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1 Introduction

The problem of the permanent rotations of a rigid body with a fixed point in the gravity
force field occupies an important place in analytical mechanics and different applications.
In rigid body dynamics a complete investigation of the permanent rotations has been
made by Staude [1]. This remarkable paper by Staude practically closed this problem
unfortunately because specialists on rigid body dynamics lost interest in further inves-
tigation of the permanent rotations for many years. However, this problem attracted
the attention of the experts in the stability theory in connection with the study of sta-
bility of stationary motions of mechanical systems and has played an important role in
the development of this problem. Stability problems on the stationary motions of me-
chanical systems and on the permanent rotations of a rigid body are closely connected,
their interinfluence defining their joint development in many respects. The formation
of these problems was connected with the Routh theorem [2] and Majevskii criterion
[3]. Their systematic investigation started with the appearance of the Chetaev method
[4] and Rumyantsev’s paper [5] having provided a suitable mathematical apparatus and
having defined the direction of research. The introduction in the research domain of
the problem of gyrostat motion [6, 7], other new objects [8] and force fields [9] raised
the interest in the problem and defined the period of its intensive development. At this
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time KAM-theory had an essential influence on it and led to the extension of the use of
Hamiltonian mechanics methods and the raising of the meaning of necessary conditions.
The use of Kolmogorov’s idea [10] permits us to characterize stability domains in the
phase and parameter space as the domains of the fulfilment of the necessary conditions
from which only some subdomains of smaller dimension can be excluded. On this base
it is possible to say about practical end of the problems for which the investigation of
necessary stability conditions is fulfilled, what is really done for many problems. The
registration of this approach signifies the end of an intensive development period of the
permanent rotations stability problem. The modern stage is characterized by the study
of new objects such as multibody systems with different kinds of joints, a body on a string
and others; by the search for new effects and by the movement of interest from stability
theory into attractor theory, chaos and other modern topics of dynamical systems theory.

In the presented paper the state of stability theory of stationary motions of mechanical
systems, the stability problem of permanent rotations of a rigid body and its general-
izations are described. The presentation is in the main based on the results obtained by
the Donetsk school of mechanics where these problems were studied the most widely and
completely.

2 Objects and Motions

The problem of a motion of a rigid body with a fixed point in a gravity force field occupies
the central place in rigid body dynamics. For its study different forms of the motion
equations are offered, from which we choose the best-known Euler-Poisson equations

A1ω̇1 = (A2 −A3)ω2ω3 + Γ(e2ν3 − e3ν2) (123), (1)

ν̇1 = ν2ω3 − ν3ω2 (123), (2)

where ω2, ω2, ω3; ν1, ν2, ν3; e1, e2, e3 are, respectively, projections on the moving axes
of an angular velocity, a vertical unit vector and a unit vector leading from the fixed
point in the direction of the mass center of a body; A1, A2, A3 are principal moments
of inertia; Γ is the product of the body weight and the distance from the fixed point to
the mass center; (123) is a symbol of cyclic index permutation.

Equations (1) and (2) allow the integrals

A1ω
2
1 +A2ω

2
2 +A3ω

2
3 − 2Γ(e1ν1 + e2ν2 + e3ν3) = h,

A1ω1ν1 +A2ω2ν2 +A3ω3ν3 = k,

ν2
1 + ν2

2 + ν2
3 = 1.

(3)

Gyrostat. The necessity of accounting for the influence of interior masses motions on
the Earth’s motion led Volterra [11] to the creation of a new mechanical object named a
gyrostat. At the present time by the term gyrostat we understand a rigid body having
cavities with liquid performing a potential motion [8] or a body carrying fly-wheels ro-
tating in a definite way [7]: on inertia or with constant relative velocity. Let’s write the
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motion equations and integrals of a gyrostat with fixed point in a gravity force field

A1ω̇1 = (A2 −A3)ω2ω3 + λ2ω3 − λ3ω2 + Γ(e2ν3 − e3ν2),

ν̇1 = ν2ω3 − ν3ω2 (123), (4)

A1ω
2
1 +A2ω

2
2 +A3ω

2
3 − 2Γ(e1ν1 + e2ν2 + e3ν3) = h,

(A1ω1 + λ1)ν1 + (A2ω2 + λ2)ν2 + (A3ω3 + λ3)ν3 = k, (5)

ν2
1 + ν2

2 + ν2
3 = 1.

Here in addition to the notations introduced under λ1, λ2, λ3 the projections of gyro-
static moment vector on the moving axes are designated.

A Rigid Body with Vortex Filling. A great number of papers are devoted to the study
of the motion of a body with an ellipsoidal cavity completely filled by an ideal uniform
incompressible liquid performing the uniform vortex motion. The motion equations of
the body-liquid system have the form [8, 12]

Ω̇1 = (1 − ε3)ω3Ω2 − (1 + ε2)ω2Ω3 + (ε2 + ε3)Ω2Ω3,

d
dt

(a1ω1 + b1Ω1) = (a2ω2 + b2Ω2)ω3 − (a3ω3 + b3Ω3)ω2 + Γ(e2ν3 − e3ν2),

ν̇1 = ν2ω3 − ν3ω2 (123).

(6)

Here in addition the designations are introduced: Ω1, Ω2, Ω3 are the projections of the
vortex vector on the moving axes; a1, a2, a3 are changed inertia moments of the body-
liquid system; Γ is the product of the body-liquid system weight and the distance from
the mass center to the fixed point divided by 2c2M/s; c2 = c21 + c22 + c23; c1, c2, c3 are
semiaxes of the cavity-ellipsoid; M is the liquid mass in the cavity;

ε =
c23 − c22
c23 + c22

, b1 =
2c22c

2
3

c2(c22 + c23)
(123).

