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1 Introduction

Local stability and bifurcation analysis of systems of nonlinear differential equations with
one time delay of the following type

ẋ(t) = Ax(t) + Bx(t − τ) + F (x(t), x(t − τ)), (1.1)

where τ ≥ 0; A, B ∈ Rn,n, F ∈ Ck(Rn ×Rn, Rn), k ≥ 1, F (0, 0) = DF (0, 0) = 0, often
leads to the consideration of quasi-polynomials Φτ,λ : C → C; τ ≥ 0, λ ∈ C, given by

Φτ,λ(s) := (s + 1) exp(τs) − λ. (1.2)

In this context it is of particular relevance to know how the zeros of Φτ,λ are distributed
in the complex plane, whether they lie in the left or right half plane, and finally, how
they depend on the parameters τ and λ.

The objective of this work is to divide the τ -halfline and the λ-plane into domains
where Φτ,λ has a constant number of zeros with positive real part and to investigate the
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local stability of the zero solution and the Hopf bifurcation points of systems given by
(1.1) with appropriate matrices A and B.

Systems of type (1.1) occur in several fields of science. For example, they model
electro-optical circuits which display bistability and chaotic behavior (see [12, 17]), they
describe dynamical processes in neural networks (see [1, 22]), they model protein synthesis
(see [2]) and they arise in the study of white blood-cell production (see [21]). Interested
readers may find further applications, for example, in [15, pp.1–8]; [13, pp.72–81], [18,
pp.1–34], [19, pp.1–17].

The problem to estimate the zeros of (1.2) with positive real part, the stability analysis
of equilibria and the computation of Hopf bifurcation points of (1.1) has attracted the
interest of several authors. For instance, Hayes [16] discusses quasi-polynomial equations
equivalent to Φτ,λ(s) = 0 with τ > 0 and λ ∈ R (see also [5, pp.444–446], [6]). El’sgolts
and Norkin [11, pp.134–136] give a partition of the (A, B)-plane consisting of regions
where the corresponding characteristic quasi-polynomials of the linear approximation of
(1.1) with n = 1 and A, B ∈ R has a constant number of zeros with positive real
part (see also [9, pp.305–309], [19, pp.56, 57]). Braddock and Van den Driessche [7]
estimate the domains in λ-plane, where corresponding quasi-polynomials of the form
Φ(s) = (s + µ) exp(τs) − λ have no zeros with positive real part and discuss the local
stability of the trivial solution x(t) = 0 of (1.1). Bélair [4] also investigates the local
stability of the trivial solution of (1.1) with A = −In, and proves the existence of a
Hopf bifurcation point in the one dimensional case n = 1 with B < 0. Godoy and dos
Reis [14] explore (1.1) with n = 2, A = −I2 and B having eigenvalues in C \ {R ∪ iR},
and provide a partition of the τ -halfline (τ ≥ 0) in segments where the corresponding
characteristic quasi-polynomials of the linear approximation of (1.1) have a constant
number of zeros with positive real part (for the case that B has eigenvalues in C \ R,
see [3]).

In this work we extend the results above in the following way. For given τ ≥ 0 (λ ∈ C)
we divide the λ-plane (τ -halfline) into regions (intervals) with constant number of zeros
with positive real part of the corresponding quasi-polynomials Φτ,λ(s) (Section 2). We
investigate the local τ -dependent stability of the zero solution of (1.1) for a large class of
matrices A and B (Section 3), and we compute all Hopf bifurcation points of (1.1) with
τ as bifurcation parameter (Section 4).

2 Zeros of Φτ,λ with Positive Real Part

Consider the quasi-polynomial equation

Φτ,λ(s) = (s + 1) exp(τs) − λ = 0 (2.1)

for given τ > 0 and λ ∈ C. The primary objective of this section is to divide the
λ-plane into regions by a planar curve with following properties. Points λ lying on the
curve represent quasi-polynomials Φτ,λ having at least one pure imaginary root, and
points in each region correspond to quasi-polynomials with the same number of zeros
having positive real part, counted by their multiplicity. This method is well known
as D-decomposition (just as D-subdivision or D-partition) (see [11, pp.132–138], [19,
pp.55–60]). Then, as consequence of the D-decomposition of the λ-plane, we get a D-
decomposition of the τ -halfline.

