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Abstract: In the paper study the possibility of tracking constant reference
signals for a linear time-invariant dynamic system in the presence of state
constraints. Resort to the theory of invariant sets due to its good capability
of handling this kind of problem. Attention is placed on the determination
of suitable sets for the attainable steady state values and of suitable control
laws which guarantee that every possible output steady state value belonging
to this set can be reached from any initial state belonging to a proper set.
Then, based on recent results on the possibility of associating to these sets
explicit smooth control laws, an explicit controller is derived which allows the
system to asymptotically track constant reference signals and guarantees that
no constraints violation occurs. Finally, an example of the implementation of
the proposed control law will be reported.
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1 Introduction

In most recent literature concerning linear time-invariant continuous-time dynamic sys-
tems much emphasis has been put on the constrained stabilization problem [1, 2, 3, 4, 5]
but little has been done to derive stabilizing regulators which guarantee perfect asymp-
totic tracking of constant reference signal in the presence of state and control constraints.
This problem can for instance be solved by recasting it as an l1 problem, though this
results in high complexity regulators due to the nature of the problem which in general
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results, according to [6], in being a multiblock problem. Another way to proceed is that
of exploiting invariant regions as done in [7, 8, 9]. In [8] the authors have proposed a
discrete-time reference governor which behaves significantly well in the presence of state
and control constraints and whose expression is given in implicit form and can be derived
from that of the “maximal output admissible set” [4] of a proper dynamic system. The
mentioned governor acts as a nonlinear first order filter which limits the reference signal
whenever the state is almost to exit from the maximal output admissible set. In this
work we focus our attention on continuous-time systems with state constraints only and,
instead of limiting instant by instant the reference signal, we provide a polyhedral set of
signals the output can track. Then, exploiting some recent results concerning the possi-
bility of “smoothing” polyhedral Lyapunov functions [10], we show how it is possible to
associate a control law in explicit form to this set.

2 Notation

For a vector x ∈ IRn we denote by ‖x‖∞ = max
i

|xi|. We call C-set a convex and

compact set having the origin as an interior point. Given a C-set S we denote by ∂S and
intS the border and interior of S, respectively, and we denote the scaled set λS, for λ ≥ 0,
as λS = {y : y = λx x ∈ S}. Given a continuous function Ψ: IRn → IR and k ∈ IR

we define the (possibly empty) closed set N̄ [Ψ, k] as N̄ [Ψ, k] = {x ∈ IRn : Ψ(x) ≤ k}.
We say that Ψ: IRn → IR is a Gauge function if, for every x, y ∈ IRn it fulfills
the following properties: Ψ(x) > 0, if x 6= 0, Ψ(λx) = λΨ(x), for every λ ≥ 0,
and Ψ(x + y) ≤ Ψ(x) + Ψ(y). If Ψ is a Gauge function, the set N̄ [Ψ, k] is a C-
set for all k > 0. Any C-set S induces a Gauge function (the so-called Minkowski
functional of S) which is defined as ΨS(x)

.
= inf{µ ≥ 0: x ∈ µS} or, equivalently,

as ΨS(x)
.
= inf{µ ≥ 0: x

µ
∈ S}. A polyhedral C-set P ∈ IRn can be written as

P = {x : max
i=1,s

Fix ≤ 1}, or in compact form as P = {x : Fx ≤ 1̄}, where F ∈ IRs×n

is a full column rank matrix, 1̄ is the s-dimensional column vector [1 1 · · · 1]T and the
inequality sign has to be intended component-wise. We will say that an homogeneous
function Ψ(x) from IRn to IR+ is a polyhedral function if it is the Minkowski functional
of a polyhedral C-set. If P = {x : Fx ≤ 1̄}, then ΨP(x) = max

i
Fix.

3 Problem Statement

In this work we consider a continuous-time reachable and observable square dynamic
system (that is with an equal number of inputs and outputs) in its standard form, say
described by

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(1)

where A ∈ IRn×n, B ∈ IRn×m and the output matrix C ∈ IRm×n. The main additional
requirement for this system is that the state never exceeds prescribed bounds represented
by the C-set X , say

x(t) ∈ X for every t ≥ 0.
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Since a necessary and sufficient condition for the constant tracking problem to have a
solution is that the system has no transmission zeros at the origin, we will work under
the following assumption.

Assumption 3.1 The pencil matrix

Ac =

[

A B

C 0

]

is invertible.

