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1 Introduction

The fundamental Lyapunov method [1] is based on two different methodologies, one for
time-invariant linear systems and another one for all other systems. The former enables
us to effectively apply the method and to get a definite result after its single applica-
tion. The latter, which will be called the classical Lyapunov methodology (for non-linear
systems), does not. The latter lesses us to face two crucial problems unsolved: a) how
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to construct a system Lyapunov function and b) how to determine the exact asymptotic
stability domain. The classical Lyapunov methodology (for non-linear systems) starts
with a trial to guess a suitable choice of a positive definite function v(.). Its application
continues with the negative (semi-) definiteness test of the total time derivative of v(.)
along system motions. The theorems established for time-varying non-linear systems
have been expressed only in terms of existence of a Lyapunov function v(.) [u(.)] rather
than to clarify how to find it for a given non-linear system. If the weak inequlaity in
the condition on the Lyapunov function derivative is replaced by the equality, then they
do not provide any guideline how to chose a function p(.) in v(1)(.) = −p(.) {or equiv-

alently, in u(1) = −p(.)[1 − u(.)]}. Once we understand this, it appears clear that we
meet two subproblems: a) what are properties of the system and of the function p(.) to
garantee existence of a solution to the differential equation, and b) what are, relative to
a selected p(.), the necessary and sufficient conditions for a solution v(.) {u(.)}, respec-
tively, to guarantee uniform asymptotic stability of an invariant set and/or to determine
accurately its domain of uniform asymptotic stability. The former problem is purely
mathematical problem that is not related to the stability issue. However, the latter one
is crucial for solving the stability problems.

Bhatia [2, 3], Bhatia and Lazer [4], Bhatia and Szegö [5], Corne and Rouche [6], Ha-
jek [7, 8], Ladde et al. [9], Ladde and Leela [10, 11], Lakshmikantham and Leela [12, 13],
LaSalle [14], Yoshizawa [15 – 18] and Zubov [19] extended the classical Lyapunov method-
ology from the analysis of stability properties of a state and of a motion to the analysis
of various stability properties of sets.

A novel Lyapunov methodology for asymptotic stability analysis of the zero equilib-
rium state of non-linear time-invariant systems was discovered and established in [20 –
32]. It was extended to the asymptotic stability analysis of the zero equilibrium state
of non-linear time-varying systems in [33 – 35], as well as of constant sets of non-linear
time-invariant systems in [36] and of those time-varying in [37]. It has been aimed at
solving the open stability problems. The methodology starts with a determination of a
functional family L(.) [E(.)] of functions p(.) that can be used to generate a function
v(.) [or, u(.)]. An important feature of the novel Lyapunov methodology and of the
functional family as its tool is that it permits an arbitrary selection of a function p(.)
in the family in order to determine exactly a system Lyapunov function. Its another
important characteristic is that it provides stability conditions that are not expressed
in terms of existence of a system Lyapunov function. The methodology terminates by
verifying the properties of v(.) [or, u(.)], which are both necessary and sufficient for as-
ymptotic stability of the zero state (or, of a time-invariant set), and/or for a set N to be
the domain of its asymptotic stability. This methodolgy is consistent with Lyapunov’s
original methodlogy for time-invariant linear systems and has been called the consistent
Lyapunov methodology (for both linear and non-linear systems) [37, 38].

The paper [38] further broadened the consistent Lyapunov methodology by presenting
the complete solutions for uniform asymptotic stability of invariant sets of time-varying
non-linear systems with differentiable motions. The class of systems will be enlarged in
what follows by allowing for system motions to be non-differentiable.

The structure is the following: there are eight sections, an appendix and a list of
references in the paper. A brief explanation of the notation is available in the next
section. The relaxed smoothness properties of the systems are explained in Section 3
that is on the system description. Various stability domains are defined in Section 4.
Functional families L(.) and E(.) are introduced in Section 5. The key part are Section 6,
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which contributes with new criteria for asymptotic stability domains of the sets, and
Section 7 that presents the analogous conditions for uniform asymptotic stability of the
sets. This order of the Sections 7 and 8 eases significantly their proofs. The criteria expose
the consistent Lyapunov methodology. The conclusions compose Section 8. Appendix
preceeds the list of references, which terminates the paper.

2 Notation

Capital italic Roman letters are used for sets, lower case block Roman characters for
vectors, Greek letters and lower case italic letters denote scalars except for the empty
set ∅ and subscripts. The boundary, interior and closure of a set A are designated by
∂A, InA and ClA, respectively, where A is time-invariant set. If A(.) : R → 2R

n

is a
set-valued function then its instantaneous set value A(t) at an arbitrary time t ∈ R will
be called a time-varying set A(t). Let ‖.‖ : Rn → R+ be Euclidean norm on Rn, where
R+ = [0,∞) = {ξ : ξ ∈ R, 0 ≤ ξ < ∞}. An initial time t0 ∈ Ri, where Ri = (σ,∞),
σ ∈ [−∞,∞). It determines R0 = [t0,∞). Let R+ = (0,∞) = {ξ : ξ ∈ R, 0 < ξ <∞}.

A set J , J ⊂ Rn, will be a compact connected invariant set of the system with
the boundary ∂J being also an invariant set. Its time-varying neighbourhood at time
t ∈ R will be denoted by A(t; J), M(t; J) or S(t; J), and its δ-neighbourhood will be
designated by Bδ(J), where δ ∈ R+ and Bδ(J) = {x : ρ(x, J) < δ} with the distance

function ρ(.) : R× 2R
n

→ R+ induced by ‖.‖ as ρ(x, J) = inf{‖x− y‖ : y ∈ J}. Notice
that J ⊂ A(t; J), ∀ t ∈ R, and J ⊂ Bδ(J). Besides, Mm(Ri; J) = ∩[M(t; J) : t ∈ Ri],
MM (Ri; J) = ∪[M(t; J) : t ∈ Ri] and S(Ri; J) = ∩[S(t; J) : t ∈ Ri] = Sm(Ri; J). The
distance between sets M1(t; J) and M2(t; J) at time t is the instantaneous value of a set-

distance function ρ(.) at time t, ρ(.) : 2R
n

× 2R
n

→ R+, where ρ[M1(t; J),M2(t; J)] =
max{sup[ρ(x,M1(t; J)) : x ∈M2(t; J)], sup[ρ(y,M2(t; J)) : y ∈M1(t; J)]}.

Let tk → τ as k → ∞, where in special cases of an unbounded value of t:

tk < τ if τ = ∞,

tk > τ if τ = −∞.

A non-empty set-valued function M(.) : R × 2R
n

→ 2R
n

is continuous at τ ∈ R if
and only if for every ε ∈ R+ there is L ∈ {1, 2, . . .}, L = L(ε; τ), such that k > L
implies d{M(tk; J),M(τ ; J)} < ε. It is continuous on R(.) if and only if it is continuous
at every t ∈ R(.), which is denoted by M(t; J) ∈ C(R(.)). The time-varying set M(t; J)

is non-empty, connected and/or compact on R(.) if and only if it is non-empty, connected

and/or compact at every t ∈ R(.), respectively.

Da(t; J), Ds(t; J) and D(t; J) will represent the (instantaneous) domain of attraction
of the set J at time t, its domain of stability at time t and its domain of asymptotic
stability at the same time t, respectively. Their definitions are given in Section 4.

Let x(.; t0, x0) be motion (solution) of a system through x0 at an initial time t0, and
let its vector value at time t be x(t), x(t) = x(t; t0, x0).

If a function v(.) : R× Rn × 2R
n

→ R is continuous on R ×Rn then we will use its
right-hand Dini derivative D+v(t, x; J) taken along system motions and determined at
(t, x) ∈ R× Rn with J being fixed:

D+v(t, x; J) = lim sup

{

v[t+ θ,x(t+ θ; t, x); J ] − v(t, x; J)

θ
: θ → 0+

}

.
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Let ζ ∈ R+ and p(.), [v(.)] : R × Rn × 2R
n

→ R. Then Pζ(t; J), [Vζ(t; J)] is the
largest open connected neighbourhood of J at time t ∈ R such that p(t, x; J) < ζ,
[v(t, x; J) < ζ] for every x ∈ Pζ(t; J), [Vζ(t; J)].
K is the family defined by Hahn [39] of all the comparison functions ϕ(.) : R+ → R+

strictly increasing, continuous and vanishing at the origin:

ϕ(ζ1) < ϕ(ζ2), 0 ≤ ζ1 < ζ2, ϕ(ζ) ∈ C(R+), ϕ(0) = 0.