Let us first state a few elementary results on the roots of (2.1).
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Lemma 2.1

a) s ∈ C is a zero of Φτ,λ if and only if s̄ is a zero of Φτ,λ̄.

b) For |λ| ≤ 1 equation (2.1) has no solution with positive real part.
For |λ| > 1 equation (2.1) has a finite number of solutions with positive real part.
Furthermore, if such solutions exist, they belong to the open and bounded set

Sλ :=
{

s ∈ C | 0 < Re s < |λ| − 1 and | Im s| <
√

|λ|2 − 1
}

. (2.2)

c) Any root s of (2.1) with τs 6= −(1 + τ) is simple.

Proof a) Part a) is evident.

b) For all s ∈ C with |s + 1| ≥ |λ| and Re s > 0 it holds

|s + 1| > |λ exp(−τs)|. (2.3)

This implies that equation (2.1) has no roots with |s + 1| ≥ |λ| and Re s > 0. So all
roots of (2.1) with positive real part have to satisfy |s + 1| < |λ|. We set Sλ := {s ∈
C : |s + 1| < |λ|, Re s > 0}. Because Sλ is a bounded and connected subset of C, the
analytic function Φτ,λ has only a finite number of zeros s with Re s > 0 (see [8, p.78]).
For |λ| ≤ 1 the set Sλ is empty and consequently (2.1) has no roots with positive real
part.

For |λ| > 1 it follows

Sλ =
{

s ∈ C | 0 < Re s < |λ| − 1 and | Im s| <
√

|λ|2 − 1
}

.

c) For τ = 0 the only root s = λ − 1 is simple. If τ > 0 the assertion follows from

d

ds
Φτ,λ(s) = [τ(s + 1) + 1] exp(τs) 6= 0 (2.4)

for any s ∈ C \
{

− 1+τ
τ

}

.

2.1 D-decomposition of the λ-plane

Let us now consider the planar curve mentioned above. Equation (2.1) has a pure
imaginary root s = iω if and only if

λ = (iω + 1) exp(iωτ) =: Kτ (ω). (2.5)

In the following we summarize a few useful properties of the function Kτ (see Figure 2.1).

Lemma 2.2 For τ > 0 let Kτ : R → C be the function defined by (2.5). Then:

a) Kτ describes a spiral in C with decreasing radius and argument for ω ∈ (−∞, 0]
and increasing radius and argument for ω ∈ [0,∞). Moreover the curve described
by Kτ is convex and lies symmetrically to the Re λ-axis, i.e. Kτ (ω) = λ ⇔
Kτ (−ω) = λ̄.

b) For ω, ω̃ ∈ R and ω 6= ω̃ with λ = Kτ (ω) = Kτ (ω̃) it follows that ω = −ω̃

and λ ∈ R.
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Figure 2.1. D-decomposition of the λ-plane.

Proof Part a) follows from (2.5), see also (2.6), (2.9), (2.10) below.
Now suppose that there exist ω, ω̃ ∈ R, ω 6= ω̃, with Kτ (ω) = Kτ (ω̃). Equation

(2.5) yields |Kτ (ω)|2 = 1 + ω2 = 1 + ω̃2 = |Kτ (ω̃)|2 and so ω = −ω̃. With a) we obtain
λ = Kτ (ω) = Kτ (−ω) = λ̄ ∈ R and the proof is complete.

Every λ ∈ C can be written in polar coordinates, namely

λ = ρeiθ, (2.6)

where ρ ≥ 0 is the radius and θ the argument of λ. Inserting (2.6) into (2.5) yields

(1 + iω) = ρei(θ−ωτ). (2.7)

From (2.7) we obtain following conditions for θ and ρ

ωτ − θ ∈
(

2kπ − π

2
, 2kπ +

π

2

)

, k ∈ Z, (2.8)

√

1 + ω2 = ρ = |λ|, (2.9)

ω = tan(θ − ωτ). (2.10)

The next lemma deals with solutions of (2.10). We first set

Ik(τ, θ) :=

(

1

τ

(

2kπ + θ − π

2

)

,
1

τ

(

2kπ + θ +
π

2

))

, k ∈ Z, τ > 0. (2.11)
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Lemma 2.3 For any given τ > 0, θ ∈ [0, 2π) and k ∈ Z, equation (2.10) has a
unique solution ωk(τ, θ) ∈ Ik(τ, θ) with the following properties:

ωk(τ, θ) ∈
(

1

τ

(

2kπ + θ − π

2

)

,
1

τ
(2kπ + θ)

)

for k > 0, (2.12)

ω0(τ, θ) ∈
(

0,
θ

τ

)

for θ 6= 0 and ω0(τ, 0) = 0, (2.13)

ωk(τ, θ) ∈
(

1

τ
(2kπ + θ),

1

τ

(

2kπ + θ +
π

2

))

for k < 0. (2.14)

Proof tan(θ − ωτ) is a decreasing function of ω ∈ Ik(τ, θ) with tan(θ − ωτ) > 0

for ω ∈
(

1
τ

(

2kπ + θ − π
2

)

, 1
τ
(2kπ + θ)

)

, tan(θ − ωτ) = 0 for ω ∈ 1
τ
(2kπ + θ) and

tan(θ − ωτ) < 0 for ω ∈
(

1
τ
(2kπ + θ), 1

τ

(

2kπ + θ + π
2

)

)

. This yields the assertions of

the lemma.

For the construction of the regions with constant number of zeros of Φτ,λ having
positive real part, we need the intersection points of the curve Kτ with the Re λ-axis.
These intersection points are given by (2.10) with θ = 0, if k = 2l and θ = π, if
k = 2l + 1, l ∈ N0. Because of symmetry properties of Kτ (ω), see Lemma 2.2, we only
consider the case ω ≥ 0. From Lemma 2.3 we obtain:

Lemma 2.4 For τ > 0 there is an increasing sequence of real numbers 0 = ωR
0 <

ωR
1 < . . . , where ωR

k ∈ Il(τ, θ) with θ = 0 if k = 2l and θ = π if k = 2l + 1, l ∈ N0,
such that

a) Kτ (ωR
k ) ∈ R and, if ω 6= ωR

k , Kτ (ω) 6∈ R for any k ∈ N0,

b) (Kτ (ωR
2l))l∈N0

is an unbounded strictly increasing sequence with Kτ (ωR
0 ) = 1,

c)
(

Kτ (ωR
2l+1)

)

l∈N0

is an unbounded strictly decreasing sequence with Kτ (ωR
1 )<−1.

Using the sequence (ωR
k )k∈N0

we now define segments of the curve described by Kτ

lying in the upper and lower half of the λ-plane:

C±
τ,k := {λ ∈ C : λ = Re Kτ (ω) ± i| ImKτ (ω)|, ω ∈ [ωR

k , ωR
k+1]} (2.15)

and Gτ,k as the region bounded by C+
τ,k and C−

τ,k:

Gτ,k := {µ ∈ C : Re µ = Re λ, − Imλ < Im µ < Im λ, λ ∈ C+
τ,k} (2.16)

for given k ∈ N0 and τ > 0. Further we set

Gτ,−1 := ∅. (2.17)

We summarize a few useful properties of the regions Gτ,k (see Figure 2.1) in the
following.



150 F. GIANNAKOPOULOS AND A. ZAPP

Lemma 2.5 Assume τ > 0. For any k ∈ N0 the regions Gτ,k are bounded, connected
and open subsets of the λ-plane, symmetric to the Re λ-axis, satisfying

a) 0 ∈ Gτ,k ⊂ Gτ,k+1,

b) Gτ,k+1 \ Gτ,k 6= ∅,
c) (Gτ,k+2 \ Gτ,k+1) ∩ (Gτ,k+1 \ Gτ,k) = ∂Gτ,k+1 = C+

τ,k+1 ∪ C−
τ,k+1,

d) (Gτ,k+2 \ Gτ,k+1) ∩ (Gτ,k \ Gτ,k−1) = ∂Gτ,k+1 ∩ ∂Gτ,k = {Kτ(ωR
k+1)} ⊂ R,

e) Gτ,0 ∩ {λ ∈ C : Re λ ≥ 1} = ∅.

Proof By construction (see (2.16) and (2.15)) we obtain the boundness, connectivity
and openness of Gτ,k. Lemma 2.1a and 2.2 provide the symmetry.

For x ∈
[

ωR
k , ωR

k+1

)

and y ∈
[

ωR
k+1, ω

R
k+2

)

(k ∈ N0) we have x < y and (2.9) implies

|K(x)| < |K(y)|. The definition of Gτ,k and C±
τ,k, k ∈ N0, yield the assertions a), b), c)

and d). Kτ

(

ωR
k+1

)

∈ R follows from Lemma 2.4a.