Equations (6) allow the integrals

3
∑

i=1

(aiω
2
i + biΩ

2
i − 2Γeiνi) = h,

3
∑

i=1

(aiωi + biΩi)νi = k, (7)

Ω2
1

c21
+

Ω2
2

c22
+

Ω2
3

c23
= m, ν2

1 + ν2
2 + ν2

2 = 1.

Multibody System. The equations of motion of the system of rigid bodies can be
obtained in different forms depending on the choice of coordinate systems and main
variables. The number of possible forms of equations is increasing because the bodies can
be composed in groups in different ways. A form of such equations that are transparent
and accessible for further investigation are required. The equations satisfying these
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Figure 2.1. Intersection of the Staude cone with the unit sphere.

requirements are offered in [13] for the system of n gyrostats

d

dt
(Anωn + λn) +mncn ×

[

n−1
∑

l=1

d

dt
(ωl × sl) − gν

]

= 0,

d

dt
(Akωk + λk) +mkck ×

[

k−1
∑

l=1

d

dt
(ωl × sl) − gν

]

+ sk (8)

×
n

∑

q=k+1

mq

[

d

dt
(wq × cq) +

q−1
∑

l=1

d

dt
(ωl × sl) − gν

]

= 0 (k = 2, 3, . . . , n− 1),

d

dt
(A1ω1 + λ1) + s1 ×

n
∑

q=2

mq

[

d

dt
(ωq × cq) +

q−1
∑

l=1

d

dt
(ωl × sl) − gν

]

= m1c1 × gν,

ν̇ = ν × ω.

Carrier-bodies Sk0 , Sk−1
0 of gyrostats Sk, Sk−1 (k > 1) have one generic point Ok;

where ωk is the absolute angular velocity of the body Sk0 ; vector sk leads from Ok to the
mass center of gyrostat Sk; mk is the mass of Sk; Ak is the inertia tensor of gyrostat
Sk at point Ok; λk is the gyrostatic moment of this gyrostat.

The development of equations (8), and their further transformation have played the
essential role in the amplification of interest in multibody dynamics and have promoted
significant progress in obtaining the exact solutions; their number has more than doubled
since the time of their publication.

Permanent Rotations. In rigid body dynamics the most studied stationary motions
are permanent rotations which are characterized by the property that the angular velocity
vector is constant and leads along the vertical. This provides us with the possibility of
representing permanent rotation in the moving (connected with the body) space. The real
motion is obtained by the coincidence of the permanent rotation axis with the vertical
and rotating the body around the vertical with angular velocity obtained. Under the
common values of parameters the set of permanent rotations is one-dimensional and
consists of three parts of the curve, lying at the Staude cone (Figure 2.1)
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(A2 −A3)e1ω2ω3 + (A3 −A1)e2ω3ω1 + (A1 −A2)e3ω1ω2 = 0. (9)

Note that in the general situation permanent rotations about principal axes are impos-
sible. They can appear under some conditions on parameters. So they exist in the
Lagrange, Kovalevskaya, Hess cases and in the Euler case permanent rotations are ad-
missible only around three principal axes. Note more the singular case: in the Lagrange
case the permanent rotations set consists of the principal axis and some surface.

On the whole a similar but more complicated picture exists for a gyrostat [14]. In
principle, the picture is different for a body with vortex filling, for which the permanent
rotations set forms a solid angle [12]. For systems of the rigid bodies, on the whole,
permanent rotations of the Lagrange gyroscopes around principal axes have been con-
sidered [12].

3 Stability of Stationary Motions

Two main approaches to the investigation of stationary motions stability have been cre-
ated. The first is based on the Routh-Lyapunov theorem and Chetaev method, the
second – on the Arnold-Moser theorem extended to stationary motions. To form these
theorems it is convenient to use Hamilton variables qi, pi (i = 1, . . . , n) for the de-
scription the motion of a conservative mechanical system with n degrees of freedom. In
the presence of cyclic coordinates qα (α = k + 1, . . . , n) the Hamilton function has the
form H(q1, . . . , qk, p1, . . . , pn) and the equations of motion have n− k cyclic integrals
pα = cα = const (α = k + 1, . . . , n). The function H(q1, . . . , qk, p1, . . . , pk, ck+1, cn)
defines the system with k degrees of freedom which is called the reduced one.

The stationary motions of the mechanical system are called such motions for which
positional coordinates and impulses qi, pi (i = 1, . . . , k) and cyclic impulses pα (α =
k + 1, . . . , n) preserve constant values qi = q0i , pi = p0

i , pα = cα. Constants cα are
arbitrary, values q0i , p

0
i are obtained from the equations

∂H

∂qi
= 0,

∂H

∂pi
= 0, i = 1, . . . , k

and determine the equilibrium position of the reduced system.
Under stability of stationary motions we understand the stability of these motions

with respect to the values qi, pi, cα (i = 1, . . . , k; α = k + 1, . . . , n). The effective
tool of investigation of stationary motions stability is the Routh theorem [2] (with the
Lyapunov addition [15]) reducing the question about stationary motions stability to the
analysis of the extremum of potential energy of the reduced system.

Theorem 3.1 If potential energy of the reduced system has the minimum both under
the given values pα = cα responding to the stationary motion considered and under any
close to the given values pα = cα+ηα and also the values qi inverting it in the minimum
are continuous functions of the variables pα, then stationary motion is stable.

