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Abstract: The paper is concerned with upper bounds for the Hausdorff di-
mension of flow invariant compact sets on Riemannian manifolds and the ap-
plication of such bounds to global stability investigations of equilibrium points.
The proof of the main theorem uses a special Carathéodory dimension struc-
ture in order to get contraction conditions for the considered Carathéodory
measures which majorize the Hausdorff measures. The Hausdorff dimension
bounds in the general case are formulated in terms of the eigenvalues of the
symmetric part of the operator which generates the associated system in nor-
mal variations with respect to the direction of the vector field. For sets with
an equivariant tangent bundle splitting dimension bounds are derived in terms
of uniform Lyapunov exponents. A generalization of the well-known theorems
of Hartman-Olech and Borg is given.
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1 Introduction

The first method of Lyapunov ([9, 36, 47, 49]) traditionally includes all the approaches
for the stability investigation of a given solution of an ODE (or an other dynamical
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system) which consider the perturbed solutions by means of various types of linearized
or variational equations. In particular this method can be used to construct explicitly
(i.e. in the form of a series of known functions and exponential terms including the
Lyapunov characteristic exponents) integral manifolds of stationary solutions in order to
determine the stability character of these solutions.

As a rule in the given variational equation new coordinates are introduced in order
to separate the normal components of the vector fields which act transversally to the
flow lines. The main idea of reparametrization and the use of flow information in the
transversal to an orbit direction goes back to ([20, 48]). Using these techniques the well-
known theorems of Hartman-Olech and Borg ([4, 19, 20]) on global asymptotic stability
are derived. For ODE’s in R

n these results were extended and generalized in [29, 32]
for other types of stability behavior (stability in the sense of Poincaré and Zhukovskij)
including into the consideration Lyapunov functions. Variational systems written in
normal coordinates are also used in stability theory to show orbital stability of solutions of
a differential equation ([20, 31, 32]). For bounded semi-orbits these methods are extended
in [31] to vector fields on Riemannian manifolds. In particular, in this paper sufficient
conditions for orbital stability and instability are deduced by estimating the singular
values of the fundamental operator of the linearized vector field.

Note that for simple mechanical systems in Lagrange form the physical paths can be
interpreted as geodesics on a Riemannian manifold ([17, 23, 24]). A prototype of such
systems with instability behavior in the sense of Zhukovskij are geodesic flows on the unit
tangent bundle of a manifold with negative curvature ([10, 17, 23, 24, 42]). These systems
are characterized by a uniform splitting of the tangent bundle into invariant subbundles
(with respect to the linearization) having equal contracting or expanding rates in all
points of the bundle. They belong to a special type of (strong) hyperbolic systems.
Unfortunately most of the interesting equations are only quasi-hyperbolic ([7, 13, 42, 43]).

Stability investigations of flows are closely connected with global properties of invariant
sets or attractors such as dimension (topological, Hausdorff, box-counting etc.) and the
topological shape of these sets (connectness, point-like type etc.) ([14, 18]).

The first general results for upper Hausdorff dimension estimates of flow invariant
sets in R

n in terms of singular values of the linearization are given by [6]. This ap-
proach was extended in [25, 39] to map-invariant sets on Riemannian manifolds and in
[26, 28, 29] by including Lyapunov functions into the contraction conditions for outer
Hausdorff measures. In [8, 46] the Douady-Oesterlé results were extended to estimates
for evolution systems in general Hilbert spaces. Hausdorff dimension estimates of general
flow invariant sets using the eigenvalues of the symmetric part of the operator part of the
(standard) equation in variation are deduced in [45] for the R

n and in [39] for manifolds.
Douady-Oesterlé estimates for piecewise smooth maps on manifolds are given in [44].
The hyperbolic or quasi-hyperbolic structure was considered in dimension estimates in
[10, 13] where also an entropy term into the estimate was introduced.

Various dimension upper bounds of invariant sets allow conclusions on the dynamical
behavior of the system. The key step in the papers [29, 39, 45] is to prove that the
Hausdorff dimension for the maximal compact invariant set is less than two. By a result
of Smith ([45]) such a set contains no simple closed piecewise smooth invariant curves. In
particular the system has no non-constant periodic orbits. On the base of such dimension
estimates a generalization of the mentioned global stability results of Hartman-Olech and
Borg, but also of other types of classical results from the Bendixson-Poincaré theory were
derived in [29, 34, 35].
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Parallel to Hausdorff dimension estimates a number of upper bounds for the box
dimension of invariant sets were deduced ([3, 21, 22, 30, 38, 46]). The box dimension of a
set is always not smaller than the Hausdorff dimension and gives important information
about the possibility to use embedding homeomorphisms, which map the given invariant
set orthogonal and one-to-one on a hyperplane in standard position ([22, 38]). Recently
it was shown that such homeomorphisms can be chosen with Hölder-Lipschitz continuous
inverse ([12]) which enables conclusions for dimension estimates.

Hausdorff and box dimension estimates for flow invariant sets show its effectivity if var-
ious types of local, global and uniform Lyapunov exponents are introduced ([7, 8, 25, 28,
46]). On the base of such Lyapunov exponents the Lyapunov dimension of a set was
defined (Kaplan-Yorke formula [25, 42]) and it was conjectured that in typical cases this
dimension coincides with the Hausdorff dimension.

Parallel to the dimension and stability investigation of invariant sets of flows and
cascades various types of dimensions of an invariant measure have been developed ([7, 25,
41]). Defining for the invariant ergodic measure of a flow the Lyapunov exponents one
can introduce the Lyapunov dimension of this measure which is an upper bound of the
Hausdorff dimension of the measure. (The Hausdorff dimension of the measure is the
largest lower bound of the Hausdorff dimension of the support of the measure ([25]).)
As in the measure free case various stability properties of the underlying flow may be
derived from the properties of the Lyapunov exponents of the measure. It is shown in
[7] that if the invariant measure is ergodic and all Lyapunov exponents of the measure
are negative, the support of this measure is a stable equilibrium point. If exactly one
exponent is zero and the remaining ones are negative, the support is an equilibrium point
or a stable limit cycle.

An important class of invariant sets of dynamical systems are strange attractors which
have locally the structure of the product of a smooth (often one-dimensional) submanifold
directed ‘along the attractor’ and a Cantor-like set ‘transversal’ to the attractor ([18, 41]).
Thus, it is natural to investigate the stability and dimension properties of such attractors
considering the intersection of the attractors with surfaces which are locally transversal
to the attractor ([20, 26]). The use of transverse intersections (Poincaré sections) is well-
known in stability theory investigations of flow orbits: contracting or expanding behavior
in sections transverse to the flow line directions is the main reason for properties of
stability or instability of the considered orbit ([29, 31, 32]).

The paper is organized as follows. In Section 2 we present a short review of basic
facts on Riemannian geometry. We introduce the variational system written in normal
variations, transversal to the evolution direction of the flow lines, which is natural to
investigate in the case of attractors of differential equations. In Section 3 we give the
definition of a special Carathéodory structure adapted for the dimension investigation of
flow invariant sets. It is defined via covering elements which are tubular neighborhoods
of arcs of smooth curves to approximate the fiber structure of the sets. The main results
of the paper are contained in Section 4. For flow negatively invariant sets which do not
contain singular points of the vector field an upper bound of the Hausdorff dimension is
given. The estimates are derived by means of Carathéodory measures which are contrac-
tive under the flow and majorize the Hausdorff measure. These results generalize those
from [26, 27] on Riemannian manifolds. The estimates are formulated in terms of the
eigenvalues of the symmetric part of the generated operator of the associated system in
normal variation. Assuming special properties of the stable and unstable manifolds of
equilibrium points the results are generalized for vector fields having a finite number of
such equilibrium points in the considered invariant set. The used Carathéodory measures
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show in many cases a better contracting behavior under the positive semi-flow than the
Hausdorff measures do. Section 5 is concerned with Hausdorff dimension estimates of
flow invariant sets with an equivariant tangent bundle splitting which are formulated
in terms of uniform Lyapunov exponents. In Section 6 we end with a discussion of the
effectivity of the obtained Hausdorff dimension estimates. In addition we obtain results
about the asymptotic behavior of the dynamical system using the dimension bounds,
which are closely related to results in [4, 19, 20].

2 The System in Normal Variation

In this section we introduce a modified variational equation for a vector field f which will
be used for modeling the variation of time translated pieces of hypersurfaces orthogonal
to a considered orbit. This idea originates from investigations on stability behavior of
solutions of a differential equation (see [20, 31, 32]), where together with the movements of
phase points along a trajectory one considers their movements in transversal direction.
Projecting the covariant derivative of the vector field along a reference orbit into the
(n − 1)-dimensional tangent space lying orthogonal to the vector field in an arbitrary
point of the orbit we get a variational equation describing the normal variation. For the
first time this type of variational equation has been applied to dimensional estimates
in [26, 27].