3 System Description

Time-varying non-linear systems studied herein in general are described by (1),

dx(t)

dt
= f(t, x(t)), x(.) : R → Rn, f(.) : R×Rn → Rn, (1)

and by one of the following features:

Weak smoothness property

(i) There is an open continuous connected neighbourhood S(t; J) of J , S(t; J) ⊆ Rn,
for every t ∈ Ri, such that S(Ri; J) = ∩[S(t; J) : t ∈ Ri] is also open connected
neighbourhood of J , and for every (t0, x0) ∈ Ri × S(t0; J) the following holds:

a) system (1) has a unique solution x(.; t0, x0) through x0 at t0 on the largest
interval of its existence I0, I0 = I0(t0, x0), and

b) x(t; t0, x0) is defined and continuous in (t, t0, x0).
(ii) For every (t0, x0) ∈ Ri× [Rn−ClS(t0; J)] every motion x(.; t0, x0) of system (1)

is continuous in t ∈ I0.

Strong smoothness property

(i) System (1) obeys the weak smoothness property.
(ii) If the boundary ∂S(t; J) of S(t; J) is non-empty at any time t ∈ Ri then ev-

ery motion of system (1) passing through x0 ∈ ∂S(t0; J) at t0 ∈ Ri satisfies
inf{ρ[x(t; t0, x0), J ] : t ∈ I0} > 0 for every (t0, x0) ∈ Ri × ∂S(t0; J).

Any of the above system smothness properties permits non-differentiability of system
motions x(t; t0, x0) with respect to (t, t0, x0). This makes the difference between what
follows and the results established in [38]. The smoothness properties are expressed
directly in terms of smoothness of system motions rather than indirectly via smoothness
of the function f(.) for the following reasons. Dealing with physical systems we can often
conclude on smoothness of their motions for physical reasons. We know only sufficient
mathematical conditions on f(.), which guarantee smoothness of system motions. Such
conditions can be too conservative.

4 Asymptotic Stability Domains

The notions of various stability domains of states [19, 21 – 28, 32, 39 – 46], and of sets [36],
of time-invariant systems were broadened to stability domains of sets of time-varying
systems in [38] as follows.
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Definition 4.1 A set J of system (1) has:

(a) the domain of attraction at t0 ∈ R denoted by Da(t0; J), Da(t0; J) ⊆ Rn, if and
only if:

1) for every ζ ∈ R+, there exists τ = τ(t0, x0; ζ; J) ∈ R+ such that

ρ[x(t; t0, x0), J ] < ζ for all t ∈ (t0 + τ,∞)

is valid provided only that x0 ∈ Da(t0; J),
2) the set Da(t0; J) is a neighbourhood of J .

(b) the domain Da(Ri; J) of uniform attraction on Ri, Da(Ri; J) ⊆ Rn, if and only
if 1) – 4) hold:

1) it has the domain Da(t0; J) of attraction at every t0 ∈ Ri,
2) ∩[Da(t; J) : t ∈ Ri] is a neighbourhood of J ,
3) Da(Ri; J) = ∩[Da(t; J) : t ∈ Ri],
4) the minimal τ(t0, x0; ζ; J) obeying 1) of (a) and denoted by τm(t0, x0; ζ; J)

obeys

sup[τm(t0, x0; ζ; J) : t0 ∈ Ri] < +∞ for every (x0, ζ) ∈ Da(Ri; J) ×R+.

The expression “on Ri” is to be omitted if and only if Ri = R. Then and only then
Da(Ri; J) will be denoted by Da(J), Da(J) = Da(R; J).

Definition 4.2 A set J of system (1) has:

(a) the domain of stability at t0 ∈ Ri denoted by Ds(t0; J), Ds(t0; J) ⊆ Rn, if and
only if:

1) for every ε ∈ R+ the motion x(.; t0, x0) satisfies ρ[x(t; t0, x0), J ] < ε for
all t ∈ R0 provided only that x0 ∈ Ds(t0, ε; J),

2) the set Ds(t0, ε; J) is a neighbourhood of J for every ε ∈ R+,
3) the set Ds(t0; J) is the union of all the sets Ds(t0, ε; J) over ε ∈ R+:

Ds(t0; J) = ∪[Ds(t0, ε; J) : ε ∈ R+].

(b) the domain Ds(Ri; J) of uniform stability on Ri if and only if:
1) J has the domain of stability Ds(t0; J) at every t0 ∈ Ri,
2) ∩[Ds(t, ε; J) : t ∈ Ri] is a neighbourhood of J for any ε ∈ R+,
3) Ds(Ri; J) = ∩[Ds(t; J) : t ∈ Ri].

The expression “on Ri” is to be omitted if and only if Ri = R. Then and only then
Ds(Ri; J) will be denoted by Ds(J), Ds(J) = Ds(R; J).

Definition 4.3 A set J of system (1) has:

(a) the domain of asymptotic stability at t0 ∈ Ri denoted byD(t0; J), D(t0; J) ⊆ Rn,
if and only if it has both Da(t0; J) and Ds(t0; J), and D(t0; J) = Da(t0; J) ∩
Ds(t0; J).

(b) the domain D(Ri; J) of uniform asymptotic stability on Ri if and only if it has
both Da(Ri; J) and Ds(Ri; J), and D(Ri; J) = Da(Ri; J) ∩Ds(Ri; J).

The expression “on Ri” is to be omitted if and only if Ri = R. Then and only then
D(Ri; J) will be denoted by D(J), D(J) = D(R; J).
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Qualitative features of the stability domains of an invariant set J of system (1) are
discovered in Appendix. They are used for the proofs of the results of the paper (Sec-
tion 6).

5 Families L(.) and E(.) of Functions p(.)

A fundamental problem which has not been solved in the classical Lyapunov methodology
is that of the generation of a system Lyapunov function. The theorems based on the clas-
sical Lyapunov methodology (including also the converse theorems) express conditions

on the Lyapunov function derivative in the inequality form: v(1)(.) ≤ −p(.). They do not
specify how to select the function p(.) in order to get a system Lyapunov function obeying
the weak inequality that may be replaced by the equality in order to ease the function
generation. Various forms of families P (.) and P 1(.) of functions p(.) were introduced

in [21 – 33, 36, 37] in order to generate Lyapunov functions v(.) from v(1)(.) = −p(.) {or,

to determine Lyapunov functions u(.) as solutions of u(1)(.) = −[1 − u(.)]p(.)} in the
framework of time invariant systems, and for time-varying systems in [34, 35, 38]. They
will be replaced by families L(.) and E(.) of functions p(.) in the sequel. One role of
these families is to separate the problem of existence of the differential equation solution
from the stability problem. Another their role is to enable an exact determination of a
family of system Lyapunov functions [47, 48].

Definition 5.1 A function p(.) : Ri×Rn×2R
n

→R belongs to the family L(Ri, S; f ; J)
if and only if:

1) p(.) is continuous on Ri × S(t; J) : p(t, x; J) ∈ C[Ri × S(t; J)];
2) the equations (2) with (2a) taken along motions of system (1),

D+v(t, x; J) = −p(t, x; J), (2a)

v(t, x; J) = 0, ∀x ∈ ∂J, ∀ t ∈ Ri, (2b)

have a solution v(.) : Ri × Rn × 2R
n

→ R that is continuous in (t, x) ∈ Ri ×
ClBµ(J) for an arbitrarily small µ ∈ R+, µ = µ(f, p; J), and which obeys (3)
for some wµ(x; J) ∈ C[ClBµ(J)]:

v(t, x; J) ≤ wµ(x; J), ∀ (t, x) ∈ Ri × [ClBµ(J) − In J ]; (3)

3) the following holds for any ζ ∈ R+ fulfilling ClPζ(t; J) ⊂ S(t; J) for all t ∈ Ri:

min{p(t, x; J) : (t, x) ∈ Ri × [S(t; J) − Pζ(t; J)]} = α, α = α(ζ; p) ∈ R+.

Definition 5.2 A function p(.) : Ri×Rn×2R
n

→R belongs to the family E(Ri, S; f ; J)
if and only if:

1) p(.) is continuous on Ri × S(t; J) : p(t, x; J) ∈ C[Ri × S(t; J)];
2) the equations (4) with (4a) taken along motions of system (1),

D+u(t, x; J) = −[1 − u(t, x; J)]p(t, x; J), (4a)

u(t, x; J) = 0, ∀x ∈ ∂J, ∀ t ∈ Ri, (4b)
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have a solution u(.) : Ri × Rn × 2R
n

→ R that is continuous in (t, x) ∈ Ri ×
ClBµ(J) for an arbitrarily small µ ∈ R+, µ = µ(f, p; J), and which obeys (5)
for some wµ(x; J) ∈ C[ClBµ(J)]:

u(t, x; J) ≤ wµ(x; J), ∀ (t, x) ∈ Ri × [ClBµ(J) − In J ]; (5)

3) the following holds for any ζ ∈ R+ fulfilling ClPζ(t; J) ⊂ S(t; J) for all t ∈ Ri:

min{p(t, x; J) : (t, x) ∈ Ri × [S(t; J) − Pζ(t; J)]} = α, α = α(ζ; p) ∈ R+.