Different generalizations of Theorem 3.1, its connection with the Chetaev method and
application to the investigation of the permanent rotations stability have been considered
in the papers [16, 17], where in particular it was pointed out that for the establishment
of stationary motions stability it was sufficient to establish by the Lyapunov method the
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stability of equilibrium position of the reduced system, moreover it was convenient to
construct the Lyapunov function by the Chetaev method from the motion integrals.

For Hamiltonian systems in the formulation of Theorem 3.1 the Hamilton function of
the reduced system is used instead of the potential energy. Theorem 3.1 does not solve
the question about stationary motions stability if the Hamiltonian of the reduced system
is not a function of fixed sign in the equilibrium position. For Hamiltonian systems with
two-dimensional reduced system, the stability of stationary motions can be obtained
with the help of the following theorem [18] extending the known Arnold-Moser theorem
[19, 20] to the case of stationary motions.

Theorem 3.2 Let the Hamiltonian H(q1, q2, p1, p2, . . . , p2+m) be an analytical func-
tion of the coordinates and impulses at the point p with the coordinates

q1 = q2 = 0, p1 = p2 = 0, p2+i = ci, i = 1, . . . ,m (10)

defining the stationary motion considered. The Hamiltonian of the reduced system at this
point satisfies the following conditions:

1. Eigenvalues of the linearized reduced system are pure imaginary ±iα1, ±iα2.
2. For all integers k1, k2 satisfying the condition |k1| + |k2| ≤ 4 the inequality
k1α1 + k2α2 6= 0 is fulfilled.

3. D = −(β11α
2
2 − 2β12α1α2 + β22α

2
1) 6= 0, where βνµ are the coefficients of the

fourth order form for the Hamiltonian, transformed into the form

H =

2
∑

ν=1

αν
2
Rν +

2
∑

ν,µ=1

βνµ
4

RνRµ +O5, Rν = ξ2ν + η2
ν

(O5 is a power series containing the terms of order not less then five).
Then stationary motion (10) is stable.

Condition 1 of this theorem is fulfilled in the domain of fulfilment of necessary stabil-
ity conditions. In the common situation nonfulfilment of conditions 2 and 3 leads to the
exclusion of some sets of lesser dimension from this domain. In the rest domain, which
differs little from the domain of the fulfilment of necessary stability conditions, station-
ary motions are stable. Therefore in the nonsingular case (conditions 2 and 3 don’t take
identities) it is practically sufficient to study only the necessary stability conditions. For
the analysis of singular cases it is possible to apply the theorems on stability of the equi-
librium position under the presence of resonances [21] and the vanishing of discriminant
D [22] extended to stationary motions.

4 Permanent Rotations of a Rigid Body

One of the first problems solved on the stability of permanent rotations is the problem
of the stability of permanent rotations of the Lagrange gyroscope around its principal
axis. The conditions of their stability are known as the Majevskii criterion [3] and were
obtained during research into projectile motion. Following attempts [23, 24] didn’t bring
any serious progress in this problem and only the appearance of the Chetaev method gave
the possibility of its systematic investigation which was begun in Rumyantsev’s paper
[5]. Sufficient stability conditions of permanent rotations were obtained in his paper by
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the construction of the Lyapunov function in the form of the bundle of the integrals of
perturbed motion. With their help the stability domains were found both in the common
case of mass distribution and in particular cases when the mass center belonged to one
of the principal planes or to the principal axis and also when the ellipsoid of inertia was
the ellipsoid of rotation. Subsequent investigations can be divided into three groups:
the study of permanent rotations in integrable cases; analysis of the permanent rotations
around principal axes; research on the general case (permanent rotations around principal
axes are impossible). The interest in integrable cases is caused by the fact that the
presence of additional integrals permits us to obtain the necessary and sufficient stability
conditions by the Lyapunov functions method. Two rest directions are connected with
the motions which are of most interest from the theoretical and applied point of views.
Let’s examine them in more detail.

Permanent Rotations about Principal Axes. Let the mass center belong to the prin-
cipal axis, then the body can rotate about this axis permanently with arbitrary velocity.
The stability of these motions is studied with respect to the variables ω1, ω2, ω3, ν1, ν2, ν3
under the use of equations (1) or with respect to the Euler angles θ, ϕ and all generalized
impulses pθ, pϕ, pψ under the use of Hamiltonian equations. Using the Chetaev method,
Rumyantsev [5, 25] obtained sufficient stability conditions of the considered permanent
rotations which are equivalent to the conditions of the property of having fixed sign the
square part of Hamiltonian H2. The following investigation of this problem was fulfilled
with the help of Theorem 3.2 in paper [26]. Let’s look at its main result.

A body motion is described by Hamilton equations in the Euler angles introduced in
the usual way. For Hamiltonian to have no singularities on the considered motion we
place the mass center on the first principal axis. The following solution corresponds to
the permanent rotations studied

θ0 = ϕ0 =
π

2
, ψ0 = ω0t+ ψ0, p0

θ = p0
ϕ = 0, p0

ψ = A1ω,

where ω0 is the angular velocity of the permanent rotation. Introducing the perturbations

θ =
π

2
+ y′1, ϕ =

π

2
+ y′2, pθ = x′1, pϕ = x′2

and going over to the dimensionless variables, we obtain the following presentation for
the Hamiltonian H

H = H2 +H4 +O5, (11)

2H2 = ax2
1 + bx2

2 + (ω2 − e)y2
1 + [(a− 1)ω2 − e]y2

2 + 2(a− 1)ωx1y2 + 2ωx2y1,

2H4 = (1 − a)x2
1y

2
2 + x2

2y
2
1 +

8ω2 + e

12
y4
1 +

4ω2(1 − a) + e

12
y4
2

+
2ω2(a− 1) + e

2
y2
1y

2
2 +

4ω(1 − a)

3
x1y

3
2 + ω(a− 1)x1y

2
1y2

+
5

3
ωx2y

3
1 + 2ω(a− 1)x2y1y

2
2 + 2(a− 1)x1x2y1y2,

where

e =

{

1 for Γ < 0,

−1 for Γ > 0
.
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Figure 4.1. Stability domain in the space Oab.