Since dKτ

dω
(0) = i(1+ τ), the curve Kτ is tangent to the straight line {λ ∈ C : Re λ =

1} at λ = 1. The convexity (see Lemma 2.2) of Kτ and the definition (see (2.16)) of
Gτ,k implies part e).

Proposition 2.1 Let τ > 0 and k ∈ N0. By passing from region Gτ,k into region

Gτ,k+1 \Gτ,k along the positive Im λ-axis exactly one root of (2.1) with positive real part
appears.

Proof Lemma 2.2 and 2.5 provide the existence of an unbounded strictly increasing
sequence of positive real numbers (βI

k)k∈N0
such that

∂Gτ,k ∩ {i β ∈ C : β > 0} = {iβI
k}

for k ∈ N0. Suppose λ = i βI
k. First we consider the case k = 2l, l ∈ N0. For λ = i βI

k

(2.1) has a root s0,k = iωI
k, with 2lπ < ωI

kτ < 2lπ + π
2 . Notice that ωI

k = ωl(τ,
π
2 ) with

ωl as in Lemma 2.3. s0,k is the only root s of (2.1) for λ = iβI
k with Re s = 0 (see

Lemma 2.2 and 2.3).
Now consider the case k = 2l + 1, l ∈ N0. For λ = i βI

k (2.1) has a root s0,k = −iωI
k,

with (2l + 1)π < ωI
kτ < (2l + 1)π + π

2 . Notice that ωI
k = ωl(τ,

3
2π) with ωl as in

Lemma 2.3. s0,k is the only root s of (2.1) for λ = iβI
k with Re s = 0 (see Lemma 2.2

and 2.3).
In both cases there holds

sin τ(−1)kωI
k > 0. (2.18)

Since s0,k is a simple root of (2.1) (see Lemma 2.1c) the implicit function theorem (see
[10]) provides the existence of δ > 0 and a unique differentiable function

s :
(

βI
k − δ, βI

k + δ
)

→ C,

where s(β) solves equation (2.1) for λ = i β and s(βI
k) = i(−1)kωI

k. Moreover it holds

ds(βI
k)

dβ
=

τβI
k + sin τ(−1)kωI

k + i cos τ(−1)kωI
k

| cos τ(−1)kωI
k − i

(

τβI
k + sin τ(−1)kωI

k

)

|2 . (2.19)

Using (2.18) this yields

d Re s(βI
k)

dβ
=

τβI
k + sin τ(−1)kωI

k

| cos τ(−1)kωI
k − i

(

τβI
k + sin τ(−1)kωI

k

)

|2 > 0. (2.20)
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Therefore we can choose δ sufficiently small such that

Re s(β)











< 0 for βI
k − δ < β < βI

k ,

= 0 for β = βI
k,

> 0 for βI
k < β < βI

k + δ.

On the other hand we know that i(−1)kωI
k is the only solution with zero real part of

(2.1) for λ = iβI
k (see Lemma 2.2) and that the real part of every solution of (2.1) is

bounded above (see Lemma 2.1b). So the assertion of the proposition is proved.

Lemma 2.6 Let k ∈ N0. For every λ ∈ Gτ,k \ Gτ,k−1 the number of zeros with
positive real parts (counted by their multiplicities) of (2.1) is constant.

Proof First recall that all solutions with positive real part are in the open and
bounded set Sλ (see Lemma 2.1b). Let S :=

⋃

λ∈Gτ,k\Gτ,k−1

Sλ. S is an open and bounded

set. By definition it holds |Φτ,λ(z)| > 0 for all z ∈ ∂S. By Theorem 9.17.4 of [10, p.243],
an application of Rouche’s theorem, the number of zeros with positive real part is con-
stant for all λ ∈ Gτ,k \ Gτ,k−1.

We are now in a position to state the main result of this section.

Theorem 2.1 Let k ∈ N0, τ > 0. For any given λ ∈ Gτ,k\Gτ,k−1 the number of
zeros with positive real parts (counted by their multiplicities) of (2.1) is exactly k.

Proof The theorem is proved by induction on k ∈ N0. First notice that 0 ∈ Gτ,0

and that (2.1) with λ = 0 has no solution with positive real part. Consequently for all
λ ∈ Gτ,0 equation (2.1) has no solution with positive real part (see Lemma 2.6).