Comment 5.1 Notice that p(.) ∈ L(Ri, S; f ; J) if and only if p(.) ∈ E(Ri, S; f ; J). If
p(.) ∈ L(Ri, S; f ; J), hence p(.) ∈ E(Ri, S; f ; J), then solutions v(.) and u(.) to (2) and
(4), respectively, are interrelated by (6),

u(t, x; J) = 1 − exp[−v(t, x; J)], (6)

which was pointed out by Vanelli and Vidyasagar [45]. Besides, u(t, x; J) = 0 if and
only if v(t, x; J) = 0, and u(t, x; J) → 1 if and only if v(t, x; J) → ∞.

Comment 5.2 No stability condition is imposed on the system and no definiteness
requirement is imposed on p(.), v(.) and u(.) in Definition 5.1 and Definition 5.2. There-
fore, L(Ri, S; f ; J) and E(Ri, S; f ; J) are not dependent on a stability property of the
system.

6 Domains of Asymptotic Stability Properties of Invariant Sets

The notions of a positive definite function and of a decrescent function relative to a set
will be used in the usual sense (c.f. Lyapunov [1], Bhatia and Szegö [5], Yoshizawa [18],
Zubov [19], Gruyitch [38], Hahn [39], Krasovskii [49], Rouche et al. [50]). Let ϕi(.) be a
comparison function from the class K defined by Hahn [39]: ϕi(.) ∈ K, i = 1, 2.

Definition 6.1 A function v(.) : R×Rn × 2R
n

→ R

(a) is positive definite on Ri×M(t; J) with respect to J if and only if M(t; J) is open
connected neighbourhood of J for all t ∈ Ri such that there exist w1(.) : R

n ×

2R
n

→ R and ϕ1(.) ∈ K obeying the following:
1) v(t, x; J) and w1(x; J) are uniquely determined by (t, x) ∈ Ri ×M(t; J)

and continuous on Ri ×M(t; J); that is that v(t, x; J) ∈ C[Ri ×M(t; J)]
and w1(x; J) ∈ C[MM (Ri; J)],

2) v(t, x; J) = 0 and w1(x; J) = 0 for all (t, x) ∈ Ri × ∂J ,
3) v(t, x; J) ≤ 0 for all (t, x) ∈ Ri × In J ,
4) v(t, x; J) ≥ w1(x; J) ≥ ϕ1[ρ(x, J)] for all (t, x) ∈ Ri × [M(t; J) − In J ].

(b) is decrescent on Ri × M(t; J) with respect to J if and only if Mm(Ri; J) is

open connected neighbourhood of J , and there exist w2(.) : R
n × 2R

n

→ R and
ϕ2(.) ∈ K obeying the following:

1) v(t, x; J) and w2(x; J) are uniquely determined by (t, x) ∈ Ri ×M(t; J)
and continuous on Ri ×M(t; J), that is that v(t, x; J) ∈ C[Ri ×M(t; J)]
and w2(x; J) ∈ C[MM (Ri; J)], hence w2(x; J) ∈ C[Mm(Ri; J)],

2) v(t, x; J) ≤ w2(x; J) ≤ ϕ2[ρ(x, J)] for all (t, x) ∈ Ri × [Mm(Ri; J) − In J ].
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The expression “Ri×” is to be omitted if and only if Ri = R, and the expression
“×M(t; J)” is to be omitted if and only if M(t; J) is an arbitrarily small open connected
neighbourhood of J for all t ∈ Ri.

The functions wi(.), i = 1, 2, can have the following form: wi(x; J) = ϕi[ρ(x, J)].
The form of problem solutions to be established depends on the smoothness properties

of system (1) as well as whether a function p(.) generating a system Lyapunov function
is selected from L(Ri, S; f ; J) or from E(Ri, S; f ; J).

Theorem 6.1 In order for a compact connected invariant set J of system (1) with the
strong smoothness property to have the domain D(Ri; J) of uniform asymptotic stability
on Ri, for a set N(t0), N(t0) ⊆ Rn, to be the domain of its asymptotic stability at any
t0 ∈ Ri: N(t0) ≡ D(t0; J), and for a set N , N ⊆ Rn, to be the domain of its uniform
asymptotic stability on Ri, N = D(Ri; J), it is both necessary and sufficient that:

1) the set N(t) is open continuous neighbourhood of J and N(t) ⊆ S(t; J) for
every t ∈ Ri,

2) the set N is a connected neighbourhood of J such that N = ∩[N(t) : t ∈ Ri] =
Nm(Ri; J) ⊆ S(Ri; J),

3) f(t, x) = 0 for all t ∈ Ri is possible only for x /∈ [N(t) − J ],
and

4) for any decrescent positive definite function p(.) on Ri × S(t; J) with respect to
J , which obeys:
(a) p(.) ∈ L(Ri, S; f ; J), the equations (2) have the unique solution function

v(.) with the following properties:
(i) v(.) is decrescent positive definite function on Ri×N(t) with respect

to J , and
(ii) if the boundary ∂N(t) of N(t) is nonempty then x → ∂N(t), x ∈

N(t), implies v(t, x; J) → ∞ for every t ∈ Ri,
or obeying:
(b) p(.) ∈ E(Ri, S; f ; J), the equations (4) have the unique solution function

u(.) with the following properties:
(i) u(.) is decrescent positive definite function on Ri×N(t) with respect

to J , and
(ii) if the boundary ∂N(t) of N(t) is nonempty then x → ∂N(t), x ∈

N(t), implies u(t, x; J) → 1 for every t ∈ Ri.

Proof The proof will be a modification and generalization of the proof of Theorem 1
in [38]. The modification results from non-differentiability of system motions, which was
requested in [38].

Necessity. Let the invariant set J of system (1) possessing the strong smoothness
property have the uniform asymptotic stability domain D(Ri; J) on Ri. Hence, it has
also the asymptotic stability domain D(t0; J) at every t0 ∈ Ri (Definition 4.1). Defi-
nitions 4.1 and 4.3 show that it has also the uniform attraction domain Da(Ri; J) and
the instantaneous attraction domain Da(t0; J) at every t0 ∈ Ri. By the definition (Def-
inition 4.3), Da(t0; J) ⊇ D(t0; J) for all t0 ∈ Ri and Da(Ri; J) ⊇ D(Ri; J). Besides,
Da(t0; J) is a neighbourhood of J at every t0 ∈ Ri and Da(Ri; J) is also a neigh-
bourhood of J (Definition 4.1). The set S(t0; J) is a neighbourhood of J at every
t0 ∈ Ri and S(Ri; J) is also a neighbourhood of J (the weak smoothness property).
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Hence, Da(t0; J) ∩ S(t0; J) 6= ∅ for all t0 ∈ Ri and Da(Ri; J) ∩ S(Ri; J) 6= ∅. Let us
prove S(t0; J) ⊇ Da(t0; J) for every t0 ∈ Ri. If S(t0; J) ⊇ Da(t0; J) were not true
for all t0 ∈ Ri then there would exist t0 ∈ Ri and z ∈ [Da(t0; J) − S(t0; J)], which
would mean either z ∈ [Da(t0; J) ∩ ∂S(t0; J)] or z ∈ [Da(t0; J) − ClS(t0; J)] due to
Da(t0; J) ∩ S(t0; J) 6= ∅ and the fact that S(t0; J) is open [(i) of the weak smoothness
property and (i) of the strong smoothness property]. If z ∈ [Da(t0; J) ∩ ∂S(t0; J)] then
inf{ρ[x(t; t0, z), J ] : t ∈ I0} > 0 due to (ii) of the strong smoothness property, which
would mean z /∈ Da(t0; J) and would contradict z ∈ [Da(t0; J) ∩ ∂S(t0; J)]. Hence,
z /∈ [Da(t0; J)∩∂S(t0; J)] and Da(t0; J)∩∂S(t0; J) = ∅. If z ∈ [Da(t0; J)−ClS(t0; J)]
then lim{ρ[x(t; t0, z), J ] : t → ∞} = 0, which together with (i) of the strong smooth-
ness property, (ii) of the weak smoothness property and with S(t; J) ∈ C(Ri) would
imply existence of t∗ ∈ (t0,∞) such that x(t∗; t0, z) ∈ ∂S(t∗; J). This is impossi-
ble as shown above. Assumed t∗ does not exist. Hence, [Da(t0; J) − ClS(t0; J)] = ∅,
which together with Da(t0; J) ∩ ∂S(t0; J) = ∅ and Da(t0; J) ∩ S(t0; J) 6= ∅ implies
S(t0; J) ⊇ Da(t0; J) by having in mind that both Da(t0; J) and S(t0; J) are open
neighbourhoods of J [a-1) of Lemma A.1 (Appendix), (i) of the weak smoothness prop-
erty and (i) of the strong smoothness property]. Therefore, S(t0; J) ⊇ D(t0; J) due
to Da(t0; J) ≡ D(t0; J) (Lemma A.2, Appendix). Let N(t0) ≡ D(t0; J) so that
S(t0; J) ⊇ N(t0). Hence, N(t) is open continuous neighbourhood of J for all t ∈ Ri
[a-2) of Lemma A.1] and N = D(Ri; J) is connected neighbourhood of J [a-3) of
Lemma A.1]. Besides, N = ∩[N(t) : t ∈ Ri] because of N(t) ≡ D(t; J) and N =
D(Ri; J) = ∩[D(t; J) : t ∈ Ri]. They prove necessity of the conditions 1) and 2). From
Ds(t; J) ⊇ Da(t; J) ≡ D(t; J) ≡ N(t) [a) of Lemma A.2] and Definitions 4.1 – 4.3 it
results that there is not an equilibrium state of system (1) in [N(t)−J ], ∀ t ∈ Ri, which
implies that f(t, x) = 0 for all t ∈ Ri is possible only for x /∈ [N(t)− J ] (Proposition 7
in [44]). This proves necessity of the condition 3). From N(t0) ≡ D(t0; J) it follows that
the interval I0 of existence of x(.; t0, x0) satisfies I0 ⊇ R0, ∀ (t0, x0) ∈ Ri × N(t0) due
to Definitions 4.1 through 4.3. Let p(.) ∈ L(Ri, S; f ; J) be arbitrarily selected positive
definite decrescent function on Ri × S(t; J) with respect to J . Hence, there is µ > 0
such that there exists a solution function v(.) to the equations (2), which is continuous
in (t, x) ∈ Ri ×Bµ(J) and satisfies (3). Therefore,