Let us recall some notation from linear algebra and differential geometry used later.
If V and W are m-dimensional Euclidean spaces with scalar products 〈·, ·〉V and 〈·, ·〉W ,
respectively, and L : V →W is a linear operator, then the adjoint operator L∗ : W → V
is the linear operator uniquely determined by the relation 〈Lξ, η〉W = 〈ξ, L∗η〉V for all
ξ ∈ V , η ∈W . The singular values of the operator L are the eigenvalues of the positive

semidefinite operator (L∗L)
1
2 : V → V . We denote them by σ1(L) ≥ · · · ≥ σm(L) ≥ 0

ordered with respect to size and multiplicity. For d ∈ R let ⌊d⌋ denote the largest integer
less than d. For an arbitrary number d ∈ [0,m] we define by

ωd(L) =

{
1 for d = 0,

σ1(L) · . . . · σ⌊d⌋(L)σ
d−⌊d⌋
⌊d⌋+1 (L) for d ∈ (0,m],

the singular value function of order d of L. Let E be an ellipsoid in V and let σ1(E) ≥
. . . ≥ σm(E) ≥ 0 denote the length of its semi-axes. For an arbitrary number d ∈ [0,m]
we introduce the d-dimensional ellipsoid measure by

ωd(E) =

{
1 for d = 0,

σ1(E) · . . . · σ⌊d⌋(E)σ
d−⌊d⌋
⌊d⌋+1(E) for d ∈ (0,m].

For the linear operator L : V → W and the ball B(O, r) of radius r around the origin
O of V the image LB(O, r) is an ellipsoid in W with length of semi-axes σi(L)r. For
d ∈ [0,m] it holds

ωd(LB(O, r)) = ωd(L) rd. (2.1)

Consider now a Riemannian manifold (M, g) of dimension n (n ≥ 2) and, for simplic-
ity, of class C∞, which we call smooth. Denote by TpM the tangent space at p ∈M . The
Christoffel symbols of second kind on (M, g) with respect to a chart x : D(x) → R(x)
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are given by the n3 smooth functions Γk
ij = 1

2 g
ks(gjs,i + gsi,j − gij,s) (throughout this

paper with summation on repeated indices), where gkl,r = ∂gkl

∂xr . Here and in the sequel

let f : M → TM be a vector field of class C2 on the n-dimensional Riemannian manifold
M (n ≥ 2) and let us consider the corresponding differential equation

u̇ = f(u). (2.2)

For simplicity we assume that the global flow ϕ : R ×M → M of (2.2) exists. This
flow ϕ can also be written as one-parameter family of C2-diffeomorphisms {ϕt}t∈R with
ϕt(·) = ϕ(t, ·). In a chart x around p let {∂i(p)} be the canonical basis of TpM and f(p) =

f i∂i(p) the representation of the vector field (2.2). The covariant derivative of f in p is

the linear operator ∇f(p) : TpM → TpM defined by ∇f(p)v = ∇if
kvi∂k(p) =

(
∂fk

∂xi v
i+

Γk
ijf

jvi
)
∂k(p) for all v = vi∂i(p) ∈ TpM . For the linear operator ∇f(p) : TpM → TpM

in the Euclidean space (TpM, 〈·, ·〉TpM ) we denote by ∇f(p)∗ the adjoint operator and

by S∇f(p) := 1
2 [∇f(p) + ∇f(p)∗] the symmetric part of ∇f(p).

Let c : [a, b] → M be a piecewise smooth curve such that the restrictions c|[tj,tj+1]

are smooth for any j = 1, . . . ,m − 1. Recall that the length l(c) of c is defined as

l(c) =
m−1∑
j=1

tj+1∫
tj

‖ċ(t)‖ dt. For a C1-curve c : [a, b] → M let xi(t) be the local coordinates

of c(t) in the chart x. Let F (t) be a vector field along c, i.e., F (t) ∈ Tc(t)M for all

t ∈ [a, b]. The absolute derivative DF (t)
dt ∈ Tc(t)M of F along c is defined in the chart x

by
DF (t)

dt
≡ ∇ċF (t) :=

(
dF k

dt
+ Γk

ijF
j ċi

)
∂k(c(t)).

For a given C1-curve c : [a, b] → M and v ∈ Tc(t0)M (t0 ∈ [a, b]) there exists a unique

vector field Fv along c such that Fv is parallel along c, i.e., ∇ċFv ≡ 0 and Fv(t0) = v.

This defines for any s, t ∈ [a, b] with s < t the parallel transport τ
c(t)
c(s) : Tc(s)M →

Tc(t)M along c from c(s) to c(t) which relates to any v ∈ Tc(s)M the vector Fv(t) ∈
Tc(t)M .

Recall that a geodesic on (M, g) is a smooth curve c : [a, b] →M satisfying Dċ(t)
dt ≡ 0.

For any p ∈ M and v ∈ TpM we denote the maximal geodesic with ċ(0) = v and
c(0) = p by cp,v. Let D1 ⊂ TM be the set of pairs {(p, v)} with p ∈M and v ∈ TpM

such that cp,v(1) exists. Then the exponential map exp: D1 →M on (M, g) is given by

exp((p, v)) = cp,v(1) for all (p, v) ∈ D1 and expp is the restriction exp |TpM∩D1 . It is

well-known (see [24]) that D1 is open in TM , that exp: D1 → M is smooth, and for
any p ∈ M there exists an open set D1

p ⊂ TpM such that expp is a diffeomorphism on

D1
p and ‖dOp

expp ‖ = 1.

The behavior of system (2.2) near a given solution ϕ(·)(p) is described by the varia-
tional equation

Dy

dt
= ∇f(ϕt(p))y (2.3)

(see [31, 39]). In local coordinates of a chart x around ϕt(p) system (2.3) takes the form

Dyk

dt
=
∂fk

∂xi
yi + Γk

ijf
jyi = ∇if

kyi, k = 1, . . . , n.
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For any p ∈ M the differential Y (t, p) = dpϕ
t is the operator solution of (2.3) with

initial condition Y (0, p) = id TpM .
All points p ∈ M with f(p) 6= Op (f(p) = Op), where Op denotes the origin of

the tangent space TpM , we call regular (singular) points of the vector field f . If p is
a regular point we may consider the system in normal variations with respect to the
solution ϕ(·)(p) of (2.2) ([31])

Dz

dt
= A(ϕt(p))z, (2.4)

where the linear operator A(p) : TpM → TpM is given by

A(p) = ∇f(p) −B(p), where

B(p)v = 2
f(p)

‖f(p)‖2
〈f(p), S∇f(p)v〉 for all v ∈ TpM.

(2.5)

The scalar product 〈·, ·〉 and the associated norm ‖ · ‖ are taken in the tangent space
TpM . In coordinates of an arbitrary chart x : D(x) → R(x) around the regular point p
the linear operator A(p) is given by

Ak
i = ∇if

k −
2

gmnfmfn
fkgjlf

lSj
i , k, i = 1, . . . , n,

where fk and gjl are the coordinates of the vector field f and the Riemannian metric

tensor g in the chart x, respectively, and Sj
i = 1

2

[
gjk∇kf

pgpi+∇if
j
]

is the representation

in coordinates of the symmetric part S∇f(p) of the covariant derivative of the vector
field f in this chart. Note that for ODE’s in R

n with standard metric the system in
normal variations (2.4) coincides with the system in modified variations in [28, 29, 32].

Suppose that p ∈ M is a regular point of f and y(·) is a solution of (2.3) along ϕ(·)(p).
This solution can be splitted for any t ∈ R into two orthogonal components as

y(t) = z(t) + µ(t)f(ϕt(p)), (2.6)

where z(·) is the solution of (2.4) with respect to ϕ(·)(p) with initial condition z(0) = y(0)
and µ(·) is a scalar valued C1-function given by µ(t) = 〈y(t), f(ϕt(p))〉/‖f(ϕt(p))‖2.

For every regular point p ∈ M of f we introduce the (n − 1)-dimensional linear
subspace

T⊥(p) =
{
v ∈ TpM : 〈v, f(p)〉 = 0

}

of the tangent space TpM . Denote by SA(p) := 1
2 [A(p) + A(p)∗] the symmetric part

of the operator A(p). A straight forward calculation shows that for all v ∈ T⊥(p) the
following two relations

〈f(p), SA(p)v〉 = 0 and 〈v,A(p)v〉 = 〈v,∇f(p)v〉 (2.7)

are satisfied. Hence, we have SA(p) : T⊥(p) → T⊥(p). Using this fact one can easily
prove the first part of the following lemma.