For this kind of system the constrained stabilization problem is quite a well established
subject [2, 1, 3]. If we assume X to be a polyhedral C-set we know that a stabilizing
control law exists if and only if there exists a contractive set for (1) contained in X . If we
add the requirement on the output infinity norm not to exceed a prescribed value µ then
the above statement must be slightly modified in the sense that the solution requires the
determination of a contractive set for (1) contained in X ∗ = X

⋂

{x : ‖Cx‖∞ ≤ µ} (this
fact has been used in [11, 12] for the solution of l1 problems with state feedback). In view
of the reachability assumption it is easy to see that the afore-mentioned problem always
has a solution (for instance a stabilizing linear regulator will do the job); nevertheless
the interest in this kind of problem is usually mostly concerned with the criterion on the
basis of which the stabilizing control law has to be chosen. One “natural” criterion is
that of maximizing the domain of attraction to the origin included in the given set X as
done in [2].

By exploiting this criterion we will consider the constrained tracking problem and we
will take advantage of recent results [10] on the possibility of deriving suitable smooth
controllers in explicit form for the solution of the constrained stabilization problem for
tracking purposes. Before stating our problem it is worth recalling that, in view of As-
sumption 3.1 and of the constraints on the state, the set of admissible constant reference
signals YR which the system will be able to track will be necessarily bounded. The
problem we will focus our attention on can then be stated in the following way:

Problem 3.1 Given the continuous-time dynamic system (1) and the state con-

straints set X find a state feedback control law u = Φ(x) and a set of reference signals

YR such that for every constant reference signal ȳ ∈ YR the state evolution never exceeds

the prescribed bounds for every t ≥ 0 and such that lim
t→∞

y(t) → ȳ.

4 Tracking a Constant Reference Signal

In the previous section without going into much detail we have stated our problem and
we have mentioned the set YR of admissible values the reference signal ȳ can assume.
To see how it is possible to derive such a set we have first recall some results concerning
the use of invariant regions for the solution of this kind of problem. As a first step we
recall that, given the continuous-time system (1), its discrete-time Euler Approximating
System (EAS) is defined as follows:

x(k + 1) = (I + τA)x(k) + τBu(k),

y(x) = Cx(k).
(2)

For continuous and discrete-time systems it is possible to furnish the following defini-
tions of domain of attraction [2].
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Definition 4.1 A region P ⊂ X is a domain of attraction (β-contractive region) for
system (1) if there exists a constant β > 0 (often referred to as speed of convergence)
such that for every initial condition x(0) ∈ P there exists a piecewise continuous control
function u(·) : IR → IRm such that the evolution corresponding to u(t) is such that:

ΨP(x(t)) ≤ ΨP(x(0))e−βt

for every t ≥ 0 (we recall that ΨP is the Minkowski functional induced by P on IRn).

Definition 4.2 A region P ⊂ X is a domain of attraction (λ-contractive region) for
system (2) if there exists a constant λ < 1 (often referred to as contractivity) such that
for every initial condition x(0) ∈ P there exists a sequence u(k) ∈ IRm such that the
corresponding evolution is such that:

ΨP(x(k)) ≤ ΨP(x(0))λk

for every t ≥ 0.

It can be proven that the existence of a β-contractive set P for system (1) is equivalent
to the existence, for every x ∈ P , of a value v such that:

D+ΨP(x, v)
.
= lim sup

τ→0+

ΨP(x + τ(Ax + Bv)) − ΨP(x)

τ
≤ −βΨP(x) (3)

(the introduction of the generalized Lyapunov derivative allows to deal with non smooth
functionals, see [10] for details). In the discrete-time case the above condition, for the
existence of a λ-contractive set for (2), translates in the following one-step contractivity
requirement:

ΨP(x + τ(Ax + Bv)) ≤ λΨP(x). (4)

It is well known that the systems under consideration, for a given β, admit a maximal
β-contractive set Sβ contained in X and that this set is in general not polyhedral. From
[2] it is known that it is possible to approximate arbitrarily well the largest contractive
set Sβ ⊂ X by means of a polyhedral set P ⊂ X which results in being a domain of

attraction for system (1) with a speed of convergence β̄ arbitrarily close to the prescribed
one and the control u = φ(x) can be expressed in feedback form, where φ(x) is Lipschitz
on P . It is straightforward that the same applies (with the cited replacement of the set
X with X ∗) when output bounds have to be considered.