|v(t, x; J)| <∞, ∀ (t, x) ∈ Ri × ClBµ(J). (7)

Let β ∈ (1,∞) and ζ ∈ R+ be such that

ClBβ(J) ∩ ClBµ(J) ∩ S(t; J) ⊃ Pζ(t; J), ∀ t ∈ Ri. (8)

Existence of such β and ζ is guaranteed by positive definiteness of p(.) on Ri × S(t; J)
and by the fact that S(Ri; J) is a neighbourhood of J . Let t0 ∈ Ri be arbitrary and
τ ∈ R+, τ = τ(t0, x0; ζ; J ; p), be such that for any x0 ∈ N(t0) the condition (9) holds,

x(t; t0, x0) ∈ ClPζ(t; J), ∀ t ∈ [t0 + τ,∞). (9)

Such τ exists due to Definitions 4.1 and 4.3, x0 ∈ N(t0) and Da(t0; J) ≡ D(t0; J) ≡
N(t0). Notice that x0 ∈ N(t0) yields also

ρ[x(∞; t0, x0), J ] = 0. (10)
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Let (2a) be integrated from t ∈ R0 to ∞,

v[∞,x(∞; t0, x0); J ] − v[t,x(t; t0, x0); J ] = −

∞
∫

t

p[σ,x(σ; t0, x0); J ] dσ,

∀ (t, x0) ∈ R0 ×N(t0).

(11)

Now, invariance of ∂J (by the definition, Section 2), (2b) and (10) enable the transfor-
mation of (11) to the next form,

v[t,x(t; t0, x0); J ] =

t0+τ
∫

t

p[σ,x(σ; t0, x0); J ] dσ +

∞
∫

t0+τ

p[σ,x(σ; t0, x0); J ] dσ,

∀ (t, x0) ∈ R0 ×N(t0).

(12)

Invariance of Da(t; J) with respect to system motions on Ri [a-1) of Lemma A.1],
S(t; J) ⊇ D(t; J) ≡ Da(t; J) ≡ N(t), continuity of x(t; t0, x0) in (t; t0, x0) ∈ I0 × Ri ×
S(t0; J) [(i-b) of the weak smoothness property], continuity, positive definiteness and
decrescency of p(.) on Ri×S(t; J), the definition of τ , (9), and compactness of [t, t0 +α]
for any α ∈ R+ imply

∣

∣

∣

∣

∣

t0+α
∫

t

p[σ,x(σ; t0, x0); J ] dσ

∣

∣

∣

∣

∣

<∞, ∀ (α, t, t0, x0) ∈ R+ ×R0 ×Ri ×N(t0). (13)

Now, (7) – (9), (12) and (13) for α = τ yield

|v[t,x(t; t0, x0); J ]| <∞, ∀ (t, t0, x0) ∈ R0 ×Ri ×N(t0). (14)

Let t = t0 and x = x0 be set in (14). Then,

|v(t, x; J)| <∞, ∀ (t, x) ∈ Ri ×N(t). (15)

Continuity of p(.) on Ri × S(t; J), p(.) ∈ L(Ri, S; f ; J), Definition 5.1, S(t; J) ⊇ N(t),
(12) and (15) prove

v(t, x; J) ∈ C[Ri ×N(t)] = C[Ri ×D(t)]. (16)

Invariance of Da(t; J) [a-1) of Lemma A.1], Da(t; J) ≡ D(t; J) ≡ N(t), continuity of
x(t; t0, x0) in (t; t0, x0) ∈ I0 × Ri × D(t0; J), positive definiteness and decrescency of
p(.) on Ri × N(t), p(.) ∈ L(Ri, S; f ; J), (3), the definition of τ and compactness of

[t, t0+τ ] guarantee existence of ζk(.) : R
n×2R

n

→ R, k = 1, 2, ζ1(x; J) ∈ C[NM (Ri; J)]
and ζ2(x; J) ∈ C[Nm(Ri; J)], where NM (Ri; J) = ∪[N(t; J) : t ∈ Ri], Nm(Ri; J) =

∩[N(t; J) : t ∈ Ri] and ψk(.) : R
n × 2R

n

→ R, k = 1, 2, such that

0 < ς1(x0, J) ≤

t0+τ
∫

t

ψ1[x(σ; t0, x0); J ] dσ,

∀ (t, t0, x0) ∈ R0 ×Ri × [N(t0) − ClBµ(J)],

(17a)

∞ > ς2(x0, J) ≥

t0+τ
∫

t

ψ2[x(σ; t0, x0); J ] dσ,

∀ (t, t0, x0) ∈ R0 ×Ri × [Nm(Ri; J) − ClBµ(J)],

(17b)
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and

ψ1(x; J) ∈ C[NM (Ri; J)], ψ2(x; J) ∈ C[Nm(Ri; J)], (18a)

ψk(x; J) = 0, ∀x ∈ ∂J, k = 1, 2, (18b)

ψ1(x; J) > 0, ∀x ∈ [NM (Ri; J) − J ],

ψ2(x; J) > 0, ∀x ∈ [Nm(Ri; J) − J ],
(18c)

ψ1(x; J) ≤ p(t, x), ∀ (t, x) ∈ Ri × [NM (Ri; J) − In J ], (18d)

p(t, x) ≤ ψ2(x; J), ∀ (t, x) ∈ Ri × [Nm(Ri; J) − In J ]. (18e)

Such functions ψk(.) exist due to decrescency and positive definiteness of p(.) on Ri×
S(t; J), p(.) ∈ L(Ri, S; f ; J) and S(t; J) ⊇ N(t). They can be of the form ψk(x; J) =
gk[ρ(x, J)], k = 1, 2, together with gk(.) in the class K : gk(.) ∈ K. Let wk(.) : R

n ×

2R
n

→ R, k = 1, 2, obey (19),

wk(x; J) ∈ C(Rn) and wk(x; J) = 0, ∀x ∈ ∂J, k = 1, 2, (19a)