Condition 1 of Theorem 3.2 is fulfilled in the domainG of necessary stability conditions
fulfilment which were obtained and analyzed in detail in paper [27]. Condition 2 is
reduced to one inequality which is broken under the condition defining the resonance of
the third order

9ω4 + 2(41b− 59)ω2 + (9b− 1)(b− 9) = 0. (12)

To check the third condition Hamiltonian (11) is transformed to the normal form up to
terms of the fourth order inclusively and discriminant D is calculated which has rather
simple expression for values a = 1, e = 1

D1 = (b − 1)2ω8 + 2(b− 1)(b2 + 2b− 5)ω6 + (b − 1)(b3 + 13b2

− 41b+ 7)ω4 + 8(b4 − 5b3 + 5b2 + b+ 2)ω2 + 4b(b− 1)2.
(13)

A conclusion about the stability of permanent rotations is obtained by the application
of Theorem 3.2. For the descriptive representation of the obtained results there has
been introduced an extended parametric space being the direct product of the space of
mechanical system parameters and cyclic constants space, in this case the plane Obω.
The equation (12) and D1 = 0 determine in the plane Obω resonance curve s1 and
discriminant curve s2 (Figure 4.1). The theorem is true.

Theorem 4.1 Let a rigid body having equal inertia moments about two first axes
(a = 1) be rotated permanently about the first axes carrying the mass center situated
higher than fixed point (e = 1). Then in extended parametric space-plane Obω-stability
domain represents domain G1 of fulfilment of necessary stability conditions from which
curves s1, s2 are excluded (Figure 4.1).

Returning to the common case we note from the formulas (12) and (13) that in the
space Oabω conditions 2 and 3 of Theorem 3.2 are not fulfilled on resonance and dis-
criminant surfaces S1 and S2; that is the following result occurs.

Theorem 4.2 Let a rigid body be rotated permanently around the principal axis car-
rying the mass center. Then in the extended parametric space Oabω stability domain
represents the domain G from which surfaces S1 and S2 are excluded.
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It should be noted that the permanent rotations corresponding to resonance curve s1
have been studied in paper [28]. They are found to be stable and they should not be
excluded from the domain G1.

Permanent Rotations about Staude Cone Axes. The problem of searching for the
stability conditions of the permanent rotations under arbitrary mass distribution seemed
at first hopelessly difficult [23]. In 1920 R.Grammel obtained the necessary stability
conditions which he couldn’t analyze because of their complexity and was forced “to
invert” the statement of the problem. Sufficient conditions were obtained by Rumyantsev
[5] by the construction of the Lyapunov function in the form of the bundle of integrals (3):

µν2
1 + Γ

e1
ν1

> 0, Γ
e1e2
ν1ν2

+ µ

(

e1
ν1
ν2
2 +

e2
ν2
ν2
1

)

> 0, (14)

µ

(

e2e3
ν2ν3

ν2
1 +

e1e3
ν1ν3

ν2
2 +

e1e2
ν1ν2

ν2
3

)

+ Γ
e1e2e3
ν1ν2ν3

> 0.

Here the variables ν1, ν2, ν3 satisfy equation (9), where µ is an arbitrary constant.
In paper [5] only preliminary analysis of conditions (14) is fulfilled. On its basis some

stability domains of permanent rotations at Staude cones are noted.
The application of Theorem 3.2 to the analysis of these rotations is made difficult

by the awkwardness of the calculations. Therefore it is natural to do their analysis by
computer. Such research was fulfilled for gyrostats [29] and is described in the subsection
below.

A Body in the Newtonian Gravity Force Field. Where there is a significant distance
between a body and the attracting center in many cases it is assumed only taking account
of the forces containing linear terms of the expansions on the degrees of value inverse to
this distance. The force field obtained in this way is called the Newtonian field. Motion
equations and integrals of a body with a fixed point have the form [30]

A1ω̇1 = (A2 −A3)ω2ω3 + Γ(e2ν3 − e3ν2) − µ(A2 −A3)ν2ν3,

ν̇1 = ν2ω3 − ν3ω2 (123), (15)

A1ω
2
1 +A2ω

2
2 +A3ω

2
3 − 2Γ(e1ν1 + e2ν2 + e3ν3)

+ µ(A1ν
2
1 +A2ν

2
2 +A3ν

2
3) = h,

A1ω1ν1 +A2ω2ν2 + A3ω3ν3 = k, (16)

ν2
1 + ν2

2 + ν2
3 = 1.