This approximation is derived and can be effectively computed by exploiting the re-
lation existing between a continuous-time system of the form (1) and its discrete-time
EAS (2), according to the next result.

Theorem 4.1 [13] Suppose system (1) admits a β-contractive C-set P ⊂ X . Then

for all 0 < β′ < β there exists τ > 0 such that P is λ′-contractive for the discrete-time

system (2) with 0 < λ′ = 1− τβ′. Conversely, if system (2) admits a λ-contractive C-set

P then P is β-contractive for system (1) with β = (1−λ)
τ

.

Given the above definitions it is hence possible to define the set YR of admissible
constant reference signals which the system will be able to track. Suppose a β-contractive
set P has been found and consider the following equation:

Ac

[

x̄

ū

]

=

[

0

ȳ

]

. (5)
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Since Ac is invertible the solution to the above set of equations can be written as

x̄ = Kȳx̄ȳ, (6)

ū = Kȳūȳ. (7)

From (6) we see that all the admissible equilibrium states belong to the subspace Kȳx̄ȳ

so that the admissible constant reference signals which do not lead to state constraints
violation are given by

YR = {ȳ : Kȳx̄ȳ ∈ P}, (8)

while from (7) we know that to track an arbitrary constant signal ȳ ∈ YR the control
value will have to converge to the value ū = ū(ȳ) = Kȳūȳ.

The next step for the solution of Problem 3.1 is that of determining a suitable control
law such as to guarantee that the state constraints are never violated and the output
converges to the given constant reference value ȳ. In view of Assumption 3.1 this amounts
to requiring that lim

t→∞
x(t) = Kȳx̄ȳ.

To this aim consider a reference value ȳ ∈ αYR, α < 1 (the need for the introduction
of the parameter α will be clear in the sequel; the introduction of α basically amounts to
discarding trackable signals corresponding to states belonging to the border of P) and
consider the following functional, which is the Gauge functional associated to the set P
and centered in x̄(ȳ)

Ψȳ(x)
.
= inf{µ ≥ 0: x̄(ȳ) +

1

µ
(x − x̄(ȳ)) ∈ P}.

The following lemma allows us to compute explicitly Ψȳ(x) whenever P is a polyhedral C-
set.

Lemma 4.1 If P = {x : Fx ≤ 1̄}, then for every ȳ ∈ αYR, α < 1, and x ∈ P

Ψȳ(x) = max
i

Fi(x − x̄(ȳ))

1 − Fix̄(ȳ)
. (9)

Moreover Ψȳ(x) = 1 whenever x ∈ ∂P.

Proof It follows from simple algebra by first noting that, since x̄(ȳ) ∈ intP , the
quantity 1 − Fix̄(ȳ) is strictly greater than zero for every i. Hence

Ψȳ(x)
.
= inf

{

µ ≥ 0: x̄ +
1

µ
(x − x̄) ∈ P

}

= inf

{

µ ≥ 0: Fi

(

x̄ +
1

µ
(x − x̄)

)

≤ 1 ∀ i

}

= inf

{

µ ≥ 0:
Fi(x − x̄)

1 − Fix̄
≤ µ ∀ i

}

.

The next lemma shows that the functional Ψȳ(x) just introduced, whenever P is a
domain of attraction, can be regarded as a Lyapunov function for the dynamic of the
error e(t) = x(t) − x̄(ȳ) when the reference signal is a constant. For the sake of clarity
and given the above-mentioned possibility of approximating the largest β-contractive set
for system (1) by means of a polyhedral set, without lack of generality we will limit our
attention to the case of polyhedral C-sets, although the next lemma can be proven true
for any contractive C-set.
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Lemma 4.2 Let P = {x : Fx ≤ 1̄} be a β-contractive polyhedral C-set for system

(1) and let YR be defined as in (8). Then for every constant value ȳ ∈ αYR, α < 1,
there exists 0 < β1 < β and a state feedback control function u = φ1(x, x̄) such that for

every x(0) ∈ P the corresponding state evolution is such that

Ψȳ(x(t)) ≤ e−β1tΨȳ(x(0)) (10)

for every t ≥ 0.