0 < w1(x; J) ≤

{

ς1(x; J), ∀x ∈ [NM (Ri; J) − ClBµ(J)],

wµ(x; J), ∀x ∈ [ClBµ(J) − J ],
(19b)

w2(x; J) ≥











ς2(x; J) + wµ(xτ ; J),

xτ = x(τ ; t, x),
∀ (t, x) ∈ Ri × [Nm(Ri; J) − ClBµ(J)],

wµ(x; J), ∀x ∈ [ClBµ(J) − J ], (19c)

where wµ(.) is defined by (3). Now (3), (12), positive definiteness of p(.) on Ri×S(t; J)
with respect to J , invariance of J and (17) – (19) yield the following for (t0, x0) = (t, x):

w1(x; J) ≤ v(t, x; J), ∀ (t, x) ∈ Ri × [N(t) − In J ], (20a)

v(t, x; J) ≤ w2(x; J), ∀ (t, x) ∈ Ri × [Nm(Ri; J) − In J ], (20b)

v(t, x; J) ≤ 0, ∀ (t, x) ∈ Ri × J, (20c)

v(t, x; J) = 0, ∀ (t, x) ∈ Ri × ∂J. (20d)

From p(.) ∈ L(Ri, S; f ; J), (2b), (16) and (20) it follows that a solution function v(.)
to (2) is decrescent, positive definite and continuous on Ri × N(t) with respect to J .
Let be assumed that there exist two such solutions v1(.) and v2(.) of (2). Hence,

v1(t0, x0; J) − v2(t0, x0; J) =

∞
∫

t0

{

p[σ,x1(σ; t0, x0); J ] − p[σ,x2(σ; t0, x0); J ]
}

dσ,

∀ (t, x0) ∈ R0 ×N(t0).

(21)

Uniqueness of the motions x(.; t0, x0), ∀ (t0, x0) ∈ Ri × N(t0) (the weak smoothness
property), S(t0; J) ⊇ N(t0) and uniqueness of p(t, x) for every (t, x) ∈ Ri×S(t; J) [due
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to positive definiteness of p(.) on S(t; J)] imply

∞
∫

t0

{

p[σ,x1(σ; t0, x0); J ] − p[σ,x2(σ; t0, x0); J ]
}

dσ

=

∞
∫

t0

{

p[σ,x(σ; t0, x0); J ] − p[σ,x(σ; t0, x0); J ]
}

dσ = 0, ∀ (t, x0) ∈ R0 ×N(t0).

This and (21) prove
v1(t0, x0; J) ≡ v2(t0, x0; J).

Hence, the function v(.) is the unique solution to (2). This completes the proof of
necessity of the condition 4-a-i). If ∂N(t0) 6= ∅ then let t0 ∈ Ri be arbitrary and xk,
k = 1, 2, . . . , be a sequence converging to u, xk → u as k → ∞, xk ∈ N(t0), for all
k = 1, 2, . . . , and u ∈ ∂N(t0). Let ζ ∈ R+ be arbitrarily chosen so that N ⊃ ClPζ(t; J)
for all t ∈ Ri. Such ζ exists because p(.) is positive definite on S(t; J), N ⊆ S(t; J),
∀ t ∈ Ri, and defines ClPζ(t; J), and because N is a neighbourhood of J . Let τk,
τk = τ(t0, xk; ζ; J) ∈ R+, be the first instant satisfying (22),

x(t; t0, x0) ∈ ClPζ(t; J), ∀ t ∈ [t0 + τk,∞). (22)

Existence of such τk is ensured by xk ∈ N(t0), N(t) ≡ D(t) and by the fact that
∩[Pζ(t; J) : t ∈ Ri] is a neighbourhood of J due to decrescency of p(.) on Ri × N(t)
[42]. Continuity of x(t; t0, x0) in (t; t0, x0) ∈ I0 × Ri × S(t0; J) (the weak smoothness
property), S(t0; J) ⊇ D(t0; J) ≡ N(t0), positive invariance of D(t; J) [a) of Lemma A.1],
the fact that ∩[D(t; J) : t ∈ Ri] = D(Ri; J) is neighbourhood of J [(b) of Definition 4.1
through Definition 4.3] and xk ∈ N(t0) imply

τk → ∞ as k → ∞. (23)

Let m ∈ {1, 2, . . .} be such that xk ∈ {N(t0)−ClPζ(t0; J)} for all k = m,m+1, . . . ,
and xk → ∂N(t0) as k → ∞. Such xk exists because N(t0) = D(t0) is open [a-2) of
Lemma A.1] and N(t0) ⊃ ClPζ(t0; J).

Let α be defined by

α = min{p(t, x) : (t, x) ∈ Ri × [S(t; J) − Pζ(t; J)]}. (24)

Since p(.) ∈ L(Ri, S; f ; J) then α ∈ R+. Hence, (12), (22), (24) and the definitions of α
and τk yield v(t0, xk; J) ≥ ατk, ∀ t0 ∈ Ri, which together with (23) proves necessity of
the condition 4-a-ii). The conditions under 4-b) follow from 4-a) due to (2), (4) and (6).
This completes the proof of the necessity part.

Sufficiency. Let all the conditions of Theorem 6.1 hold. Since the function v(.) is
the solution to (2), [or, u(.) is the solution to (4)], and it is positive definite and decres-
cent on Ri × N(t) with respect to J , p(.) ∈ L(Ri, S; f ; J), [or, p(.) ∈ E(Ri, S; f ; J)],
and p(.) is decrescent positive definite on Ri × N(t) with respect to J , then J is
uniformly asymptotically stable set on Ri, which is easy to verify by using Defini-
tion 4.1 through Definition 4.3 and by following Lyapunov [1], Lakshmikantham and
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Leela [13], Yoshizawa [18], Zubov [19], Hahn [39], Grujić et al. [42], Miller and Michel [46],
Krasovskii [49], Rouche et al. [50], Demidovich [51], Halanay [52], Hale [53], Kalman and
Bertram [54]. Hence, J has both D(t0; J) at t0 ∈ Ri and D(Ri; J) (Definitions 4.1 – 4.3)
so that Da(t0; J) ≡ D(t0; J) and Da(Ri; J) = D(Ri; J) (Lemma A.2). In order to show
that N(t0) ≡ D(t0; J) and N = D(Ri; J) we proceed as follows. The condition (ii) of
the strong smoothness property guarantees D(t0; J) ⊆ S(t0; J), t0 ∈ Ri. Let t0 ∈ Ri
be arbitrary and fixed. If ∂N(t0) = ∅ then N(t0) = Rn. Hence, D(t0; J) ⊆ N(t0)
is then only possible. If D(t0; J) ⊂ N(t0) then ∂D(t0; J) ∩ N(t0) 6= ∅ that implies
v(t0, x; J) → ∞ as x → ∂D(t0; J) (because the function v(.) is the solution to (2),
as shown in the proof of necessity), which contradicts the condition 4-a,i) because of
N(t0) = Rn. This implies ∂D(t0; J) ∩ N(t0) = ∂D(t0; J) ∩ Rn = ∅. Since D(t0; J) is
an open neighbourhood of J and J is compact connected set, then D(t0; J) = Rn, i.e.
D(t0; J) = N(t0). Let it be now supposed that ∂N(t0) 6= ∅, i.e. N(t0) ⊂ Rn. If we
assume now ∂D(t0; J) = ∅, then D(t0; J) = Rn that implies ∂N(t0) ∩ D(t0; J) 6= ∅.
This and the condition 4-a,ii) show that there is a set L ⊆ ∂N(t0) ∩D(t0; J) such that
v(t0, x; J) → ∞ as x → L ⊆ ∂N(t0) ∩ D(t0; J), which is impossible because the func-
tion v(.) is the unique solution of (2), which is continuous on Ri ×D(t; J), as shown in
details in the necessity part. Assumed ∂D(t0; J) = ∅ fails. Let ∂D(t0; J) 6= ∅ be con-
sidered. If ∂D(t0; J)∩∂N(t0) = ∅ then either D(t0; J) = N(t0) or D(t0; J) ⊂ N(t0) or
N(t0) ⊂ D(t0; J) because both are open neighbourhoods of the set J and their bound-
aries are nonempty. The last two cases are not possible due to positive definiteness of the
function v(.) on Ri×N(t) and its construction via the equations (2) as shown above. If
∂D(t0; J)∩∂N(t0) 6= ∅ then either ∂D(t0; J) = ∂N(t0), which implies D(t0; J) = N(t0),
or ∂D(t0; J)∩N(t0) 6= ∅ and/or D(t0; J)∩∂N(t0) 6= ∅. If ∂D(t0; J)∩N(t0) 6= ∅ then it
means that the function v(.) blows up (to ∞) on N(t0), which contradicts its continuity
on N(t0) due to the condition 4-a,i). If D(t0; J) ∩ ∂N(t0) 6= ∅ then it means that the
function v(.) blows up on D(t0; J) that is impossible due to (16) because v(.) is generated
by (2). Hence, ∂D(t0; J) = ∂N(t0) that implies D(t0; J) = N(t0), which holds as the
overall result. Now, N = ∩[N(t) : t ∈ Ri] (the condition 2) and the conditions b-3 of
Definitions 4.1 and 4.2 together with b) of Definition 4.3 imply D(Ri; J) = N . Positive
definiteness of p(.) on S(t; J), p(.) ∈ L(Ri, S; f ; J), the equation (2a), N(t) ⊆ S(t; J)
for all t ∈ Ri, the condition 4-a,i) and a) of Lemma A.1 imply

v[t0 + τ,x(t0 + τ, t0, x0); J ] ≤ v(t0, x0; J) − ξ(ς; p; v;N ;Ri)τ(t0, x0; ς; J ; p),

where ζ ∈ R+ is arbitrarily small,

ξ(ς; p; v;N ;Ri) = min{p(t, x; J) : (t, x) ∈ Ri × [N − Vψ(Ri; J)]} ∈ R+, ψ = ϕ1(ς),