Here µ is a constant characterizing the force field.
Stability of stationary motions of this system was studied by Kuz’min [9]. He estab-

lished that as for the case of constant gravity stationary motions are permanent rota-
tions about “vertical” the axes of which belong to the Staude cone. Note the convenient
parametrization of the permanent rotations introduced in this paper

ν1 =
Γe1

Ω(ρ−A1)
(123), Ω2 = Γ2

3
∑

i=1

e2i
(ρ−Ai)2

, (17)
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where Ω = ω2 − µ, and ω is the angular velocity of permanent rotation. Stability
conditions are obtained in accordance with the Routh-Lyapunov theorem as the condi-
tions of the property of having fixed sign second variation of the first integral (16) under
conservation the rest integrals on the perturbed motions

ΩT > 0, (18)

4ω2ΩT + Ω2IS > 0. (19)

Here

T =
∑

(123)

(ρ−A1)(A2 −A3)ν
2
2ν

2
3 ,

S =
∑

(123)

(ρ−A2)(ρ−A3)ν
2
1 ,

I =
∑

(123)

A1ν
2
1 ,

where symbol
∑

(123)

means the summation of three terms obtained from the one shown

under the sum symbol by the cyclic permutation of indexes.
Condition (19) excluding the boundary is not only one of the sufficient conditions

but the necessary one. In addition, setting Ω = ω2 in inequalities (18) and (19) we
obtain from them the stability conditions for constant gravity softening Rumyantsev
conditions (14).

5 Permanent Rotations of a Gyrostat

The investigation of permanent rotations stability of a gyrostat was begun by Volterra
[11] who considered in detail the permanent rotations of a gyrostat on inertia. Rumyant-
sev [6] analyzed these rotations by the Lyapunov method. In this paper the sufficient
stability conditions of permanent rotations of a heavy gyrostat around the principal axis
with arbitrary angular velocity are also obtained. The case when a gyrostat can rotate
around the principal axis only with some fixed velocity was studied by Anchev [31]. The
investigation of the permanent rotations around the principal axis was continued with
the help of Theorem 3.2 in paper [32]. Here is its main result.

Rotations Around the Principal Axis. Under the assumption that the mass center of
a gyrostat belongs to the first principal axis and the vector λ of gyrostatic moment is
directed along the same axis the gyrostat can rotate permanently around the first axis
with angular velocity ω and this rotation is defined by the following values of the variables

pθ = pϕ = 0, pψ =
ω

a1
+ λ, θ = ϕ =

π

2
, ψ = ωt+ ψ0, (20)

where a1 is the first component of tensor A−1.
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Figure 5.1. The domain of the fulfilment of the necessary stability conditions

in the space Oξ1ξ2ξ3.

In dimensionless variables the Hamilton function of perturbed motion has the form

H = H2 +H4 + . . . ,

2H2 = ax2
1 + bx2

2 + (ω2 + ωλ− e)y2
1 +

[

(ω + λ)
(

a(ω + λ) − ω
)

− e
]

y2
2

+2
(

a(ω + λ) − ω
)

x1y2 + 2ωx2y1,

24H4 = (3λ2 + 11λω + 8ω2 + e)y4
1 +

[

(ω + λ)(4ω + 3λ− 4a(ω + λ)) + e
]

y4
2

+6
[

(ω + λ)(−2ω − λ+ 2a(ω + λ)) + e
]

y2
1y

2
2 + 12(1 − a)x2

1y
2
2 + 12x2

2y
2
1

+4(4ω + 3λ− 4a(ω + λ))x1y
3
2 + 4(5ω + 3λ)x2y

3
1 + 12(a− 1)(ω + λ)x1y

2
1y2

+12(−2ω− λ+ 2a(ω + λ))x2y1y
2
2 + 24(a− 1)x1x2y1y2.

(21)

To obtain the necessary stability conditions we write the characteristic equation for
the linearized system with function H2

µ4 + ξµ2 + ξ2ξ3 = 0,

ξ1 = ab(ω + λ)2 − (a+ b)(ω + λ)ω + 2ω2 − e(a+ b),

ξ2 = ω2(a− 1) + aωλ− ae, ξ3 = ω2(b− 1) + bω − be.

It is convenient to represent the domain D of fulfilment of the necessary stability condi-
tions in the space of parameters ξ1, ξ2, ξ3 (Figure 5.1). In the subdomain G2 the square
form H2 is of the fixed sign and corresponding permanent rotations are stable. To study
the stability of permanent rotations corresponding to the subdomain G1 Theorem 3.2 is
applied. We obtain the expressions for resonance relations and the discriminant by apply-
ing the corresponding normalization transformation. Note that under λ = 0, a = 1 the
discriminant D has the form (13), i.e. D 6≡ 0. Therefore the equality D(a, b, λ, ω) = 0
selects in the space Oabλω some manifolds just as resonance relations. Permanent ro-
tations corresponding to the manifolds selected are excluded from consideration. As for
the remaining permanent rotations in the domain G1 on the basis of Theorem 3.2 we
conclude that these rotations are stable on Lyapunov.
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Comparing these conclusions with the result obtained above for a rigid body we can
state that the presence of a rotor in a body renders the stabilization effect on the carrying
body motion under the corresponding choice of rotor rotation. Thus, unstable rotation
of a body around the middle axis can be made stable under the corresponding choice of
a gyrostatic moment. Moreover, any permanent rotation of a rigid body can be made
stable under the corresponding choice of a gyrostatic moment.

Rotations Around an Arbitrary Axis. Sufficient stability conditions of a gyrostat
around an arbitrary axis of permanent rotations cone were obtained by Anchev [33] and
Druzhinin [34]. In paper [34] necessary stability conditions were also obtained. Using
these conditions in paper [35] the stability and instability domains are shown on the
permanent rotations cone.