Suppose that (2.1) for λ ∈ Gτ,k\Gτ,k−1 has exactly k ∈ N0 solutions with positive
real part. Proposition 2.1 yields that (2.1) has exactly k + 1 solutions with positive real

part for λ ∈ Gτ,k+1\Gτ,k. The theorem is proved.

2.2 D-decomposition of the τ -halfline.

Now we want to use the preceding results to give an D-decomposition of the τ -halfline.
For any given τ > 0 and θ ∈ [0, 2π) we define a sequence

(

λk(τ, θ)
)

k∈N0

by

C+
τ,k ∩ {λ ∈ C : λ = ρeiθ, ρ ≥ 0} = {λk(τ, θ)}, k ∈ N0 if θ ∈ [0, π],

C−
τ,k

∩ {λ ∈ C : λ = ρeiθ, ρ ≥ 0} = {λk(τ, θ)}, k ∈ N0 if θ ∈ (π, 2π).

Lemma 2.7 For τ > 0 it holds

a) For any k ∈ N0 (k ∈ N) and θ ∈ (0, 2π) (θ ∈ [0, 2π)) |λk(τ, θ)| is a decreasing
function of τ > 0. λ0(τ, 0) = 1 for all τ > 0.

b) lim
τ→0+

|λk(τ, θ)| = ∞ provided k > 0 or k = 0 and θ ∈
[

π
2 , 3

2 π
]

lim
τ→0+

λ0(τ, θ) = 1 + i tan θ if θ ∈
[

0, π
2

)

∪
(

3
2 π, 2π

)

.

c) lim
τ→∞

λk(τ, θ) = eiθ.
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Proof Suppose θ ∈ (0, π). By construction of C+
τ,k, there is ωk(τ, θ) ∈ (ωR

k , ωR
k+1)

such that λk(τ, θ) = Kτ (ωk(τ, θ)) if k = 2l and λk(τ, θ) = Kτ (ωk(τ, θ)) if k = 2l + 1,
l ∈ N0. Now consider ωk(τ, θ) as function of τ > 0. By differentiating (2.10) with
respect to τ we obtain:

dωk(τ, θ)

dτ
= −ωk(τ, θ)(1 + ω2

k(τ, θ))

1 + τ(1 + ω2
k(τ, θ))

< 0. (2.21)

Consequently ωk(τ, θ) is a decreasing function of τ > 0, and thus, by (2.9), |λk(τ, θ)| is
also a decreasing function of τ > 0. This proves part a) with θ ∈ (0, π). Part a) with
θ ∈ (π, 2π) follows by symmetry (see Lemma 2.2). For k = 0 and θ = 0 there holds
λ0(τ, 0) = 1. The cases (θ = 0, k ∈ N) and (θ = π, k ∈ N0) can be proved in a similar
way.

Equations (2.8) and (2.9) provide b) and part c) follows from (2.8), (2.9) and (2.12).

Using the lemma above we obtain

Lemma 2.8 For any τ1, τ2 > 0 with τ1 < τ2 there holds

a) Gτ2,k $ Gτ1,k for any k ∈ N0;

b) ∂Gτ1,0 ∩ ∂Gτ2,0 = {1} and ∂Gτ1,k ∩ ∂Gτ2,k = ∅, for k ∈ N.

To complete the discussion about the τ -dependence of the regions Gτ,k we consider
the limiting cases τ = 0 and τ → ∞.

Lemma 2.9 Let τ = 0. Equation (2.1) has exactly one solution, namely s = λ − 1.

For τ ∈ (0,∞) we set z = τs. From (2.1) for τ → ∞ we obtain

Φλ(z) := exp(z) − λ = 0. (2.22)

It is easy to prove, that

Lemma 2.10 For |λ| < 1 Φλ has only zeros with negative real part, and for |λ| > 1
Φλ has only zeros with positive real part. z is a zero of Φλ with Re z = 0 if and only
if |λ| = 1.

