

A =

 −k1 1 0
0 −k2 1
−1 −1 −µ− k3

, ϕ(x2,3, y2,3, z2,3) =

 0
0

−σe1 (x2 + x3)

 ,

ϕ(x2,3, y2,3, z2,3) is a nonlinear function satisfying the Lipschitz condition, so, near to
zero, it converges to zero. To study the stability of the system (10), we use the condi-
tions of the Routh-Hurwitz criterion generalized in fractional order. The characteristic
polynomial of matrix A is given by

λ3 +(µ+k1 +k2 +k3)λ2 +((µ+k3) (k1 + k2) + k1k2 + 1)λ+ (k1 + k1k2(µ+ k3) + 1).
For simplicity, we choose the feedback gains k1 = k2 = 0 and k3 = k. The character-

istic polynomial becomes

P (λ) = λ3 + (k + µ)λ2 + λ+ 1. (11)
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Its discriminant is as follows:

D(p) = −3k2 + (18− 6µ)k − 3µ2 + 18µ− 31,

which is always negative for all values of k and µ, now for the condition a1× a2− a3 = 0
to be satisfied, it is enough that k = 1−µ. Therefore the zero solution of the system (9)
is locally asymptotically stable for all α ∈c0; 1[. In this case, the fractional-order drive
and response systems (6) and (7) are synchronized.

4.1 Numerical results

In numerical simulations, we set the parameters of the drive system as µ = 0.5, β = 1
and δ = 5, the parameters of the response and auxiliary systems as µ = 0.5 and σ = 1
with the fractional-order α = 0.98 and the coefficient of control function k = 0.5. We also
have the initial conditions x1(0) = 1, y1(0) = 2, z1(0) = 5 for the drive system, the initial
conditions x2(0) = 10, y2(0) = 32, z2(0) = 7 for the slave system, and x3(0) = 9, y3(0) =
28, z3(0) = 8 for the auxiliary system. Numerical results show that the synchronization
of two different fractional-order systems is achieved, see Fig. 9.

Figure 9: Synchronization error of the coupled systems.

5 Conclusion

In this study, we examined the local stability of the equilibrium in fractional system by
using the fractional Routh-Hurwitz conditions which are also used to control chaos in the
proposed systems towards their equilibrium by choosing some specific linear controllers.
We showed that the fractional-order systems are controlled to their equilibrium points,
however, their integer-order counterparts are not. This fact gives an advantage to the
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fractional-order systems compared with their integer-order counterparts, the effect of the
fractional system on the synchronization of the chaos of these systems was also presented.
And the numerical simulation matches with the theoretical analysis.
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