Vψ(Ri; J) = ∩[Vψ(t; J) : t ∈ Ri],

ϕ1(‖x‖) ≤ v(t, x; J), ∀ (t, x) ∈ Ri ×N(t), ϕ1(.) ∈ K,

v(t, x; J) ≤ ϕ2(‖x‖), ∀ (t, x) ∈ Ri ×N, ϕ2(.) ∈ K,

so that

τ(t0, x0; ς; J ; p) ≤ [ϕ2(‖x0‖) − ϕ1(ς)]ξ
−1(ς; p; v;N ;Ri),

sup[τm(t0, x0; ς; J ; p) : t0 ∈ Ri] ≤ [ϕ2(‖x0‖) − ϕ1(ς)]ξ
−1(ς; p; v;N ;Ri) <∞, ∀x0 ∈ N,
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and, therefore, the conditions under (b) of Definitions 4.1 through 4.3 are satisfied. This
completes the proof of sufficiency of the conditions 1-4a). Sufficiency of the conditions
1-3,4b) is implied by sufficiency of 1-4a) and (6), which completes the proof.

If system (3.1) possesses the weak smoothness property then conditions of Theorem 6.1
change.

Theorem 6.2 In order for a compact connected invariant set J of system (1) with the
weak smoothness property to have the domain D(Ri; J) of uniform asymptotic stability on
Ri, for a set N(t0), N(t0) ⊆ S(t0; J) for all t0 ∈ Ri, to be the domain of its asymptotic
stability at t0 ∈ Ri: N(t0) ≡ D(t0; J), and for a set N , N ⊆ S(Ri, J), to be the
domain of its uniform asymptotic stability on Ri, N = D(Ri; J), it is both necessary
and sufficient that the following holds:

1) the set N(t) is open continuous neighbourhood of J for every t ∈ Ri,
2) the set N is a connected neighbourhood of J such that N = ∩[N(t) : t ∈ Ri] =

Nm(Ri; J),
3) f(t, x) = 0 for all t ∈ Ri is possible only for x /∈ [N(t) − J ],

and
4) for any decrescent positive definite function p(.) on Ri × Rn with respect to J ,

which obeys:
(a) p(.) ∈ L(Ri, R

n; f ; J), the equations (2) have the unique solution function
v(.) with the following properties:

(i) v(.) is decrescent positive definite function on Ri × Rn with respect
to J ,

(ii) if the boundary ∂N(t) of N(t) is nonempty then x → ∂N(t), x ∈
N(t), implies v(t, x; J) → ∞ for every t ∈ Ri,

or obeying:
(b) p(.) ∈ E(Ri, R

n; f ; J), the equations (4) have the unique solution function
u(.) with the following properties:

(i) u(.) is decrescent positive definite function on Ri×N(t) with respect
to J ,

(ii) if the boundary ∂N(t) of N(t) is nonempty then x → ∂N(t), x ∈
N(t), implies u(t, x; J) → 1 for every t ∈ Ri.

Proof The proof will be a modification and generalization of that of Theorem 2 in
[38]. The modification is caused by non-differentiability of system motions, which was
assumed in [38].

Necessity. Let system (1) possess the weak smoothness property. Let the invariant set
J have the uniform asymptotic stability domain D(Ri; J) on Ri so that it has also the
asymptotic stability domain D(t0; J) at every t0 ∈ Ri. Let N(t0) = D(t0; J) ⊆ S(t0; J)
for all t0 ∈ Ri so that D(Ri; J) ⊆ S(J) and N = D(Ri; J). Let a positive definite
decrescent function p(.) on Ri × Rn with respect to J be arbitrarily selected so that
p(.) ∈ L(Ri, R

n; f ; J), {or, p(.) ∈ E(Ri, R
n; f ; J)}. From now on we should repeat the

proof of necessity of the conditions of Theorem 6.1 in order to complete this proof.

Sufficiency. Let system (1) possess the weak smoothness property and let the con-
ditions 1) – 4) hold. The set J is uniformly asymptotically stable on Ri, which can be
easily verified by following Lyapunov [1], Lakshmikantham and Leela [13], Yoshizawa [18],
Zubov [19], Hahn [39], Grujić et al. [42], Miller and Michel [46], Krasovskii [49], Rouche
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et al. [50], Demidovich [51], Halanay [52], Hale [53], Kalman and Bertram [54]. Hence, J
has both the domain D(Ri; J) of uniform asymptotic stability and the domain D(t0; J)
of asymptotic stability at t0 ∈ Ri (Definition 4.3). Let x0 ∈ [Rn −N(t0)] and t0 ∈ Ri
be arbitrary. Continuity of x(t; t0, x0) in t ∈ R0 (the weak smoothness property), con-
tinuity of p(.) on Ri × Rn due to its positive definiteness on Ri × Rn, the generation
of v(.) via (2) and the condition 4-a-ii), [4-b-ii)] imply x(t; t0, x0) ∈ [Rn −N(t)] for all
t ∈ I0. Therefore, D(t0; J) ⊆ ClN(t0) and D(Ri; J) ⊆ ClN . Since v(.) is generated via
(2) then (as shown in the proof of the necessity part of Theorem 6.1) v(t, x) → ∞ as
x → ∂D(t; J), x ∈ D(t; J), for every t ∈ Ri, which, together with the condition 4-a-1)
proves ∂D(t; J) ∩ N(t) = ∅ for every t ∈ Ri. This result, D(t; J) ⊆ ClN(t), and the
fact that both N(t) and D(t; J) are open neighbourhoods of J [condition 1) and a-2)
of Lemma A.1] imply N(t) ≡ D(t; J) and N = D(Ri; J). By repeating the end of the
proof of sufficiency of Theorem 6.1 we show that

sup[τm(t0, x0, ζ; J) : t0 ∈ Ri] < +∞ for every (x0, ζ) ∈ Da(Ri; J) ×R+,

which completes the proof.

Theorems 6.1 and 6.2 are based on the usage of p(.) ∈ L(.), {p(.) ∈ E(.)}. The
function p(.) should obey the condition 3) of Definition 5.1, [3) of Definition 5.2], if we
wish to determine exactly D(t; J) and D(Ri; J). Such a condition is not necessary for
the test of only uniform asymptotic stability of J .

7 Uniform Asymptotic Stability of Invariant Sets

Uniform stability properties of time-varying systems are interesting for their indepen-
dence of the initial moment t0, which is a characteristic of stability properties of time-
invariant systems.

Theorem 7.1 In order for a compact connected invariant set J of system (1) pos-
sessing the weak smoothness property to be uniformly asymptotically stable on Ri it is
both necessary and sufficient that there is an open connected neighbourhood A of J such
that the following is valid:

1) f(t, x) = 0 for all t ∈ Ri is possible only for x /∈ (A− J),
2) for any decrescent positive definite function p(.) on Ri × A with respect to J ,

which obeys the conditions 1) and 2) of Definition 5.1, the equations (2) have
a unique solution function v(.) that is decrescent positive definite function on
Ri ×A with respect to J .

Proof The proof will be a modification of that of Theorem 3 in [38]. The modification
is due to non-differentiability of system motions, which was demanded in [38].