Remark 2.1 For any τ > 0 there holds

G∞,0 $ Gτ,0 $ G0,0, (2.23)

where

G∞,0 := {λ ∈ C : |λ| < 1} and G0,0 := {λ ∈ C : Re λ < 1}. (2.24)

In order to be able to state the main results on the D-decomposition of the τ -halfline
we define positive real numbers τk(λ) for λ ∈ C, |λ| > 1, such that λ ∈ ∂Gτ,k if and
only if τ = τk(λ) for k ∈ N0 (k ∈ N) if Re λ < 1 (Re λ ≥ 1). For Re λ ≥ 1 we set
τ0(λ) := 0. Moreover let τ−1(λ) := 0.

As a consequence of Lemma 2.7 we obtain
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Proposition 2.2 If λ ∈ C \ R with |λ| > 1 then (τk(λ))k∈N0
is an unbounded and

strictly increasing sequence.
If λ ∈ R with λ > 1 then (τk(λ))k∈N0

is an unbounded and increasing sequence with
τ2k−1(λ) = τ2k(λ) < τ2k+1(λ).

If λ ∈ R with λ < −1 then (τk(λ))k∈N is an unbounded and increasing sequence
with τ2k(λ) = τ2k+1(λ) < τ2k+2(λ).

Remark 2.2 One can compute τk(λ) explicitly. Because of the symmetry properties
of Kτ (ω), see Lemma 2.2, it is sufficient to consider C ∋ λ = |λ|eiθ with Im λ ≥ 0, i.e.
θ ∈ [0, π]. It holds

τ2k(λ) =
2kπ + θ − arctan

(

√

|λ|2 − 1
)

√

|λ|2 − 1

for k ∈ N0 (k ∈ N) if Re λ ≤ 1 (Re λ > 1) and

τ2k+1(λ) =
2(k + 1)π − θ − arctan

(

√

|λ|2 − 1
)

√

|λ|2 − 1

for k ∈ N0. Note that arctan
(√

λ2 − 1
)

∈
(

− π
2 , π

2

)

.

Theorem 2.2

a) Let λ ∈ C \ R with |λ| > 1. For Re λ < 1 (Re λ ≥ 1) and τ ∈ (τk−1(λ), τk(λ)],
k ∈ N0 (k ∈ N) the number of zeros with positive real part of (2.1) counted by
their multiplicities is exactly k.

b) Let λ ∈ R. For λ > 1 and τ ∈ (τ2k(λ), τ2k+2(λ)], k ∈ N0, equation (2.1)
has exactly 2k + 1 solutions with positive real part. For λ < −1 and τ ∈
(τ2k−1(λ), τ2k+1(λ)], k ∈ N0, equation (2.1) has exactly 2k solutions with po-
sitive real part.

Proof Theorem 2.1, Lemma 2.8 and the definition of τk(λ) yield the assertions.

3 Stability of Delay Differential Equations

We consider the following system of delay differential equations:

ẋ(t) = Ax(t) + Bx(t − τ) + F (x(t), x(t − τ)), (3.1)

where τ > 0; A, B ∈ Rn,n, F ∈ Ck(Rn × Rn, Rn), k ≥ 1 and F (0, 0) = DF (0, 0) = 0.
It follows x̄ = 0 is an equilibrium point of (3.1).

3.1 Characteristic equation

The linear part of the system (3.1) is given by

ẋ(t) = Ax(t) + Bx(t − τ), (3.2)

where τ ≥ 0; A, B ∈ Rn,n. The corresponding characteristic equation satisfies:

det(sI − A − B exp(−τs)) = 0. (3.3)

We are interested in special matrices A and B, for which it is possible to study the
properties of the solutions of the characteristic equation above by help of (2.1).
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Definition 3.1 We say the matrices A, B ∈ Rn,n satisfy condition (C) if there
is a regular (unitary) matrix M ∈ Cn,n such that A = M(DA + TA)M−1 and B =
M(DB +TB)M−1, where DA = diag (−p1, . . . ,−pn) ∈ Rn,n, with pi > 0, i ∈ {1, . . . , n},
DB = diag (λ1, . . . , λn) ∈ Cn,n, and TA, TB are upper triangular with all diagonal entries
equal to zero.

Example 3.1 If A = diag (−p, . . . ,−p) ∈ Rn,n, with p > 0, and B ∈ Rn,n is a
general matrix, or if A ∈ Rn,n is a matrix with n real negative eigenvalues and B =
diag (λ, . . . , λ) ∈ Rn,n, with λ ∈ R, then A and B satisfy the condition (C) (see [4, 7]).