Lemma 2.1 For an arbitrary regular point p ∈M of the vector field (2.2) the eigen-
values of the operator SA(p) : TpM → TpM are the eigenvalues of the operator SA(p)
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which is restricted to the linear subspace T⊥(p) and the value −〈∇f(p)f(p), f(p)〉\‖f(p)‖2.
Further we have

S∇f(p)z −
f(p)

‖f(p)‖2
〈f(p), S∇f(p)z〉 = SA(p)z for all z ∈ T⊥(p).

In the following we denote at any regular point p of (2.2) the eigenvalues of the
operator SA(p) restricted to the subspace T⊥(p) by β1(p) ≥ · · · ≥ βn−1(p), which are
ordered with respect to size and multiplicity. By Z(t, p) we denote the operator solution
of (2.4) with initial condition Z(0, p) = id T⊥(p). For every t ∈ R the linear operator

Z(t, p) : T⊥(p) → T⊥(ϕt(p)) maps between the subspaces T⊥(p) and T⊥(ϕt(p)) being
orthogonal to the vector field in p and ϕt(p), respectively. The next lemma will be needed
in the sequel and can be proved analogously to [39].

Lemma 2.2 Suppose that p ∈ M is a regular point of the vector field (2.2) and
Z(·, p) is the operator solution of (2.4). Let d ∈ (0, n− 1]. Then for all t ≥ 0 it holds

ωd(Z(t, p)) ≤ exp

{ t∫

0

[
β1(ϕ

τ (p)) + . . .+ β⌊d⌋(ϕ
τ (p))

+ (d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (p))

]
dτ

}
.

Let B(Op, r) denote the ball of radius r around the origin Op of TpM . For a regular

point p ∈M of f let B⊥(Op, r) = B(Op, r) ∩ T
⊥(p) be the ball in the subspace T⊥(p)

centered in the origin Op of TpM with radius r. Fix p and r and consider for any t ≥ 0

the ellipsoid E(t) = Z(t, p)B⊥(Op, r) in the subspace T⊥(ϕt(p)). If σ1(E(t)) ≥ · · · ≥
σn−1(E(t)) are the lengths of the semi-axes of E(t) and if d is an arbitrary number in
(0, n− 1] we have by (2.1)

ωd(E(t)) = ωd(Z(t, p))rd. (2.8)

Our aim is to describe the variation of time translated pieces of hypersurfaces, i.e.,
(n − 1)-dimensional submanifolds, orthogonal to a considered orbit of (2.2). For this
purpose we will use methods from [31, 32] developed there for stability investigations of
flows on manifolds, in order to get information for the Hausdorff dimension of underlying
flow invariant sets. Considering a non-equilibrium solution ϕ(·)(p) of (2.2) with p ∈
M the local transformation of small pieces of a hypersurface can be described by a
reparametrized local flow. For δ > 0 so small that expp is defined on B(Op, δ) we

consider the (n− 1)-dimensional submanifold

B⊥(p, δ) := expp(B
⊥(Op, δ))

of M through p which is local transversal at the point p to the trajectory of the vector
field passing through the point p. Every point u ∈ B⊥(p, δ) can be uniquely written in
the form u = expp(rv), where v ∈ T⊥(p) is a vector of length ‖v‖ = 1 and r ∈ [0, δ)
measures the arc length of the geodesic cp,v connecting p and u. This defines us a unique

representation u = u(r, v) of a point u ∈ B⊥(p, δ).
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Figure 2.1. Reparametrization of the flow.

The main properties of the described reparametrization are summarized in the follow-
ing two lemmata which proofs are similar to [20, 31], where a slightly different reparamet-
rization is considered. Results on reparameterization for flows in R

n are given in [28,29,32].

Lemma 2.3 Suppose that ϕ(·)(p) is a non-equilibrium solution of the C2-vector
field (2.2). Then for any finite number T0 > 0 there exists a number ε1 > 0 such
that for every u ∈ B⊥(p, ε1) there is a monotonously increasing differentiable function
s(·, u) : R+ → R+ satisfying s(·, p) = id |[0,T0] and

〈
exp−1

ϕt(p)

(
ϕs(t,u)(u)

)
, f(ϕt(p))

〉
= 0 for all t ∈ [0, T0]. (2.9)

The next lemma states that for any regular point p ∈ M of f for the locally defined
reparametrized flow φt(·) ≡ φ(t, ·) := ϕ(s(t, ·), ·) the differential dpφ

t of φt restricted

to T⊥(p) satisfies (2.4). This provides the desired description of the variation of time
translated pieces of hypersurfaces orthogonal to the considered orbit. For the proof again
we refer to the method of [31].

Lemma 2.4 Suppose that ϕ(·)(p) is a non-equilibrium solution of (2.2) and the
function s(·, ·) : [0, T0]×B⊥(p, ε1) → R+ as given in Lemma 2.3 defines a reparametrized

local flow φt(u) := ϕs(t,u)(u). Then for all t ∈ [0, T0] there holds

dpφ
t|T⊥(p) = Z(t, p),

where Z(t, p) denotes the operator solution of (2.4) with Z(0, p) = idT⊥(p).

We return to the Lemmata 2.3 and 2.4 in Section 4 where they are needed in the proof
of Theorem 4.1.
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3 Tubular Carathéodory Structure

In this section we define a special Carathéodory structure for flow negatively invariant
sets on Riemannian manifolds. The outer measures which arise from this structure will
majorize the Hausdorff measures and will be applied to obtain Hausdorff dimension
estimates of flow-invariant sets on the manifold.

Carathéodory dimension structures were introduced by Pesin [41] (see also [42]) in
order to give a general concept for most of the dimension-like characteristics of sets
and measures. Such structures may be considered as a generalization of a well-known
measure-theoretic construction of Carathéodory [5, 11]. The essential parts of such a
structure are the following ([15]).

Let X be an arbitrary set, F be a family of subsets of X , P = [d∗,+∞) for finite
d∗ or P = R be a parameter set, and let ξ : F × P → [0,∞), η : F × R → [0,∞),
and ψ : F → [0,∞) be functions. A sub-family G ⊂ F is said to be an ε-cover of a
set Y ⊂ X if Y ⊂

⋃
u∈G

U and ψ(G) := sup{ψ(U) | U ∈ G} ≤ ε hold. The following

conditions are assumed to be satisfied:

(A1) ∅ ∈ F , ψ(∅) = 0, and ξ(∅, d) = 0 for all d ∈ P.
(A2) ξ(U, s) = η(U, s− d)ξ(U, d) for all d, s ∈ P and all U ∈ F .
(A3) For any ∆ > 0 there exists ε > 0 such that for all U ∈ F\{∅} with ψ(U) ≤ ε

we have η(U, d) ≤ ∆ if d > 0 and η(U, d) ≥ ∆−1 if d < 0.
(A4) For any subset Y ⊂ X and for arbitrary ε > 0 there exists a countable ε-cover

of Y .

In analogy to [42] we call such a collection (F ,P, ξ, η, ψ) which satisfies (A1) – (A4) a
Carathéodory (dimension) structure on X . For a given Carathéodory structure
(F ,P, ξ, η, ψ), an arbitrary set Y ⊂ X , d ∈ P, and ε > 0 we define the Carathéo-
dory d-measure at level ε of Y with respect to (F ,P, ξ, η, ψ) by

µC(Y, d, ε) = inf
G

∑

U∈G

ξ(U, d),

where the infimum is taken over all countable sub-collections G ⊂ F being ε-covers of
the set Y . For fixed Y and d the function µC(Y, d, ε) is non-increasing with respect to
ε. Therefore, there exists the limit

µC(Y, d) = lim
ε→0+0

µC(Y, d, ε)

which is called the Carathéodory d-measure of Y with respect to (F ,P, ξ, η, ψ). For
arbitrary d ∈ P and arbitrary ε > 0 the functions µC(·, d, ε) and µC(·, d) are outer
measures on X . It turns out that for any set Y ⊂ X there exists a unique number
dcr(Y ) ∈ P having the property that

µC(Y, d) =

{
0 for d > dcr(Y )

+∞ for d < dcr(Y )

holds for d ∈ P. This critical value dcr(Y ) is called Carathéodory dimension dimC Y of
Y with respect to the structure (F ,P, ξ, η, ψ).

Note that our system of conditions (A1) – (A4) which leads to a Carathéodory structure
is slightly different from the system in [41, 42]. In contrast to these works we assume
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that our family of objects in the Carathéodory construction depends on parameters which
come from a (possibly proper) subset of R.