It is convenient to describe the permanent rotations considered using the Kuz’min
parametrization [9]

ν1 =
ωλ1 + Γe1
ω2(ρ−A1)

(123), (22)

where ρ is an auxiliary parameter and angular velocity satisfies the equation

ω4 −
∑

(123)

(ωλ1 + Γe1)
2

ω2(ρ−A1)2
= 0.

Sufficient stability conditions have the following form [34]

D = A1A2A3ω
6(L + ω2JM) > 0, D1 = ω2L > 0, (23)

L =
∑

(123)

(ρ−A1)[2ω(A2 −A3)ν2ν3 + λ3ν2 − λ2ν3]
2,

M =
∑

(123)

(ρ−A2)(ρ−A3)ν
2
1 , J =

∑

(123)

A1ν
2
1 .

Necessary stability conditions are such [34]

D > 0, N > 2
√
D, (24)

N = ω2
∑

(123)

[ω2A1(ρ−A1)(A2ν
2
2 +A3ν

2
3 ) +A1(ω(A1 −A2 −A3)ν1 + λ1)

2].

Conditions (23) and (24) were analyzed in paper [35]. From the conclusions obtained
there we note that the permanent rotations around the axes near to the middle principal
axis are unstable. On the stability of the permanent rotations around the axes close to
the major axis it is impossible to come to a conclusion on the basis of conditions (23)
and (24) because the necessary conditions are fulfilled, but the sufficient conditions (23)
are not. For their study Theorem 3.2 is applied.

Analytical difficulties connected with the investigation of the general case have led
to the necessity of the use of computer methods for its analysis. The appearance of
the computing normalization algorithms for Hamilton systems promotes this analysis.
A numerical algorithm of the investigation of stability of the permanent rotations of a
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gyrostat was created by Chudnenko [29]. Using the parametrization (22) he introduces
the partition ρ1, . . . , ρn of the set of permanent rotations. For every ρk conditions
(23) and (24) are checked. If conditions (24) are fulfilled and conditions (23) are not,
conditions of Theorem 3.2 are checked. In addition the values of parameter ρ are noted
for which Theorem 3.2 does not solve the stability question. Thus the obtained algorithm
permits us to solve practically completely the stability problem of permanent rotations
of a gyrostat in the case of general mass distribution.

6 Permanent Rotations of a Rigid Body with Vortex Filling

The permanent rotations of a rigid body with vortex filling are realized only around
an axis coincident with the vertical under the condition that vortex components in the
moving coordinate system are constant [12]. Because of the complexity of the problem
on the distribution of the permanent rotation axes with respect to a body geometrically
visual turned out the approach which was based on the construction the set of axes
corresponding to the permanent rotation velocity given. These sets are depicted on the
plane Ouv defined by the mapping

Γ−1u = e1ν
1
1 − e3ν

−1
3 , Γ−1v = e2ν

−1
2 − e3ν

−1
3 , ν2

1 + ν2
2 + ν2

3 = 1.

On the basis of the fulfilled analysis interesting effects connected with the vortex presence
are obtained. In particular it has been established that a body can rotate permanently
around the principal axis when its mass center doesn’t belong to the principal axis, and
conversely permanent rotations around nonprincipal axes are possible when the mass
center belongs to the principal axis.

One of the most interesting effects from the application point of view is the permanent
rotation of a shell around the principal axis carring the mass center with angular velocity
ω and permanent rotation of a liquid as a rigid body around the same axis with angular
velocity Ω. The case of a symmetric body is studied the most completely. On the basis of
analysis of necessary stability conditions it is fixed that appearance of codirected vorticity
(ωΩ > 0) extends with respect to ω the domain of fulfilment of necessary stability
conditions and contrarily directed vorticity (ωΩ < 0) constricts. Note separately the
case when the motion of a body-liquid system is unstable under any value of ω. This
takes place for a top with a cavity that is a rotated ellipsoid stretched along the axis of
a body symmetry under the fulfilment of some additional conditions. For example, for
the case when the mass of a shell is negligibly small with respect to the mass of a liquid
in the cavity and the distance from the fixed point to the center of the cavity is equal to
the major semiaxis of an ellipsoid c3 with c1 < c3 < 1.26c1, such a “slightly” stretched
fluid rotated ellipsoid is unstable no matter with what angular velocity it is rotated. This
effect was experimentally found by Lord Kelvin [36].

The sufficient stability conditions and formal stability of permanent rotations around
principal and nonprincipal axes are investigated [12]. It has been established that the
presence of vortex motion of a liquid in a cavity leads to the appearance of such conditions
of shell motion that are absent for a rigid body and a gyrostat. If it is necessary these
rotations can be made stable.
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7 Permanent Rotations of Multibody Systems

The essential influence on the development of multibody systems dynamics was rendered
by the stability problem of permanent rotations of two heavy Lagrange gyros connected
by ideal spherical hinges one of which has a fixed point. Ishlinskii called attention to this
problem in 1972 at the 13th IUTAM Congress although the characteristic equation for
it was obtained in 1898 and was published in Lur’e’s monograph [37]. The solution of
this problem is given in paper [38] where equations (8) are used for the description of the
motion. The permanent rotation of the system of two Lagrange gyros represents such
motion in which every from the gyros is rotated with permanent angular velocity about
its dynamic symmetry axis collinear to the gravity force direction. Under the stabiliity
of this motion is understood the stability of the corresponding solution of equations (8)
with respect to some of the variables – namely, to the angular velocities of the bodies
S1, S2 and to the parameters defining the position in a space of symmetry axes of the
bodies S1 and S2. Sufficient stability conditions are obtained by the Chetaev method.
When both gyros are unbalanced (ci > 0) they have the form

ω1ω2 > 0, A2
2ω

2
2 − 4µ2B2 > 0, A1ω

2
1 − 4µ1B1 > 0, (24)

where µ1 = m1c1 + m2s1 > 0, µ2 = m2c2 > 0; where A1 and B1 are the axial and
equatorial inertia moments of i-th body, respectively. These conditions mean that the
bodies are rotated in the same direction. For the second body the Majevskii stability
criterion of permanent rotations for one unbalanced Lagrange gyro is fulfilled, the first
gyro S1 with point mass m2 at the point O2 has also to satisfy the Majevskii criterion.