Using the multiplicativity of the determinant function we prove

Lemma 3.1 Let A, B ∈ Rn,n satisfy condition (C). Then:

det(sI − A − B exp(−τs)) = exp(−τs)

n
∏

i=1

[

(s + pi) exp(τs) − λi

]

.

Remark 3.1

a) Setting ś = s
p
, τ́ = pτ and λ́ = λ

p
into (s + p) exp(sτ) − λ = 0 we obtain

Φ
τ́ ,λ́

(ś) := (ś + 1) exp(śτ́ ) − λ́ = 0. (3.4)

b) From a) and Lemma 3.1. It follows: If A, B ∈ Rn,n satisfy (C), equation (3.3)

can be reduced to n simpler equations of type (3.4) with τ́ = piτ and λ́ = λi

pi
,

i ∈ {1, . . . , n}.

3.2 τ -dependent stability

In the following we study the τ -dependent stability properties of the trivial equilibrium
x̄ = 0 of system (3.1).

Theorem 3.1 Suppose the matrices A, B ∈ Rn,n satisfy (C). Then

a) If |λi| ≤ pi and λi 6= pi for all i ∈ {1, . . . , n}, then x̄ = 0 is asymptotically
stable for any τ ≥ 0.

b) If there is l ∈ {1, . . . , n} such that Re λl ≥ pl (Re λl > pl) and λl 6= pl, then
x̄ = 0 is unstable for any τ > 0 (τ ≥ 0).

c) Suppose Re λi < pi for all i ∈ {1, . . . , n}. Further we suppose there exist l ∈
{1, . . . , n} such that |λl| > pl. Then there is 0 < τs, such that x̄ = 0 is
asymptotically stable for 0 ≤ τ < τs and unstable for τ > τs.

Proof The case τ = 0 is covered by Lemma 2.9. In the sequel we suppose τ > 0.
|λi| ≤ pi and λi 6= pi for all i ∈ {1, . . . , n} yields λi

pi
∈ G∞,0 ⊂ Gτpi,0 (see Lemma 2.8a)

for arbitrary τ > 0. It follows that for any τ > 0 the characteristic equation (3.3) has
only roots with negative real part (see Theorem 2.1). Standard results on stability in
first approximation (see [11, pp.160, 161]) prove part a.

If there is l ∈ {1, . . . , n} such that Re λl ≥ pl and λl 6= pl, then there holds λl

pl
6∈

Gτpl,0 (see Lemma 2.5d) for arbitrary τ > 0. This implies (see Theorem 2.1) that for
any τ the characteristic equation (3.3) has at least one root with positive real part, and
thus part b is proved.
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Now let l ∈ {1, . . . , n} be such that |λl| > pl and Re λl < pl. By Lemmas 2.7 and
2.8 there exist a τs

l > 0 such that

λl

pl

∈ Gτpl,0, τ < τs
l ,

λl

pl

∈ ∂Gτpl,0, τ = τs
l ,

λl

pl

6∈ Gτpl,0, τ > τs
l .

We set
τs = min {τs

l : l ∈ {1, . . . , n} with |λl| > pl > Re λl} .

Consequently the characteristic equation (3.3) has only roots with negative real part if
τ < τs and at least one root with positive real part if τ > τs.

Remark 3.2 τs in Theorem 3.1c is defined by

τs = min

{

θl − arctan( 1
pl

√

|λl|2 − p2
l )

√

|λl|2 − p2
l

: l ∈ {1, . . . , n} with |λl| > pl > Re λl

}

,

where θl ∈ [0, 2π) such that λl = |λl| eiθl and arctan
(

1
pl

√

|λl|2 − p2
l

)

∈
(

− π
2 , π

2

)

.

For the sake of completeness we consider the limiting case τ → ∞. For τ ∈ (0,∞)
we set t′ = t

τ
and y(t′) = x(t′τ). Then (3.1) becomes

1

τ
ẏ(t′) = Ay(t′) + By(t′ − 1) + F (y(t′), y(t′ − 1)).

For τ → ∞ we obtain

Ay(t′) + By(t′ − 1) + F (y(t′), y(t′ − 1)) = 0. (3.5)

Theorem 3.2 Suppose the matrices A, B ∈ Rn,n satisfy (C). Then

a) If |λi| < pi for all i ∈ {1, . . . , n}, then x̄ = 0 as solution of equation (3.5) is
asymptotically stable.

b) If there is l ∈ {1, . . . , n} such that |λl| > pl, then x̄ = 0 is unstable.