For a standard Carathéodory structure let X be a separable metric space, F the
family consisting of open balls B(u, r) in X with center u and radius r and the empty
set, P = R+, ξ(B(u, r), d) = rd, η(B(u, r), s) = rs, ψ(B(u, r)) = r, ξ(∅, d) = ψ(∅) = 0,
and η(∅, s) = 1 for each u ∈ X , r > 0 and each d ≥ 0, s ∈ R. It is easy to see
that such a system (F ,P, ξ, η, ψ) defines a Carathéodory structure on X . We denote by
µH(·, d, r), µH(·, d) and dimH the resulting Carathéodory measures and Carathéodory
dimension which are in fact the Hausdorff d-measure at level r, the Hausdorff d-measure
and the Hausdorff dimension, respectively. The concept of the Carathéodory dimension
covers not only several dimension type characteristics of sets but also characteristics of
dynamical systems such as topological pressure and topological entropy (see [41, 42]) or
a dimension introduced for Poincaré recurrences ([1]).

Let (M, g) be a smooth n-dimensional Riemannian manifold and ρ the metric induced
by g. For a piecewise smooth curve γ : I → M (I ⊂ R an interval) of finite length and
arbitrary ε > 0 we define the ε-tubular neighborhood Ω(γ, ε) of γ by

Ω(γ, ε) =
⋃

u∈γ(I)

B(u, ε),

where B(u, ε) = {p ∈ M | ρ(u, p) < ε} is again a metric ε-ball on M centered in the
point u. For simplicity we call the ε-tubular neighborhood Ω(γ, ε) around the curve γ of
length l shortly tube of length l.

For a given compact set K ⊂ M and a given number l0 > 0 we denote by Γ = {γ}
a family of piecewise smooth curves of a finite length l(γ) = l0 such that for any ε > 0
the following condition is satisfied:

(A) K is contained in the union of ε-tubular neighborhoods Ω(γ, ε) with γ ∈ Γ.

Condition (A) guarantees the existence of arbitrarily fine covers of the set K which are
generated by the family Γ. For a family Γ satisfying (A) we define a family of subsets
F , a parameter set P, and the functions ξ : F × P → [0,∞), η : F × R → [0,∞), and
ψ : F → [0,∞) by

F = {Ω(γ, ε) ∩K | γ ∈ Γ, ε > 0} ∪ {∅}, P = [1,+∞),

ξ(Ω(γ, ε) ∩K, d) = εd−1, η(Ω(γ, ε) ∩K, s) = εs,

ψ(Ω(γ, ε) ∩K) = ε

(3.1)

for γ ∈ Γ, ε > 0 with Ω(γ, ε)∩K 6= ∅, ξ(∅, d) = ψ(∅) = 0, and η(∅, s) = 1 for all d ∈ P,
s ∈ R.

Straight forward, one can verify that the collection (F ,P, ξ, η, ψ) defined via (3.1)
with Γ satisfying (A) is a Carathéodory structure on K in the sense as considered above.
In the sequel we will call such a structure simply a Carathéodory structure with tubes of
length l0 on K or tubular Carathéodory structure on K, if the underlying set K and the
family Γ are clear from the context. The next proposition shows the relations between
the Carathéodory measures and the Hausdorff measures, as well as between the Cara-
théodory dimension and the Hausdorff dimension, generated by this structure. For the
proof we refer to [15, 16] and for the R

n-case to [27].
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Proposition 3.1 Suppose that K is a compact set on the smooth n-dimensional
Riemannian manifold (M, g). Suppose that (F ,P, ξ, η, ψ) is a tubular Carathéodory
structure on K with tubes of length l0 defined by (3.1) and with respect to this structure
let be µC(·, d, ε), µC(·, d), and dimC the Carathéodory d-measure at level ε, the Cara-
théodory d-measure, and the Carathéodory dimension, respectively. Then there exist two
numbers k > 0 and ε0 > 0 depending only on K such that for any set Y ⊂ K and any
d ≥ 1 the inequality

µH(Y, d, ε) ≤ l0kµC(Y, d, ε) (3.2)

holds for all ε ∈ (0, ε0]. Therefore, we have

µH(Y, d) ≤ l0kµC(Y, d) and thus dimH Y ≤ dimC Y.

Now we specify the family Γ of curves which will be used further for the considerations
of sets being negatively invariant with respect to a flow. As in the previous section
we consider the complete C2-vector field f : M → TM on a smooth n-dimensional
Riemannian manifold and the corresponding differential equation (2.2) with global flow

{ϕt}t∈R. Let K and K̃ be two compact sets in M satisfying

K ⊂ ϕt(K) ⊂ K̃ for all t ≥ 0. (3.3)

(A set K satisfying K ⊂ ϕt(K) for all t ≥ 0 is usually called negatively invariant with
respect to the flow.) At first we suppose that the set K does not contain equilibrium
points of (2.2).

To construct the family Γ we denote by Λ the set of all equilibrium points of (2.2) in

K̃ and set e1 = 1
2 dist (Λ,K), where dist (Λ,K) = inf

u∈Λ, p∈K
ρ(u, p) is the usual metric

distance between two sets in M , and define

Φ := K̃ ∩
⋃

p∈K

B(p, e1). (3.4)

With respect to the vector field f , the compact set K̃ from (3.3), and the set Φ from
(3.4) define the following coefficient

V (f, K̃,Φ) :=

max
u∈K̃

‖f(u)‖TuM

min
u∈Φ

‖f(u)‖TuM
, (3.5)

which will be important for the proofs in Section 4. For any p ∈ K we take a time
bp > 0 such that ϕt(p) ∈ Φ for all t ∈ [0, bp]. Further, since dpϕ

t|t=0 = id TpM we

can suppose that ‖dpϕ
t‖ ≤ 2 holds for all t ∈ [0, bp]. Since K is compact and contains

no equilibrium points of f there exists a number e2 > 0 such that for the length of the
integral curve pieces it holds l(ϕ(·, p)|[0,bp]) ≥ e2 for any p ∈ K. We set

l0 :=
1

2
min{e1, e2},

introduce for any q ∈ K the number τ(q) > 0 satisfying l(ϕ(·, q)|[0,τ(q)]) = l0, and
define the set

Γ := {ϕ(·, q)|[0,τ(q)] | q ∈ K}. (3.6)
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Obviously this family Γ satisfies condition (A) and (F ,P, ξ, η, ψ) defined by (3.1) on the
base of this family is a Carathéodory structure on K – a Carathéodory structure with
tubes of length l0 – which will be used in Section 4.

4 Dimension Estimates of Flow Negatively Invariant Sets

In the present section we derive upper bounds for the Hausdorff dimension of compact
sets being negatively invariant with respect to the flow of the differential equation (2.2).
Investigating the deformation of such a set under shift maps generated by the flow the
deformation transversal to the flow lines is of great importance.

Our main result is the following theorem which generalizes the results of [26, 27] to
vector fields on manifolds. Recall that for d ∈ R we denote by ⌊d⌋ the largest integer
less than d.

Theorem 4.1 Let f : M → TM be the C2-vector field (2.2) on the smooth n-di-
mensional (n ≥ 2) Riemannian manifold (M, g) satisfying the following conditions:

(a) The flow {ϕt}t∈R of (2.2) satisfies (3.3) with respect to the compact sets K and

K̃ in M , where K does not contain equilibrium points of (2.2).

(b) For a regular point p ∈ K̃ let β1(p) ≥ · · · ≥ βn−1(p) be the eigenvalues of the
symmetric part SA(p) = 1

2 [A(p)+A(p)∗] restricted to the subspace T⊥(p), where
A(p) is the operator from (2.5). There exist a number d ∈ (0, n − 1], a number
Θ > 0, and a time T0 > 0 such that

T0∫

0

[
β1(ϕ

τ (p)) + · · · + β⌊d⌋(ϕ
τ (p)) + (d− ⌊d⌋)β⌊d⌋+1(ϕ

τ (p))
]
dτ ≤ −Θ (4.1)

is satisfied for all regular points p ∈ K̃.

Then it holds dimH K < d+ 1. If d = 1 we have dimH K ≤ 1.

Before proving Theorem 4.1 we formulate some lemmata. The special flow line struc-
ture of sets which are flow negatively invariant allows us to obtain the dimension estimate.
In order to describe the deformation under the map ϕt of tubular neighborhoods around
an arc of a trajectory we investigate the evolution of time translated pieces of hypersur-
faces lying transversal to the considered trajectory. In the next lemma we consider the
influence of ϕt on arcs of a trajectory.

For an arbitrary piecewise smooth curve c : [t1, t2] →M we denote its length by l(c).