Proof Consider a constant reference value ȳ and let x̄ and ū be the corresponding
state and control values. Setting e(t) = x(t) − x̄ and v(t) = u(t) − ū leads to the
following description of the error dynamics:

ė = ẋ − ˙̄x = Ax + Bu − (Ax̄ + Bū) = Ae + Bv. (11)

Since Ψȳ(x) = max
i

Fi(x−x̄)
1−Fix̄

= max
i

Fi

1−Fix̄
e = Ψ1(e), showing that (10) holds amounts to

prove that P1 =
{

e : Fi

1−Fix̄
e ≤ 1, i = 1, . . . , s

}

is a β1-contractive domain for system

(11). The latter, in view of Theorem 4.1, can be proven by determining τ and λ1 such
that P1 is λ1 contractive for the discrete-time EAS of (11), say for every e ∈ P1 there
exists v such that

max
i

Fi

1 − Fix̄
(e + τ(Ae + Bv)) ≤ λ1 max

j

Fj

1 − Fj x̄
e. (12)

Let us first consider e ∈ ∂P1 (hence x ∈ ∂P). Expanding v = u − ū in (12), the
above requires, for every i, that

Fi

1 − Fix̄
(x − x̄ + τ(Ax − Ax̄ + Bu − Bū))

=
Fi(x + τ(Ax + Bu)) − 1

1 − Fix̄
+ 1 ≤ λ1.

(13)

From Theorem 4.1 for every β′ < β there exists τ such that P is λ′ = 1−τβ′-contractive
for the EAS of (1), say for every x ∈ ∂P , there exists ũ such that for every i

Fi(x + τ(Ax + Bũ)) ≤ 1 − τβ′.

Hence, setting u = ũ in (13), results in

Fi(x + τ(Ax + Bũ)) − 1

1 − Fix̄
+ 1 ≤ −

τβ′

1 − Fix̄
+ 1 ≤ λ1,

for some λ1 < 1 in view of the fact that 1 − Fix̄ > 0 for every i. The extension to
the case of e (respectively x = e + x̄) in the interior of P1 (resp. P) is straightforward
due to the homogeneity of Ψ1(e). In fact for every x in the interior of P the error e can
be written as e = x − x̄ = γ(x1 − x̄) = γe1, with e1 ∈ ∂P1, for a proper scaling factor
γ < 1. The one step contractivity requirement (12) can then be rewritten as

max
i

Fi

1 − Fix̄

(

γe1 + τ(γAe1 + Bv)
)

≤ λ1γ. (14)
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Setting v = γv1 in (14) and dividing both terms by γ we get (13).
Now, since P1 is β1-contractive for (11), it is possible to associate to P1 a Lipschitz

continuous state feedback control law φ(e) = φ(x − x̄). Going back from (11) to the
original system (1) it is readily seen that φ1(x, x̄) = ū + φ(x − x̄) is the desired control
law.

The lemma just presented allows us partially to solve Problem 3.1 as it just states
that whenever the initial condition lies in the set P and the reference signal is a constant
value belonging to the interior of YR we can provide a Lipschitz continuous state feedback
control function which guarantees that the corresponding state evolution belongs to P
and asymptotically converges to the given steady state value. This might appear as
an expected consequence of the existence of a contractive region (w.r.t. the origin)
for system (1). Nevertheless, as we will see next, this way of proceeding allows us to
determine an explicit feedback control law. Before going on with the next theorem we
need to recall a result which is a restricted version of what has been presented in [14]
concerning the possibility of deriving explicit continuous state feedback control law for
the class of systems under consideration. This is obtained by smoothing the polyhedral
function ΨP(x) so as to get, for a given positive integer q > 0, the Gauge function

Ψq(x) =

(

s
∑

i=1

σ2q(Fix)

)
1
2q

(15)

with

σr(x) =

{

xr if x ≥ 0

0 otherwise
.

Introducing the function gradient

∇Ψq(x) =

[

∂Ψq(x)

∂x1
, . . . ,

∂Ψq(x)

∂xn

]

= Ψq(x)(1−2q)Gq(x)F,

where
Gq(x) =

[

σ2q−1(F1x) . . . σ2q−1(Fsx)
]

,

the following result holds:

Theorem 4.2 [14] Let P = {x : Fx ≤ 1̄} be a β-contractive polyhedral C-set for

system (1). Then for every 0 < β1 < β there exists a positive integer q such that the

set Pq = {x : Ψq(x) ≤ 1} is β1-contractive for system (1). Moreover it is possible to

associate to Ψq(x) the explicit smooth1 state feedback control law

u = Φ(x) = −µ0Ψq(x)2(1−q)BT FT Gq(x), (16)

where µ0 is a finitely computable nonnegative constant.