Proof Since A is a regular matrix, equation (3.5) can be rewritten as

y(t) = Cy(t − 1) + g(y(t′ − 1)),

where C = −A−1B and g ∈ C1(U, V ); U, V ⊂ Rn neighborhoods of x̄ = 0, an
appropriate function with g(0) = Dg(0) = 0. The eigenvalues µi of C satisfy µi =
λi

pi
, i ∈ {1, . . . , n}. From Lemma 2.10 and Remark 3.1: |µi| < 1 if |λi| < pi for

all i ∈ {1, . . . , n} and if there is l ∈ {1, . . . , n} such that |λl| > pl then |µl| > 1.
The Theorem about Stability by First Approximation for Difference Equations (see [20,
p.104]) completes the proof.

4 Hopf Bifurcation

In this section we derive sufficient conditions for the occurrence of Hopf bifurcation points
in (3.1) with bifurcation parameter τ .
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Theorem 4.1 Suppose that

A1: Matrices A and B satisfy condition (C).
A2: There are i0, i1 ∈ {1, . . . , n} with i0 6= i1 if λi0 ∈ C\R and i0 = i1 if λi0 ∈ R,

such that
λi1

pi1

=
λi0

pi0

and pi0 < |λi0 |. Assume Im λi0 ≥ 0. Set

τH
2k :=

2kπ + θi0 − arctan
(

1
pi0

√

|λi0 |2 − p2
i0

)

√

|λi0 |2 − p2
i0

for k ∈ N0 if Re λi0 < pi0 and k ∈ N if Reλi0 ≥ pi0 , and

τH
2k+1 :=

2(k + 1)π − θi0 − arctan
(

1
pi0

√

|λi0 |2 − p2
i0

)

√

|λi0 |2 − p2
i0

for k ∈ N0, where θi0 ∈ [0, π) such that λi0 = |λi0 | eiθi0 .

A3: For any i ∈ {1, . . . , n} \ {i0, i1}, for which there exist l ∈ N0 such that λi

pi
∈

∂GτH
k

pi,l
, it follows 1

pi

√

|λi|2 − p2
i 6= N.

Then a Hopf bifurcation takes place at τ = τH
k for k ∈ N0 if Re λi0 < pi0 respectively

k ∈ N if Re λi0 ≥ pi0 .

Proof The Theorem is proved by verifying the hypotheses (H1) and (H2) of the Hopf
Bifurcation Theorem (see [15, pp.331–333]). If τ = τH

k , equations (2.8) – (2.10) and (2.16)

yield
λi0

pi0

∈ ∂GτH
k

pi0
,k. Lemma 3.1 and Remark 3.1 provide that s0 = ipi0ω(τH

k pi0 , θi0)

is a purely imaginary root of the characteristic equation (3.3), where ω(τH
k pi0 , θi0) is the

unique solution of equation (2.10) in Ik(τH
k pi0 , θi0) (see Lemma 2.3). From Lemma 2.1c

we obtain iω(τH
k pi0 , θi0) is a simple root of (2.1) for λ =

λi0

pi0

and τ = τH
k pi0 , and

consequently s0 is a simple root of the characteristic equation (3.3) for τ = τH
k pi0 .

Further we get by (A3) that there are no other roots s 6= s0, s0 of the characteristic
equation (3.3) for τ = τH

k which satisfy s = ms0 with m ∈ Z. This verifies hypothesis
(H1) in [15, pp.331–333].

Since s0 is a simple root the implicit function theorem (see [10]) provides the existence
of δ > 0 and a differentiable function s : (τH

k − δ, τH
k + δ) → C with s(τH

k ) = s0 and
s(τ) solves (3.3). Moreover one can compute

d Re s

dτ
(τH

k ) = pi0

ω2(τH
k pi0 , θi0)

(1 + τH
k pi0)

2 + (τH
k pi0)

2 ω2(τH
k pi0 , θi0)

> 0.

Thus, hypothesis (H2) in [15, pp.331–333] is satisfied.

Remark 4.1 If n = 1 and n = 2 with λi0 ∈ C \ R, respectively, condition (A3) in
Theorem 4.1 is always satisfied.
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