Lemma 4.1 Suppose that {ϕt}t∈R is the flow of (2.2), Φ and K̃ are compact sets in

M , Φ does not contain any equilibrium points of (2.2), and V (f, K̃,Φ) is the coefficient
from (3.5). Let p ∈ Φ and let ct : [t1, t2] → M be a restriction of the integral curve
of (2.2) through p given by ct(·) = ϕ(t + ·, p)|[t1,t2] and satisfying c0([t1, t2]) ⊂ Φ and

ct([t1, t2]) ⊂ K̃ for all t > 0. Then the length l(ct) of such a restriction satisfies l(ct) ≤

V (f, K̃,Φ)l(c0) for all t ≥ 0.

Proof The statement follows immediately from

l(ct) =

t2∫

t1

‖ϕ̇(τ, ϕt(p))‖ dτ =

t2∫

t1

‖ϕ̇(τ + t, p)‖

‖ϕ̇(τ, p)‖
‖ϕ̇(τ, p)‖ dτ

≤ V (f, K̃,Φ)l(c0).
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We consider now the family Γ of curves of length l0 from (3.6) and the chosen Cara-
théodory structure (F ,P, ξ, η, ψ) on the compact set K with tubes of length l0 from
(3.1). The next lemma estimates the tubular measures µC(·, d, ε), generated with respect
to (F ,P, ξ, η, ψ), of the flow-transformed set K. Its proof is based on the consideration
of the deformation of tubular neighborhoods around trajectory pieces.

Lemma 4.2 Suppose that {ϕt}t∈R is the flow of (2.2) satisfying (3.3) with respect to

the compact sets K and K̃ in M , where K does not contain equilibrium points of (2.2).

Suppose also that Φ, V (f, K̃,Φ) and l0 are given by (3.4), (3.5), and (3.6), respectively.

For p ∈ K̃ let α1(p) be the largest eigenvalue of S∇f(p), and for a regular point p ∈ K̃
let β1(p) ≥ · · · ≥ βn−1(p) be the eigenvalues of SA(p)|T⊥(p), where A(p) is the operator

from (2.5). Define for a number d ∈ (0, n− 1] and a time T0 > 0 the values

k := max
p∈K

exp

{ T0∫

0

[
β1(ϕ

τ (p)) + · · · + β⌊d⌋(ϕ
τ (p))

+ (d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (p))

]
dτ

}
,

a := exp

[
3l0 max

p∈K̃
α1(p)

V (f, K̃,Φ)

min
p∈Φ

‖f(p)‖TpM

]
,

λ := 26
√
⌊d⌋ + 1 a, and C :=

(
3V (f, K̃,Φ) + 1

)
2⌊d⌋λd.

(4.2)

Then for any l > k there exists an ε0 > 0 such that for all ε ∈ (0, ε0] the Carathéo-
dory (d+1)-measure µC(·, d+1, ε) at level ε, generated with respect to the Carathéodory
structure (3.1) with tubes of length l0, satisfies the inequality

µC(ϕT0(K) ∩K, d+ 1, λl1/dε) ≤ ClµC(K, d+ 1, ε). (4.3)

Proof Fix some γ ∈ Γ. For arbitrary l > k we can choose an ε1 > 0 such that the
set V :=

⋃
p∈K

B(p, ε1) contains no equilibrium points of (2.2) and that the inequality

k′ := max
u∈V

exp

{ T0∫

0

[
β1(ϕ

τ (u)) + · · · + β⌊d⌋(ϕ
τ (u))

+ (d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (u))

]
dτ

}
< l

(4.4)

is satisfied. We set

σ := max
p∈V

exp

{ T0∫

0

β1(ϕ
τ (p)) dτ

}
(4.5)

and take a number m > 0 such that k′ < md and σ ≤ m are satisfied. Since l > k′

the equation [
1 +

(
m⌊d⌋

k′

)1/(1−⌊d⌋)

η

]d

k′ = l



182 G.A. LEONOV, K. GELFERT AND V. REITMANN

uniquely defines a number η > 0.

Choose δ > 0 such that for any u ∈ K̃ the map expu maps the ball B(Ou, δ) ⊂ TuM
diffeomorphically onto the geodesic ball B(u, δ) ⊂M . Further with ‖dOu

expu ‖ = 1 we
can suppose that ‖dv expu ‖ ≤ 2 and therefore

ρ(expu v1, expu v2) ≤ 2ρ(v1, v2)

holds for all v, v1, v2 ∈ B(Ou, δ).
To simplify the use of the reparametrized local flow we cover Ω(γ, r) by a set S(γp, r)

as follows. Let for some p ∈ K and the associated time t(p) > 0 be γp(·) = ϕ(·, p)|[0,t(p)]

the integral curve of lenght 2l0 such that γp ⊃ γ and for any r ∈ (0, l0] the inclusion
Ω(γ, r) ⊂ S(γp, r) holds, where

S(γp, r) :=
⋃

u∈γp

B⊥(u, r).

Let p and t(p) be fixed in the sequel. We take now

ε0(γ) <
1

4
min{ε1, δ, dist (K,M\V ), l0}

small enough such that the following conditions are satisfied:

(1) The function s : [0,max{T0, t(p)}] × B⊥(p, 4ε0(γ)) → R+ as characterized in the
Lemma 2.3 defines a local reparametrization of the flow ϕ by φ : [0,max{T0, t(p)}] ×

B⊥(p, 4ε0(γ)) →M with φ(t, ·) ≡ φt(·) := ϕs(t,·)(·) for t ∈ [0,max{T0, t(p)}].

(2) φT0(B⊥(p, 4ε0(γ))) ⊂ B(ϕT0 (p), δ).

(3) The distance between the points φt(u) on an integral curve starting in u = expp(rv) ∈

B⊥(p, ε0(γ)) and the reference orbit through p for a fixed t ∈ [0, t(p)] is of the size

ρ(ϕt(p), φt(u)) = ‖dpφ
t‖ · r(1 +O(r))

as r → 0. It holds ‖dpφ
t‖ ≤ ‖dpϕ

t‖ and ‖dpϕ
t‖ ≤ 2 for any t > 0 such that

l(ϕ([0, t], p)) ≤ 2l0. Thus, for any u ∈ B⊥(p, ε0(γ)) it is ρ(ϕt(p), φt(u)) ≤ 4ρ(p, u) for
any such t. We can assume analogous assumptions for the flow in reverse time-direction.
Let for ε0(γ) > 0 the following be satisfied: If γ′ = φ([0, t(p)], u) is some arc of trajectory
intersecting S(γp, ε0(γ)) then γ′ is completely contained in S(γp, 4ε0(γ)) and satisfies
l(γ′) ≤ 3l0.

(4) For any u ∈ K̃ and for any time τ > 0 such that the integral curve ϕ([0, τ ], u) is of

maximal lenght 3l0V (f, K̃,Φ) it holds

sup
q∈B(u,16σε0(γ))

∥∥τϕt(u)
ϕt(q) dqϕ

tτq
u − duϕ

t
∥∥ ≤ a for all t ∈ (0, τ). (4.6)

Suppose that it holds

sup
q∈B⊥(p,4ε0(γ))

∥∥τφT0 (p)

φT0 (q)
dqφ

T0τq
p − dpφ

T0

∥∥ ≤ η. (4.7)
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(5) For any u = u(r, v) ∈ B⊥(p, 4ε0(γ)) the deviation arising from the local reparametri-
zation of the flow is of the form s(T0, u(r, v))− T0 = O(r) as r → 0 which gives for the

point φT0(u) = ϕs(T0,u)−T0(ϕT0 (u)) the representation

exp−1
ϕT0(u)

(φT0 (u)) = OϕT0(u) + f(ϕT0(u))O(r) + o(r)

as r → 0. The vector field C2-varies on M . So we can suppose that for any point

u ∈ B⊥(ϕT0 (p), δ) for ν < 24
√
⌊d⌋ + 1 σε0(γ) any set (ϕT0 ◦ φ−T0)B(u, ν) is contained

in a 2ν-tubular neighborhood of a curve ϕ(·, (ϕT0 ◦φ−T0)(u))|(−τ,τ) of some finite length,
say of length l0.

Now let r ≤ ε0(γ). Suppose ϕT0(Ω(γ, r)) ∩K 6= ∅. The set B(p, 4r) is contained in
the open set V . Taylor’s formula for the differentiable map φT0 provides ([39]) that for
every u ∈ B⊥(p, 4r)

∥∥ exp−1
φT0(p)

φT0(u) − dpφ
T0(exp−1

p (u))
∥∥

≤ sup
q∈B(p,4r)

∥∥τφT0 (p)

φT0 (q)
dqφ

T0τq
p − dpφ

T0

∥∥ ·
∥∥ exp−1

p (q)
∥∥ (4.8)

holds. Considering the image of B⊥(p, 4r) under φT0 with (4.7) we obtain the inclusion

exp−1
φT0(p)

(
φT0

(
B⊥(p, 4r)

))
⊂ dpφ

T0
(
B⊥(Op, 4r)

)
+B⊥

(
OϕT0(p), η4r

)
.