Necessity. Let system (1) possess the weak smoothness property. Let the invariant
set J be uniformly asymptotically stable on Ri so that it has the domain D(Ri; J) of
uniform asymptotic stability (Definitions 4.1 through 4.3). Necessity of the condition 1)
is proved in the same way as in the proof of Theorem 6.1. Since D(Ri; J) and S(Ri; J)
are neighbourhoods of J then D(Ri; J) ∩ S(Ri; J) 6= ∅. Let M be an open connected
neighbourhood of J , which obeys M ⊆ D(Ri; J)∩ S(Ri; J), and let p(.) be an arbitrary
decrescent positive definite function on Ri × M obeying the conditions 1) and 2) of
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Definition 5.1. Hence, there exist positive definite functions ψk(.) with respect to J ,

ψk(.) : R
n × 2R

n

→ R, k = 1, 2, which satisfy (25),

ψ1(x; J) ≤ p(t, x; J) ≤ ψ2(x; J), ∀ (t, x) ∈ Ri × (M − In J). (25)

From the conditions 1) and 2) of Definition 5.1 it results that there is a solution v(.) to (2),
which is well defined and continuous on ClBµ(J) and obeys (3). The set L = M∩Bµ(J)
is also open and connected neighbourhood of J and L ⊆ D(Ri; J). Let ε ∈ R+ be
arbitrarily selected so that Bε(J) ⊆ L. Hence, Bε(J) ⊆ D(Ri; J). Let ρ ∈ R+ obeying
Bρ(J) ⊆ Ds(ε; J), Ds(ε; J) = ∩{Ds(t0, ε; J) : t0 ∈ Ri} (Definitions 4.2 and 4.3), be
arbitrarily selected. By following the proofs of (15) and (16) we prove that the function
v(.) has the next property since Bρ(J) ⊆ Ds(ε; J) ⊆ Bε(J) ⊆ L ⊆ M [the second
inclusion is implied by the definition of Ds(ε; J)],

|v(t, x; J)| <∞, ∀ (t, x) ∈ Ri ×Bρ(J), v(t, x; J) ∈ C[Ri ×Bρ(J)]. (26)

By following the proof of (20) we show that there are wk(x; J) ∈ C[Bρ(J)], wk(x; J) = 0
for every x ∈ ∂J and wk(x; J) > 0, for every x ∈ [Bρ(J) − J ], k = 1, 2, such that

w1(x; J) ≤ v(t, x; J) ≤ w2(x; J), ∀ (t, x) ∈ Ri × [Bρ(J) − In J ]. (27)

The results (26), (27), wk(x; J) ∈ C[Bρ(J)], and wk(x; J) = 0 for every x ∈ ∂J and
wk(x; J) > 0, for every x ∈ [Bρ(J) − J ], k = 1, 2, prove that the solution v(.) to (2) is
decrescent positive definite function on Ri×A, for A = Bρ(J). Its uniqueness is proved
in the same way as in the proof of the necessity part of Theorem 6.1. Hence, all the
conditions are necessary for uniform asymptotic stability of J on Ri.

Sufficiency. Sufficiency of the conditions of Theorem 7.1 for uniform asymptotic stabil-
ity of J on Ri of system (1) is easy to verify by following Lyapunov [1], Lakshmikantham
and Leela [13], Yoshizawa [18], Zubov [19], Hahn [39], Grujić et al. [42], Miller and
Michel [46], Krasovskii [49], Rouche et al. [50], Demidovich [51], Halanay [52], Hale [53],
Kalman and Bertram [54], or by following the proof of sufficiency of the conditions of
Theorem 6.2.

Comment 7.1 The theorems are valid for global uniform asymptotic stability of J
if S(t; J) ≡ Rn without demanding radial unboundedness of v(.) due to (2) and the
properties of p(.).

8 Conclusion

The consistent Lyapunov methodology enables us to construct exactly a system Lyapunov
function and to determine accurately the domain of asymptotic stability of invariant
sets. This is achieved for non-differentiable time-varying non-linear systems. The results
provide the conditions that are both necessary and sufficient, and which are not expressed
in terms of existence of a system Lyapunov function. They permit an arbitrary choice of
a non-differentiable decrescent positive definite function p(.) from the functional family
L[Ri, S; f ; J)], {or from E[Ri, S; f ; J)]}. They are formulated in terms of properties of
a solution function v(.) to D+v(.) = −p(.) (2), {or in terms of properties of a solution
function u(.) to D+u(.) = −[1 − u(.)]p(.), (4)}, respectively, which are obtained for a
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selected function p(.). Definitions 5.1 and 5.2 determine the families L[Ri, S; f ; J)] and
E[Ri, S; f ; J)] so that they are independent of a stability property of the system. If
an obtained solution v(.), {u(.)}, is also decrescent positive definite then (Theorem 7.1)
the invariant set IS uniformly asymptotically stable. If v(.), {u(.)}, does not possess
any of these features then the invariant set IS NOT uniformly asymptotically stable.
The solution to the problem of uniform asymptotic stability is obtained under a single
application of Theorem 7.1. The same holds for the determination of both the domain of
asymptotic stability of the invariant set J at any initial time t0 ∈ Ri and for its domain
of uniform asymptotic stability (Theorems 6.1 and 6.2). These results generalize those
of [38].

The consistent Lyapunov methodology for the non-linear systems is inverse to Lya-
punov’s original methodology for the non-linear systems. The former is consistent due
to its consistency with Lyapunov’s methodology for time-invariant linear systems and
generalizes it in the framework of both linear and non-linear systems, while the latter is
not.

The consistent Lyapunov methodology provides the complete solution to the uniform
asymptotic stability problem after its single application, which is not guaranteed by
Lyapunov’s original methodology for non-linear systems. No repetition of the procedure
is needed in the former case if the test result is negative.

The consistent Lyapunov methodology can be further developed to other classes of
dynamical systems such as discrete-time systems, stochastic systems and those governed
by functional-differential or partial differential equations.

Appendix

Lemma A.1 Let system (1) possess the weak smoothness property and let a compact
connected invariant set J be uniformly attractive on Ri with the instantaneous domain
Da(t; J) of attraction obeying Da(t; J) ⊆ S(t; J) for all t ∈ Ri and with the domain
Da(Ri; J) of uniform attraction on Ri.

a) If Ri ⊂ R then
1) (t0, x0) ∈ Ri × Da(t0; J) implies x(t; t0, x0) ∈ Da(t0; J) for all t ∈ Ri,

which means that Da(t; J) is invariant on Ri,
2) Da(t; J) is open continuous neighbourhood of J at any t ∈ Ri: Da(t; J) ≡

InDa(t; J), Da(t; J) ∈ C(Ri),
3) Da(Ri; J) is connected neighbourhood of J . If Da(t; J) = Da(Ri; J) for all

t ∈ Ri then Da(Ri; J) is also invariant on Ri.
b) If Ri = R then

1) Da(t; J) is invariant, that is that (t0, x0) ∈ Ri×Da(t0; J) implies x(t; t0, x0)
∈ Da(t0; J) for all t ∈ R,

2) Da(t; J) is open continuous neighbourhood of J at any t ∈ R: Da(t; J) ≡
InDa(t; J), Da(t; J) ∈ C(R),

3) Da(J) is connected neighbourhood of J . If Da(t; J) = Da(J) for all t ∈ R
then Da(J) is also invariant.

Proof We will follow the proof of Lemma A.1 of [38] in order to show its validity also
for non-differentiable time-varying non-linear systems.

Let system (1) possess the weak smoothness property and let a compact connected
invariant set J be uniformly attractive on Ri with the instantaneous domain Da(t; J) of
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attraction obeying Da(t; J) ⊆ S(t; J) for all t ∈ Ri and with the domain Da(Ri; J) of
uniform attraction on Ri. Hence, Da(Ri; J) = ∩[Da(t0; J) : t0 ∈ Ri] (Definition 4.1).

a) Let t0 and t∗ ∈ Ri, t0 6= t∗. Let x∗ = x(t∗; t0, x0) for any x0 ∈ Da(t0; J).
Then, x(t; t0, x0) → J as t→ ∞. Since x(t; t∗, x∗) ≡ x[t; t∗,x(t∗; t0, x0)] ≡ x(t; t0, x0),
which is true due to (i) of the weak smoothness property and Da(t0; J) ⊆ S(t0; J), then
x(t; t∗, x∗) → J as t → ∞. Hence, x∗ = x(t∗; t0, x0) ∈ Da(t

∗; J) that proves the
statement under a-1). Let ζ ∈ R+ be such that B2ζ(J) ⊂ Da(Ri; J). It exists due
to Definition 4.1b. Let be assumed that Da(t; J) is not open for all t ∈ Ri. Let there
exist t′0 ∈ Ri and x′0 ∈ ∂Da(t

′

0; J) ∩Da(t
′

0; J). Let ε ∈ (0, ζ/2). Then, (i) of the weak
smoothness property and Da(t0; J) ⊆ S(t0; J), t0 ∈ Ri, imply existence of θ ∈ R+, θ =
θ(t′0, x