The necessary stability conditions are analyzed in detail and are compared with the
sufficient ones. Here the interesting stabilization effect is found when one of the remaining
unbalanced Lagrange gyros becomes stable under the definite rotation velocity of the
second one. This effect calls to mind the stabilization effect of an unbalanced remaining
gyro on the oscillating base. But in this case the oscillations of the fixed point arise not
at the expense of exterior forces but are, in a definite sense, the self-vibrating ones.

The permanent rotations are also considered for an n-bodies system. It has proved
([13]) to be possible (for λ = 0) only under the condition when the vectors ck, sk,
ν are collinear. Equations (8) admit the solution ωk = ωkν which corresponds to
the permanent rotations of every body Sk around the axis carring its mass center and
coinciding with vertical. In this connection the angular velocities ωk for each body can be
different. Under the additional assumption that the bodies considered are the Lagrange
gyros the stability of these rotations was investigated [39] with respect to the angular
velocities and the parameters defined the position of the rotation axes in the space. The
notion of the “enlarged” body S′

k is introduced which is obtained from the body Sk

by adding to it at the point Ok the point mass equals to
m
∑

i=k+1

mi. Such a body is

characterized by the parameters Ak, B
′

k, ak:

B′

k = Bk + s2k

n
∑

i=k+1

mi, ak = mkck + sk

n
∑

i=k+1

mi, k = 1, . . . , n− 1,

where Ak, Bk are the axial and equatorial inertia moments of the body Sk with respect
to its suspension point Ok.
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For the case when all “the enlarged” bodies are unbalanced (ak > 0) the sufficient
stability conditions are obtained

A2
kω

2
k − 4B

′

kakg > 0, ωkωi > 0; k, i = 1, . . . , n

which generalize the Majevskii criterion and conditions (24). Necessary stability condi-
tions of permanent rotations and regular precessions have been considered. More compli-
cated motions named “similar” ones [12] when symmetry axes of Lagrange gyros belong
to one plane during the entirety of the motion are found and investigated.

New effects were discovered during the analysis of the influence of the stiffness in
the elastic joints on the stability of the permanent rotations of a multibody system.
In particular, under specific values of the stiffness instability interval appears in the
problem which classical analog is Euler case. However, when the stiffness is rather great
this system behaves as a single rigid body and under the fulfilment of the Majevskii
criterion for the body obtained from the system considered by the change of the joints
on rigid fixings permanent rotations are stable.

In conclusion, we note a new direction in the investigation of the stability of permanent
rotations connected with studying the influence of small nonsymmetry on the stability
of the motion of the system of the bodies connected by elastic joints. The analysis of
the motion of a single unsymmetric body has already showed that its stable permanent
rotations about the symmetry axis after introducing the system debalance pass into
unstable ones in the neighborhoods of some frequencies named resonance ones [39, 40].
The research into multibody systems discovered similar situations. A general approach
for finding the resonance frequencies was offered and a constructive algorithm for finding
two groups of such frequencies was created which gave the possibility to obtain the
analytical expressions for them in some cases. With its help the motion of multibody
systems was studied with different ways of connection and the force action and the critical
operating conditions of the elastic objects motion were established.

References

[1] Staude, O. Uber permanente Rotationsaxen bei der Bewegung eines schweren Korpers um
einen festen Punkt. Z. Reine und Angew. Math. 113(H4) (1894) 318–334.

[2] Routh, E.J. A Treatise on the Dynamics of a System of Rigid Bodies. The advanced part.
Macmillan and Co., London, 1884.

[3] Chetaev, N.G. On the stability of a rotation of a rigid body with one fixed point in the
Lagrange case. Prikl. Mat. Mekh. 18(1) (1954) 123–124. (Russian).

[4] Chetaev, N.G. The Stability of a Motion. Gostehizdat, Moscow, 1954. (Russian).
[5] Rumyantsev, V.V. Stability of permanent rotations of a heavy rigid body. Prikl. Mat.

Mekh. 20(1) (1956) 51–66. (Russian).
[6] Rumyantsev, V.V. On the stability of a motion of gyrostats. Prikl. Mat. Mekh. 25(1)

(1961) 9–16. (Russian).
[7] Kharlamov, P.V. Lectures on the Rigid Body Dynamics. Novosibirsk University Press,

Novosibirsk, 1965. (Russian).
[8] Moiseev, N.N. and Rumyantsev, V.V. Dynamics of a Body with cavities Containing a

Liquid. Nauka, Moscow, 1965. (Russian).
[9] Kuz’min, P.A. Stationary motions of a rigid body and their stability in the central field of

gravity. Proc. Interinst. Conference on Appl. Theory of Stability of a Motion and Analyt.

Mech. Kazan’62, (1964). (Russian).



96 A.M. KOVALEV

[10] Kolmogorov, A.N. On the conservation of the conditionally periodic motions under a
small variation of the Hamilton function. Dokl. Akad. Nauk SSSR 98(4) (1954) 527–530.
(Russian).