The set dpφ
T0

(
B⊥(Op, 4r)

)
is an ellipsoid with half-axes of length 4rσk(p), where σk(p)

(k = 1, . . . , n − 1) denote the singular values of the linear operator dpφ
T0 : T⊥(p) →

T⊥(ϕT0(p)). Using the definition of k′, Lemma 2.2 and (2.8) we conclude

ωd

(
dpφ

T0(B⊥(Op, 4r))
)
≤ (4r)dk′. (4.9)

By standard covering results (see e.g. [39]) an ellipsoid E ⊂ T⊥(ϕT0 (p)) can be found

containing dpφ
T0

(
B⊥(Op, 4r)

)
+ B

(
OϕT0(p), η4r

)
and satisfying ωd(E) ≤ l(4r)d. Any

set E can be covered by N balls of radius R =
√
⌊d⌋ + 1σ⌊d⌋+1(E). The number N can

be estimated from above by

N ≤
2⌊d⌋ωd(E)

σ⌊d⌋+1(E)d
.

Thus, any set expϕT0(p)(E) and therefore φT0(B⊥(p, 4r)) can be covered by N ge-

odesic balls in M of radius 2R. Fixing such a cover {B(ũj , 2R)}j≥1, where ũj ∈ M
(j ≥ 1), we choose in every set

K ∩B(ũj , 2R) ∩B⊥(ϕT0(p), δ)

a point uj and obtain the cover {Bj}j≥1 of the set φT0 (B⊥(p, 4r)) ∩ K with Bj =

B(uj , 4R) ∩B⊥(ϕT0(p), δ).
Now we consider the deviation arising from the reparametrization. By the prop-

erty (5) any set (ϕT0 ◦ φ−T0)(Bj) is with precision o(r) (r ≤ ε0(γ)) contained in a
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4R-neighborhood of the orbit trough uj , or more precise, in an 8R-neighborhood of a

trajectory piece ϕ(·, (ϕT0 ◦ φ−T0)(uj))|(−τ,τ) of length l0.

By the choise of ε0(γ) any trajectory piece in S(γp, 4r) which intersects S(γp, r) is

of maximal length 3l0. We shift the balls B((ϕT0 ◦ φ−T0)(uj), 8R) along the flow lines.

Thus, with the above and (4.6) the set ϕT0(S(γp, r)) can be covered by N tubes of length

3l0V (f, K̃,Φ) + l0 and diameter 2a · 8R.
Covering each curve arc by curve arcs of length l0 we conclude

µC

(
ϕT0(Ω(γ, r)) ∩K, d+ 1, 26

√
⌊d⌋ + 1 l1/dar

)

≤ N(3V (f, K̃,Φ) + 1)
(
26a

√
⌊d⌋ + 1σ⌊d⌋+1(E)

)d

≤ Clrd.

(4.10)

Since Γ is the set of trajectory pieces starting in a point p in the compact set K we
can pass to ε0 := inf

γ∈Γ
ε0(γ) > 0 such that the (4.10) holds for any Ω(γ, r) with γ ∈ Γ

and r ≤ ε0. Let ε ≤ ε0. For any ν > 0 there exists a finite family {Ω(γi, ri)}i≥1 with

γi ∈ Γ, ri ≤ ε having the property that
⋃
i

Ω(γi, ri) ⊃ K and
∑
i

rd
i ≤ µC(K, d+1, ε)+ν.

We obtain µC(ϕT0(K) ∩ K, d + 1, λl1/dε) ≤
∑
i

µC(ϕT0 (Ω(γi, ri)) ∩ K, d + 1, λl1/dε) ≤

Cl
∑
i

rd
i ≤ Cl(µC(K, d+ 1, ε)+ ν), where λ and C are defined by (4.2). Since ν has been

chosen arbitrarily we obtain that (4.3) holds for any ε ∈ (0, ε0].

Although we are mainly interested in upper estimates of the Hausdorff dimension of
flow negatively invariant sets we can deduce upper bounds of its Carathéodory dimension
with respect to the chosen tubular Carathéodory structure.

Proposition 4.1 Let the differential equation (2.2) satisfy the conditions of Theo-
rem 4.1 with the number d ∈ (0, n−1] in (4.1) and the negatively invariant set K. Then
the Carathéodory dimension of K, determined with respect to the Carathéodory structure
(3.1) on K consisting of tubes with length l0 determined in (3.6), satisfies

dimC K < d+ 1.

Proof It follows from (4.1) that for an arbitrarily small number κ ∈ (0, 1) there
exists some number m = m(κ) > 0 such that

k := sup
p∈K

exp

{ mT0∫

0

[
β1(ϕ

τ (p)) + · · · + β⌊d⌋(ϕ
τ (p))

+(d− ⌊d⌋)β⌊d⌋+1(ϕ
τ (p))

]
dτ

}
≤ exp(−mΘ) < κ.

(4.11)

Without loss of generality we can assume that this number k satisfies λk1/d < 1 and
Ck < 1, where λ and C are the constants given in (4.2). We choose l > k with λl1/d < 1
and Cl < 1. Lemma 4.2, applied to the map ϕmT0 , guarantees that for the chosen number
l there exists a number ε0 > 0 such that for all ε ∈ (0, ε0] the inequality

µC

(
ϕmT0(K) ∩K, d+ 1, λl1/dε

)
≤ ClµC(K, d+ 1, ε) (4.12)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 1(2) (2001) 169–192 185

holds. Let ε ∈ (0, ε0] be arbitrarily small. Since K is compact the value µC(K, d+ 1, ε)
is finite. SinceK is negatively invariant with respect to ϕmT0 we have K = ϕmT0(K)∩K.

Using inequality λl1/d < 1 we conclude µC(K, d+ 1, ε) < CLµC(K, d+ 1, ε). From this
we follow that the equality µC(K, d + 1, ε) = 0 holds for every ε ∈ (0, ε0]. We see that
µC(K, d + 1) = 0. This implies dimCK ≤ d + 1. Since (4.11) holds true if we slightly
reduce d we conclude dimC K < d+ 1.

Proof of Theorem 4.1 Applying Proposition 4.1 and Proposition 3.1 we obtain
dimH K < d + 1. If condition (4.1) is also satisfied for d = 1 it is satisfied for all
d ∈ (0, n− 1]. Thus, dimH K < d+ 1 for all d ∈ (0, n− 1] and we obtain dimH K ≤ 1.
This proves the Theorem.

Let us again consider compact sets K and K̃ in M satisfying (3.3) with respect to
the flow of (2.2). We may now assume that the set K possesses equilibrium points and
satisfies the following condition:

(S) The set K contains at most a finite number of equilibrium points of (2.2). Every
such equilibrium point possesses a local stable manifold with dimension at least
n− 1. Trajectories starting in local unstable manifolds or local center manifolds
of such an equilibrium point in K converge for t → +∞ to an asymptotically

stable equilibrium point of (2.2) in K̃.

The special structure of equilibrium points satisfying (S) allows us to obtain the fol-
lowing theorem. The reason for this is that in some sense in open and flow positively
invariant neighborhoods of these points the flow preserves its contracting property with
respect to the Hausdorff measure ([16]).

Theorem 4.2 Let f : M → TM be a C2-vector field (2.2) on the smooth n-dimen-
sional Riemannian manifold (M, g). Suppose that the flow {ϕt}t∈R of (2.2) satisfies

(3.3) and condition (S) with respect to compact sets K and K̃ in M . Suppose also that
condition (b) of Theorem 4.1 is satisfied. Then the conclusion of Theorem 4.1 holds.

In the following statement we denote for a differentiable function v : U ⊂ M → R, U
an open set, by Lfv(p) the Lie derivative of v in p in direction of the vector field f .

Corollary 4.1 Suppose that the flow {ϕt}t∈R of (2.2) satisfies (3.3) and condition

(S) with respect to compact sets K and K̃ in M .
Denote by Λ the set of equilibrium points of (2.2) in M . For p ∈ M\Λ let β1(p) ≥

. . . ≥ βn−1(p) be the eigenvalues of the symmetric part SA(p) restricted to the subspace
T⊥(p), where A(p) is the operator from (2.5), and let v : M\Λ → R be a C1-function.
Suppose also that for a number d ∈ (0, n − 1] there exist a number Θ > 0 and a time
T0 > 0 such that

T0∫

0

[
β1(ϕ

τ (p)) + · · · + β⌊d⌋(ϕ
τ (p)) + (d− ⌊d⌋)β⌊d⌋+1(ϕ

τ (p))

+ Lfv(ϕ
τ (p))

]
dτ ≤ −Θ

(4.13)

holds for all regular points p ∈ K̃. Then the conclusion of Theorem 4.1 holds.