′

0, ε), such that ‖x0−x′0‖ < θ ensures ‖x(t′0 +2σ′; t′0, x0)−x(t′0 +2σ′; t′0, x
′

0)‖ < ε,
where σ′ = τ(t′0, x

′

0, ζ) (Definition 4.1a). Since ε < ζ/2 and ρ[x(t′0 +2σ′; t′0, x
′

0); J ] < ζ
then x(t′0 + 2σ′; t′0, x0) ∈ B2ζ(J) ⊂ Da(Ri; J). Hence, x0 ∈ Da(t

′

0; J). Any x0 obeying
‖x0 − x′0‖ < θ may be selected in a θ-neighbourhood of x′0 out of Da(t

′

0; J), which
is contradicted by the obtained x0 ∈ Da(t

′

0; J). The former is true and the latter
is wrong showing that there are not t′0 ∈ Ri and x′0 ∈ ∂Da(t

′

0; J) ∩ Da(t
′

0; J). If
x′0 ∈ ∂Da(t

′

0; J) then x′0 /∈ Da(t
′

0; J). The set Da(t0; J) is open for all t0 ∈ Ri and it is
neighbourhood of J due to Definition 4.1. Therefore, Da(t; J) ≡ InDa(t; J) and it is a
neighbourhood of J on Ri. Altogether, Da(t; J) is open neighbourhood of J on Ri. In
order to prove Da(t; J) ∈ C(Ri) we will use a contradiction. Let there exist t∗0 ∈ Ri
such that Da(t; J) is discontinuous at t∗0. As a consequence, there are ε∗ ∈ R+ and a
sequence K∗ ⊆ {1, 2, . . . , n, . . . } such that tk → t∗0, k → ∞, k ∈ K∗, and that there is
z∗ ∈ Da(t

∗

0; J) for which ρ[z∗, Da(tk; J)] ≥ ε∗, ∀ k ∈ K∗, and/or there is w∗ ∈ Da(tk; J),
∀ k ∈ K∗, which obeys ρ[w∗, Da(t

∗

0; J)] ≥ ε∗. Let ξ ∈ R+ obey both ξ < ε/2 and
Bξ(J) ⊆ Da(t; J) for all t ∈ Ri, which is possible due to uniform attraction of J on Ri
[b-2) of Definition 4.1]. Let m ∈ K∗ be such that tm > t∗0 + τ(t∗0, z

∗, ξ/2), tm ∈ Ri.
This guarantees (Definition 4.1): x(tm; t∗0, z

∗) ∈ Bξ/2(J). Let δ = δ(t∗0; z
∗;m; ξ/2) ∈ R+,

δ < ξ/2, and ψ = ψ(t∗0; z
∗;m; ξ/2) ∈ R+ obey that

|tj−t
∗

0| < ψ and ‖x0−z
∗‖ < δ, j ∈ K∗ imply ‖x(tm; tj, x0)−x(tm; t∗0, z

∗)‖ < ξ/2,

which is possible due to continuity of the system motions [the weak smoothness property:
(i-b) and (ii)]. Hence, x(tm; t∗0, z

∗) ∈ Bξ/2(J) implies x(tm; tj, x0) ∈ Bξ(J). This further

yields x(tm; tj, x0) ∈ Da(tm; J) and x0 ∈ Da(tj ; J). Besides, ‖x0 − z∗‖ < δ < ξ/2 <
ε∗/4 and x0 ∈ Da(tj ; J) imply ρ[z∗, Da(tj ; J)] < ε∗ that contradicts ρ[z∗, Da(tk; J)] ≥
ε∗, ∀ k ∈ K∗, and disproves existence of time t∗0 ∈ Ri and z∗ ∈ Da(t

∗

0; J) for which
ρ[z∗, Da(tk; J)] ≥ ε∗, ∀ k ∈ K∗. In the analogous way we show that there are not
w∗ and t∗0 as defined above. This proves continuity of Da(t; J) on Ri. The statement
under a-2) is correct. Furthermore, Da(Ri; J) is neighbourhood of x = 0 by definition
(Definition 4.1). Its connectedness is proved by contradiction. Let us assume that it is
not connected. Then, there are disjoint sets Dak, k = 1, 2, . . . , N , such that Da(Ri; J) =
∪[Dak : k = 1, 2, . . . , N ]. One of Dak is not a neighbourhood of J . Let it be Da1 and let
Dam, Dam ⊂ Da(Ri; J), m ∈ {2, 3, . . . , N}, be connected neighbourhood of J that is
possible because J is a compact connected set. Then x0 ∈ Da1 implies x(t; t0, x0) → J
as t→ ∞, ∀ t0 ∈ Ri. There is t1 ∈ R0 such that x(t1; t0, x0) /∈ Da because of continuity
of x(t; t0, x0) in t ∈ R0, ∀ t0 ∈ Ri, and because Da1 is disjoint subset of Da(Ri; J), which
is not neighbourhood of J . However, this is impossible due to x[t; t1, x(t1; t0, x0)] ≡
x(t; t0, x0) → J as t → ∞. Hence, the assumption on disconnectedness of Da(Ri; J)
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is incorrect, which completes the proof of all the statements under a) by noting that
invariance of Da(Ri; J) on Ri results directly from 1) in case Da(t; J) = Da(Ri; J) for
all t ∈ Ri.

b) The assertions under b) directly follow from those under a) in case Ri = R.

Lemma A.2

a) If a compact connected invariant set J of system (1) possessing the weak smooth-
ness property is asymptotically stable at t0 ∈ Ri and its domain of attraction
Da(t0; J) at t0 ∈ Ri obeys Da(t0; J) ⊆ S(t0; J) then its domains Da(t0; J),
Ds(t0; J) and D(t0; J) are interrelated by Da(t0; J) ⊆ Ds(t0; J) and D(t0; J) =
Da(t0; J) for all t0 ∈ Ri.

b) If a compact connected invariant set J of system (1) possessing the weak smooth-
ness property is uniformly asymptotically stable on Ri and its domain Da(Ri; J)
of uniform attraction on Ri satisfies Da(Ri; J) ⊆ S(Ri; J) then its domains
Da(Ri; J), Ds(Ri; J) and D(Ri; J) are interrelated by Da(Ri; J) ⊆ Ds(Ri; J)
and D(Ri; J) = Da(Ri; J).

Proof We will follow the proof of Lemma A.2 of [38] in order to verify its validity
also for non-differentiable time-varying non-linear systems.

Let system (1) possess the weak smoothness property and J be its compact connected
invariant set.

a) Let the set J be asymptotically stable at t0 and Da(t0; J) ⊆ S(t0; J). Let x0 ∈
Da(t0; J) be arbitrary. Time-invariance of J and continuity of x(t; t0, x0) in (t, t0, x0) ∈
R0×Ri×S(t0; J), Da(t0; J) ⊆ S(t0; J) and x0 ∈ Da(t0; J) imply max{ρ[x(t; t0, x0), J ] :
t ∈ R0} <∞. Let ε = 2 max{ρ[x(t; t0, x0), J ] : t ∈ R0}. Hence, x0 ∈ Ds(t0, ε; J) due to
(a-1) of Definition 4.2, which implies x0 ∈ Ds(t0; J) in view of (a-3) of Definition 4.2.
Altogether, x0 ∈ Da(t0; J) yields x0 ∈ Ds(t0; J) that proves Da(t0; J) ⊆ Ds(t0; J) for
all t0 ∈ Ri. This result and (a) of Definition 4.3 complete the proof of the statement
under (a).

b) Let the set J be uniformly asymptotically stable onRi and Da(Ri; J) ⊆ S(Ri; J).
Let x0 ∈ Da(Ri; J) be arbitrary. Hence, max{ρ[x(t; t0, x0), J ] : (t; t0) ∈ R0 ×Ri} < ∞
due to time invariance of J and continuity of x(t; t0, x0) in (t, t0, x0) ∈ R0 × Ri ×
Da(Ri; J). Let ε = 2 max{ρ[x(t; t0, x0), J ] : (t; t0) ∈ R0 × Ri} ∈ R+ so that obvi-
ously x0 ∈ Ds(ε,Ri; J) = ∩[Ds(t0, ε; J) : t0 ∈ Ri] 6= ∅. Therefore x0 ∈ Ds(Ri; J)
(Definition 4.3). The result that x0 ∈ Da(Ri; J) implies x0 ∈ Ds(Ri; J) proves
Da(Ri; J) ⊆ Ds(Ri; J) and D(Ri; J) = Da(Ri; J) (due to Definition 4.3). This com-
pletes the proof.
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[28] Grujić, Lj.T. Solutions to Lyapunov stability problems: Time-invariant systems. Proc.
14th IMACS World Congress on Computation and Applied Mathematics, 1, 1994, 203–
205.
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