[11] Volterra, V. Sur la theorie des variations des latitudes. Acta Math. 22 (1899) 201–358.
[12] Savchenko, A.Ya. Stability of Stationary Motions of Mechanical Systems. Naukova Dum-

ka, Kiev, 1977. (Russian).
[13] Kharlamov, P.V. On the equations of a motion of a system of two rigid bodies. Mekh.

Tver. Tela 4 (1972) 52–73. (Russian).
[14] Kovalev, A.M. and Kiselev, A.M. On the cone of the permanent rotation axes of a gyrostat.

Mekh. Tver.Tela 4 (1972) 36–45. (Russian).
[15] Lyapunov, A.M. On the permanent spiral motions of a body in a liquid. Reports of the

Kharkov Math. Society. Ser.2 1(1–2) (1888) 7–60. (Russian).
[16] Rumyantsev, V.V. On the stability of the stationary motions. Prikl. Mat. Mekh. 30(5)

(1966) 922–933. (Russian).
[17] Rubanovskii, V.N. and Stepanov, S.Ya. On the Routh theorem and the Chetaev method

for the construction Lyapunov function from the integrals of the motion equations. Prikl.

Mat. Mekh. 33(5) (1969) 904–912. (Russian).
[18] Kovalev, A.M. and Savchenko, A.Ya. On the stability of the stationary motions of the

Hamilton systems. Dokl. Akad. Nauk UkrSSR, Ser. A 6 (1975) 521–524. (Russian).
[19] Arnold, V.I. On the stability of equilibrium positions of the Hamilton system of ordinary

differential equations in the general elliptic case. Dokl. Akad. Nauk SSSR 137(2) (1961)
255–257. (Russian).

[20] Moser, J. Lectures on the Hamilton Systems. Mir, Moscow, 1973.
[21] Markeev, A.P. On the stability of the canonical system with two degrees of freedom under

the presence of a resonance. Prikl. Mat. Mekh. 32(4) (1968) 738–744. (Russian).
[22] Markeev, A.P. On the stability of the triangular libration points in the circular boundary

problem of three bodies. Prikl. Mat. Mekh. 33(1) (1969) 112–116. (Russian).
[23] Grammel, R. Die Stabilitat der Staudeschen Kreiselbewegungen. Math. Z. 6 (1920).
[24] Bottema, O. De stabiliteit van de tolbewegingen van Staude. Proc. Koninklijke Neder-

landsche Akad. van Wetenschappen 48 (1945) 316–325.
[25] Rumyantsev, V.V. On the stability of the permanent rotations of a rigid body with fixed

point. Prikl. Mat. Mekh. 21(3) (1957) 339–346. (Russian).
[26] Kovalev, A.M. and Savchenko, A.Ya. Stability of the permanent rotations of a rigid body

around principal axis. Prikl. Mat. Mekh. 39(4) (1975) 650–660. (Russian).
[27] Grammel, R. The Gyroscope, Its Theory and Applications. V. 1. Inostr. Literatura,

Moscow, 1952. (Russian).
[28] Kovalev, A.M. and Savchenko, A.Ya. Stability of stationary motions of the Hamilton

systems under the presence of the resonance of the fourth order. Mekh. Tver.Tela 9
(1977) 40–44. (Russian).

[29] Chudnenko, A.N. Numerical algorithm of the investigation of the stability of the perma-
nent rotations of a gyrostat. Mekh. Tver. Tela 17 (1985) 61–65. (Russian).

[30] Beletskii, V.V. Some questions of a motion of a rigid body in the Newtonian force field.
Prikl. Mat. Mekh. 21(6) (1957) 749–758. (Russian).

[31] Anchev, A. On the stability of the permanent rotations of a heavy gyrostat. Prikl. Mat.

Mekh. 26(1) (1962) 22–28. (Russian).
[32] Kovalev, A.M. Stability of the permanent rotations of a heavy gyrostat around the prin-

cipal axis. Prikl. Mat. Mekh. 44(6) (1980) 994–998. (Russian).
[33] Anchev, A. On the permanent rotations of a heavy gyrostat with fixed point. Prikl. Mat.

Mekh. 31(1) (1967) 49–58. (Russian).
[34] Druzhinin, E.I. Stability of the stationary motions of gyrostats. Proc. Kazan Aviation

Inst. 92 (1966) 12–23. (Russian).
[35] Kovalev, A.M. and Kiselev, A.M. Separation of the stability domains on the cone of the

permanent rotations axes of a gyrostat. Mekh. Tver. Tela 4 (1972) 46–48. (Russian).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 1(1) (2001) 81–96 97

[36] Kelvin Lord Mathematical and Physical Papers. Cambridge, Vol. 4, 1882, 193–201.
[37] Lur’e, A.I. Analytical Mechanics. Fizmatgiz, Moscow, 1961. (Russian).
[38] Savchenko, A.Ya. Investigation of the stability of the permanent rotations of the system

of two Lagrange gyros. Prikl. Mekh. 10(12) (1974) 71–77. (Russian).
[39] Savchenko, A.Ya., Bolgrabskaya, I.A. and Kononyhin, G.A. Stability of a Motion of the

Systems of Connected Rigid Bodies. Naukova Dumka, Kiev, 1991. (Russian).
[40] Bolgrabskaya, I.A. and Savchenko, A.Ya. Stability of the permanent rotations of the free

bundle of n Lagrange gyros. Mat. Phys. i Nelin. Mekh. 2 (1984) 9–14. (Russian).