Proof As mentioned above, on open and flow positively invariant neighborhoods of
equilibrium points of (2.2) which satisfy (S) the flow preserves its contracting property
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with respect to the Hausdorff measure. So it remains to show that for any compact,
flow negatively invariant set K1 ⊂ K which does not contain equilibrium points of (2.2)
it holds dimH K1 < d + 1. On M\Λ we introduce a new metric tensor by ĝ(p) :=

exp
(

2v(p)
d

)
g(p) for p ∈ M\Λ. On K1 the Riemannian metric ĝ is equivalent to g.

Changing to the metric ĝ does not alter the Hausdorff dimension of the compact set K1.

Consider the operator Â(p) from (2.5), the symmetric part SÂ(p) of Â(p), the operator

∇̂f(p), and S∇̂f(p), which are defined regarding to the scalar product in TpM induced

by the metric ĝ. As in [39] one shows that S∇̂f(p) = S∇f(p) +
Lf v(p)

d id TpM . Using

(2.7) we obtain that for a regular point p ∈ M the eigenvalues β̂i(p) of the operator

SÂ(p)|T⊥(p) are related to the eigenvalues βi(p) (i = 1, . . . , n − 1) with respect to the

original metric g by β̂i(p) = βi(p) +
Lf v(p)

d . Therefore,

β̂1(p) + · · · + β̂⌊d⌋(p) + (d− ⌊d⌋)β̂⌊d⌋+1(p)

= β1(p) + · · · + β⌊d⌋ + (d− ⌊d⌋)β⌊d⌋+1(p) + Lfv(p)

guarantees (4.13) and thus (4.1) of Theorem 4.1. Hence dimH K1 < d+ 1.

Corollary 4.2 Consider a 2-dimensional Riemannian manifold M . Suppose that the
flow {ϕt}t∈R of (2.2) satisfies (3.3) and condition (S) with respect to compact sets K

and K̃ in M . If div f(p) < 0 holds for any regular points p ∈ K̃ then dimH K ≤ 1.

Proof For the operator A(p) from (2.5) it holds tr (SA(p)|T⊥(p)) = tr ∇f(p) −

〈∇f(p)f(p), f(p)〉/‖f(p)‖2. We define the C1-function v on the set of all regular points
p in M by v(p) = 1

2 ln ‖f(p)‖2. The statement follows with Corollary 4.1.

5 Flow Invariant Sets with an Equivariant Tangent Bundle Splitting

The considered outer measures defined via tube covers show in many cases a better con-
traction behavior under the flow operator of a vector field in positive time direction than
conventional outer measures defined via a covering of balls do. Using such an approach
for a class of generalized hyperbolic flows on n-dimensional Riemannian manifolds we
may improve upper Hausdorff dimension estimates which are obtained with methods
from [39] (or from [45] for the R

n).
Consider again the vector field f : M → TM from (2.2) on the smooth n-dimensional

Riemannian manifold (M, g). Let us introduce a property of flow-invariant sets which
may be considered as a generalized hyperbolic structure. We say that a flow-invariant
compact set K ⊂M possesses an equivariant tangent bundle splitting (which for simplic-
ity consists of only two components) TKM = E1 ⊕E2 with respect to the flow {ϕt}t∈R

if for any p ∈ K and i = 1, 2 the space Ei
p = Ei ∩ TpM is an ni-dimensional subspace

of TpM such that n1 + n2 = n and dpϕ
t(Ei

p) = Ei
ϕt(p) hold for any p ∈ K and t ∈ R.

Recall that an Anosov flow on K is a flow without equilibria for which among other
properties there exists an equivariant tangent bundle splitting TKM = E1 ⊕ E2, where
E2

p = span {f(p)} for each p ∈ K. For d ∈ (0, n − n2] and t ∈ R we introduce the

singular value function of order d of ϕt on K with respect to the splitting E1⊕E2 which
is defined by

ωE1,E2

d,K (ϕt) := sup
p∈K

ωd

(
dpϕ

t|E1(p)

)
.
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Since ωE1,E2

d,K (ϕt) is a sub-exponential function the limit

νd := lim
t→∞

1

t
lnωE1,E2

d,K (ϕt)

exists for any d ∈ (0, n− n2] ([46]). We call the numbers

νu
1 := ν1, νu

i := νi − νi−1 for i = 1, . . . , n− n2

the uniform Lyapunov exponents of {ϕt} with respect to the splitting E1 ⊕ E2. Let us
investigate the splitting TKM = E2 ⊕ E2 such that E1 = T⊥ with E1

p = T⊥(p) and

E2 = T ‖ with E2
p = T ‖(p) = span {f(p)}.

With the help of Lemma 2.1 one shows that for any regular point p ∈M satisfying

〈S∇f(p)z, f(p)〉 = 0 for all z ∈ T⊥(p) (5.1)

the n − 1 eigenvalues β1(p), . . . , βn−1(p) of SA(p)|T⊥(p), with the operator A(p) from

(2.5), coincide with n− 1 eigenvalues of S∇f(p). The subspace T ‖(p) is the eigenspace
of the remaining nth eigenvalue α(p) = 〈∇f(p)f(p), f(p)〉/‖f(p)‖2 of S∇f(p).

We consider now two compact sets K and K̃ in M without equilibrium points of (2.2)

satisfying (3.3) and suppose that (5.1) is satisfied for any p ∈ K̃. By α1(p) ≥ · · · ≥ αn(p)
denote the eigenvalues of S∇f(p). For that case Theorem 3.1 from [39] states that if for
some d ∈ (0, n] the inequality

α1(p) + . . .+ α⌊d⌋(p) + (d− ⌊d⌋)α⌊d⌋+1(p) < 0

holds for all p ∈ K̃, the estimate dimH K < d is true. For the C1-function v : K̃ → R

given by v(p) = 1
2 ln ‖f(p)‖2 we have Lfv(p) = 〈∇f(p)f(p), f(p)〉/‖f(p)‖2 = α(p) for

each p ∈ K̃. If α(p) ≥ 0 holds for all p ∈ K̃ then

α1(p) + · · · + α⌊d⌋(p) + (d− ⌊d⌋)α⌊d⌋+1(p)

= β1(p) + · · · + β⌊d⌋−1(p) + (d− ⌊d⌋)β⌊d⌋(p) + Lfv(p).

With this Corollary 4.1 gives an upper bound of dimH K which is less than or equal
to the upper bound we would get applying Theorem 3.1 from [39]. If d = 2 then
Corollary 4.1 gives the better estimate dimH K ≤ 1.

One easily shows that a compact, flow-invariant set K without equilibrium points
possesses an equivariant tangent bundle splitting T⊥ ⊕ T ‖ if and only if (5.1) holds
for any p ∈ K. Obviously the flow {ϕt}t∈R on K then is already reparametrized
globally if one considers the reparametrization described in Lemma 2.3. For that case
the assumptions of Theorem 4.1 can be weaken if we consider the long-time behavior.

Proposition 5.1 Let f : M → TM be the C2-vector field from (2.2) on the n-di-
mensional Riemannian manifold (M, g). Suppose that K ⊂ M is a compact and flow-
invariant set without equilibrium points of (2.2) and that K possesses an equivariant

tangent bundle splitting TKM = T⊥⊕T ‖ with respect to the flow. Let D ∈ {0, . . . , n−1}
be the smallest number such that νu

1 + · · · + νu
D + νu

D+1 < 0. Then it holds

dimH K ≤ D +
νu
1 + · · · + νu

D

|νu
D+1|

+ 1.
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Proof Take an arbitrary number d ∈
(
D +

νu
1 +···+νu

D

|νu
D+1

| , n − 1
]
. Then it holds νd =

νu
1 + · · · + νu

⌊d⌋ + (d − ⌊d⌋)νu
⌊d⌋+1 < 0. Fix some ε ∈ (0, νd). By definition of νd there

is a finite number T0 > 0 such that 1
T0

lnωT⊥,T‖

d,K (ϕT0) < νd + ε, i.e., ωT⊥,T‖

d,K (ϕT0) <

exp(T0(νd + ε)) < 1. Theorem 4.1 basically uses properties of the singular value function
which is estimated from above applying Lemma 2.2. Thus, the proposition can be proved

applying analogous arguments and using ωT⊥,T‖

d,K (ϕT0) = sup
p∈K

ωd

(
dpϕ

T0 |T⊥(p)

)
.