In Lemma 4.2 it has been shown that the polyhedral function (9) is a Lyapunov
function for the error whenever the reference signal belongs to the interior of YR, but
nothing has been said about the effective determination of a stabilizing control law (in

1We mean smooth for every x 6= 0.
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the sense that we have proved its existence though not furnishing any expression for it),
due to the lack of differentiability of (9).

The next theorem will provide us with the requested expression for the controller. To
this aim we first “smooth”, similarly to what we have done in (15), the expression given
by (9) and centered in x̄(ȳ) by taking q < ∞ sufficiently large so as to get the function

Ψȳ
q(x) =

( s
∑

i=1

σ2q

(

Fi(x − x̄)

1 − Fix̄

))
1
2q

. (17)

Simple algebra shows that the gradient ∇Ψȳ
q(x) of (17) is:

∇Ψȳ
q(x) =

(

Ψȳ
q(x)

)(1−2q)
Gȳ

q(x)Fȳ ,

where

Gȳ
q(x) =

[

σ2q−1

(

F1(x − x̄)

1 − F1x̄

)

. . . σ2q−1

(

Fs(x − x̄)

1 − Fsx̄

)]

and

Fȳ =





F1

1−F1x̄

· · ·
Fs

1−Fsx̄



 .

These expressions allow us to introduce the next theorem.

Theorem 4.3 Let P = {x : Fx ≤ 1̄} be a β-contractive polyhedral C-set contained

in X for system (1). Then for every reference signal ȳ ∈ αYR, α < 1, there exists

0 < β1 < β and an integer q such that the control law

Φ(x, ȳ) = ū(ȳ) − ρ0Ψ
ȳ
q(x)2(1−q)BT FT

ȳ Gȳ
q(x), (18)

where ρ0 is a finitely computable nonnegative constant, is such that for every initial con-

dition x(0) ∈ P the output of the corresponding evolution y(t) asymptotically converges

to ȳ with speed equal to β1 while assuring that x(t) ∈ X for every t ≥ 0.

Proof From Lemma 4.2 we have that P1 = {e : Ψ1(e) ≤ 1}, where Ψ1(e) =

max
i

Fi

1−Fix̄
e, is a β1-contractive set for system (11). The proof hence follows immediately

by first recalling Theorem 4.2, which assures the existence of an explicit control law of
the form (16) (which will result in being a function of e = x − x̄), and by subsequently
going back to the original system to obtain (18).

5 Example

Consider the following two dimensional system

ẋ(t) =

[

−0.3 1

−1 −0.3

] [

x1(t)

x2(t)

]

+

[

−5

5

]

,

y(t) = [ 2 0 ]

[

x1(t)

x2(t)

]
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Figure 5.1. State space evolution.

with state constraints given by the set X = {x : ‖x‖∞ ≤ 1}. A polyhedral 2-contractive
set contained in X is P = {x : max

i
Fix ≤ 1}, where F is the following matrix

F =



















0 1

0 −1

1 0

−1 0

1.391 1.540

−1.391 −1.540



















.

The resulting sets of admissible constant input and output values are UR =
[−0.073, 0.073] and YR = [−0.470, 0.470]. We chose as a tracking value ȳ = 0.358
corresponding to α = 0.761 and exploiting the results presented in Theorem 4.3 we de-
termined the integer q = 12 such that the proposed control law (18) with ρ0 = 21.586
guarantees asymptotic tracking of ȳ for every x0 ∈ P with speed of convergence β1 = 0.3.
Figure 5.1 depicts the state space evolution obtained starting from zero initial value and
tracking value-equal to ȳ for the first 8 seconds and −ȳ for t > 8 together with different

level surfaces of the Lyapunov functions Ψȳ
12 and Ψ−ȳ

12 (dotted) associated to the two
tracking states x̄(ȳ) and −x̄(ȳ) which belong to the first and third quadrant and are
indicated with a circled cross in the same figure.

Finally Figure 5.2 shows the evolution of the output as well as that of the control.

6 Conclusions

This work has dealt with perfect asymptotic tracking for state constrained dynamic
systems. An alternative approach to the one proposed by Gilbert et al. [8], which is
based on the concept of “maximal output admissible set” and recent results [10, 14], has
been presented. This novel approach allows us to synthesize an explicit nonlinear state
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Figure 5.2. Control and output simulated plots.

feedback control law which guarantees perfect asymptotic tracking while maximizing the
set of trackable signals which do not lead to state constraint violation.
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