Example 5.1 Consider the vector field in R
2 given by

θ̇ = a sin θ, ẋ = −x+ b (5.2)

(with parameters a ≥ 1, b 6= 0), being in the first coordinate periodic with period
2π. The arising dynamical system can be interpreted as a dynamical system on the
flat cylinder Z of all equivalence classes [u], u ∈ R

2, being a smooth 2-dimensional
Riemannian manifold with the standard metric for factor manifolds. Every solution of
(5.2) is bounded in the second coordinate. Obviously, the set K = {z ∈ Z|z = [u], u =
(θ, 0), θ ∈ R} is compact and flow-invariant with respect to (5.2). The variational system
(2.3) and the system in normal variations (2.4) with respect to any solution (θ(t), 0) in
K are given by

ẏ =

(
a cos θ(t) 0

0 −1

)
y and ż =

(
−a cos θ(t) 0

0 −1

)
z,

respectively. Thus, β1(z) = −1 for any z ∈ K and condition (4.1) is satisfied with
d = 1 and Θ = T = 1. By Theorem 4.1 we conclude that dimH K ≤ 1. Note that in the
present situation other available theorems [39, 45] are not applicable since the divergence
of the right-hand side of (5.2) gives the expression a cos θ−1 which is, in contrast to the
assumptions of Theorem 3.1 from [39], not always negative.

6 Generalizations of the Theorems of Hartman-Olech and Borg

In this section we show that for certain vector fields in R
3 the methods of the present

paper provide always more effective conditions for upper Hausdorff bounds than those
which work without projection onto transversal submanifolds (e.g. [39, 45]). In addition
to this we improve for these systems results about the structure of ω-limit sets, which
are closely related to results in [4, 19, 20].

Consider an arbitrary C2-vector field f in R
3 with the standard Euclidean metric, i.e.,

the differential equation

ẋ = f(x). (6.1)

Suppose that for (6.1) the global flow {ϕt}t∈R exists. Let K and K̃ be two compact

sets in R
3 satisfying K ⊂ ϕt(p) ⊂ K̃ for all t ≥ 0. For that case for any x ∈ R

3 the
covariant derivative ∇f(x) can be identified with the Jacobi matrix Df(x) of f in x.

Suppose that f possesses in K̃ a finite number of equilibrium points and that for any
such equilibrium point all eigenvalues of Df(x) have negative real part.
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Consider the symmetric part SDf(x) = 1
2

(
Df(x) + Df(x)∗

)
of Df(x). As in the

previous sections for any regular p of f define the hyperplanes T⊥(x) = {z ∈ R
3 |

f(x)∗z = 0}, where f(x)∗ denotes the transposed vector. Let the linear operator
SA(x) : T⊥(x) → T⊥(x) be given by

SA(x) = SDf(x) −
f(x)f(x)∗

‖f(x)‖2
SDf(x) =

(
I −

f(x)f(x)∗

‖f(x)‖2

)
Df(x)

(compare with Lemma 2.1). Denote the eigenvalues of SDf(x), ordered with respect to
size and multiplicity, by α1(x) ≥ α2(x) ≥ α3(x). Suppose that β1(x) ≥ β2(x) are the
eigenvalues of SA(x) restricted to the subspace T⊥(x) and suppose further that β1(x)
and β2(x) are not eigenvalues of S∇f(x). It is easy to see that β1(x) and β2(x) are the

zeros of the equation f(x)∗
(
βi(x)I −SDf(x)

)−1
f(x) = 0. We introduce the polynomial

det(βI −Df(x)) ≡ β3 + δ2(x)β
2 + δ1(x)β + δ0(x). (6.2)

Let x ∈ K̃. Note that we have δ2(x) = −(α1(x)+α2(x)+α3(x)), δ1(x) = α1(x)α2(x)+
α2(x)α3(x) + α1(x)α3(x) and δ0(x) = −α1(x)α2(x)α3(x). From this with elementary
calculations (see [16]) it follows that the eigenvalues βi(x) (i = 1, 2) of SA(x) are the
zeros of the polynomial

β2 +
[
δ2(x) + ∆1(x)

]
β +

[
δ1(x) + δ2(x)∆1(x) + ∆2(x)

]
,

where

∆1(x) =
1

‖f(x)‖2
f(x)∗Df(x)f(x) and

∆2(x) =
1

‖f(x)‖2
f(x)∗Df(x)2f(x).

(6.3)

Using this fact one sees immediately that the assumptions of Corollary 4.1 are satisfied
for (6.1) if we suppose for the auxiliary function v(x) = 1

2 ln ‖f(x)‖2, defined on the set

of all regular points of R
3, the following conditions: There exists a continuous function

s : K̃ → [0, d1] with d1 ∈ (0, 1] such that for any regular point x ∈ K̃ with h(x) :=
1−s(x)
1+s(x) the inequalities

δ2(x) − h(x)∆1(x) > 0 and

1

4h(x)2
(
δ2(x) − h(x)∆1(x)

)2
>

1

4

(
δ2(x) − ∆1(x)

)2
− δ1(x) − ∆2(x)

hold. As a corollary we get that if the inequalities

δ2(x) − ∆1(x) > 0 and

δ1(x) + ∆2(x) > 0
(6.4)

are satisfied for all regular points x of f on K̃ then by Corollary 4.1 it holds that
dimH K ≤ 1. Further, the set K consists of a finite number of equilibrium points and
closed trajectories of (6.1). This can be easily shown using coverings of appropriated
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tubular neighborhoods. Note that the last result is closely related to results in [4, 19, 20].

If in addition to this the set K̃ is positively invariant with respect to the flow of (6.1),

connected, and if K̃ contains exactly one equilibrium point being asymptotically stable,

then K̃ is contained in the basin of attraction of this equilibrium point.
The Hartman-Olech condition ([20]) requires that α1(x) + α2(x) < 0 for all regular

points x ∈ K̃. This is one of the most effective sufficient condition which guarantees that

in the present situation the set K̃ is contained in the basin of attraction of an equilibrium.
Note that this is always sufficient for the condition (6.4).

Let us formulate a further corollary from Theorem 4.2 for the case M = R
3. Suppose

now that δ2(x) > 0 for all regular points x ∈ K̃ and that there exists a continuous

function s : K̃ → [0, d1) with d1 ∈ (0, 1] such that the inequalities

1 + s(x)

1 − s(x)
δ2(x) − ∆1(x) ≥ 0 and

s(x)

(1 − s(x))2
δ2(x)

2 −
s(x)

1 − s(x)
δ2(x)∆1(x) + δ1(x) + ∆2(x) ≥ 0

(6.5)

hold for all regular x ∈ K̃. It follows from Corollary 4.1 that dimH K < 2 + d1. It is
well-known (see [39, 45]) that a sufficient condition for the dimension estimate dimH K <
2 + d1 is the inequality

α1(x) + α2(x) + d1α3(x) < 0 for all x ∈ K̃. (6.6)

It is easy to show ([16]) that our condition (6.5) is always satisfied supposed that (6.6)
is satisfied.
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Hermann, Paris, 1969.

[18] Günther, B. and Segal, J. Every attractor of a flow on a manifold has the shape of a finite
polyhedron. Proc. Amer. Math. Soc. 119 (1993) 321–329.

[19] Hartman, P. Ordinary Differential Equations. John Wiley & Sons, New York, 1964.

[20] Hartman, P. and Olech, C. On global asymptotic stability of solutions of ordinary differ-
ential equations. Trans. Amer. Math. Soc. 104 (1962) 154–178.

[21] Hunt, B.R. Maximal local Lyapunov dimension bounds the box dimension of chaotic
attractors. Nonlinearity 9 (1996) 845–852.

[22] Il’yashenko, Yu.S. Weakly contracting systems and attractors of Galerkin approximations
of Navier-Stokes equations on the two-dimensional torus. Adv. in Mech. 5 (1982) 31–63.
[Russian].

[23] Katok, A. and Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems.
(Encyclopedia of Mathematics and its Applications 54), Cambridge University Press,
Cambridge, 1995.

[24] Klingenberg, W. Riemannian Geometry, De Gruyter Studies in Mathematics. Walter de
Gruyter & Co., Berlin, 1982.

[25] Ledrappier, F. Some relations between dimension and Lyapunov exponents. Comm. Math.
Phys. 81 (1981) 229–238.

[26] Leonov, G.A. Estimation of the Hausdorff dimension of attractors of dynamical systems.
Differ. Urav. 27(5) (1991) 767–771. [Russian].

[27] Leonov, G.A. Construction of a special outer Carathéodory measure for the estimation of
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