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Abstract: New sufficient conditions for the Liapunov stability of a class of
large scale systems described by ordinary differential equations are estab-
lished. In all cases we proposed a new construction for matrix-valued Lia-
punov function and the objective is the same: to analyze the stability of large
scale systems (nonautonomous and autonomous) in terms of sign definiteness
of specific matrices. In order to demonstrate the usefulness of the presented
results several examples are considered.
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1 Introduction

The methods of stability analysis of large-scale dynamical systems via one-level decom-
position of the system and a vector Liapunov functions were summarized in a series of
monographs. The necessity of further development of the known approaches for the men-
tioned class of dynamical systems and creation of new ones is caused by the fact that
the methods of qualitative analysis based on vector Liapunov function yield, as a rule,
“super-sufficient” stability conditions.

The aim of this paper is to present a new method of constructing the matrix-valued
function and then to obtain efficient stability conditions for one class of large scale systems
admitting one-level decomposition.
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2 A Class of Large Scale System

We consider a system with finite number of degrees of freedom whose motion is described
by the equations (2.1)

dxi

dt
= fi(xi) + gi(t, x1, . . . , xm), i = 1, 2, . . . ,m (2.1)

where xi ∈ Rni , t ∈ Tτ , Tτ = [τ,+∞), fi ∈ C(Rni , Rni), gi ∈ C(Tτ × Rn1 × · · · ×
Rnm , Rni).

Introduce the designation

Gi(t, x) = gi(t, x1, . . . , xm) −
m
∑

j=1, j 6=i

gij(t, xi, xj), (2.2)

where gij(t, xi, xj) = gi(t, 0, . . . , xi, . . . , xj , . . . , 0) for all i 6= j; i, j = 1, 2, . . . ,m. Tak-
ing into consideration (2.2) system (2.1) is rewritten as

dxi

dt
= fi(xi) +

m
∑

j=1, j 6=i

gij(t, xi, xj) +Gi(t, x). (2.3)

Actually equations (2.3) describe the class of large-scale nonlinear nonautonomously
connected systems. It is of interest to extend the method of matrix Liapunov functions to
this class of equations in view of the new method of construction of nondiagonal elements
of matrix-valued functions.

3 On Construction of Nondiagonal Elements of Matrix-Valued Function

In order to extend the method of matrix Liapunov functions to systems (2.3) it is neces-
sary to estimate variation of matrix-valued function elements and their total derivatives
along solutions of the corresponding systems. Such estimates are provided by the as-
sumptions below.

Assumption 3.1 There exist open connected neighborhoods Ni ⊆ Rni of the equi-
libriums state xi = 0, functions vii ∈ C1(Rni , R+), the comparison functions ϕi1, ϕi2

and ψi of class K(KR) and real numbers c
¯ii > 0, c̄ii > 0 and γii such that

(1) vii(xi) = 0 for all (xi = 0) ∈ Ni;
(2) c

¯iiϕ
2
i1(‖xi‖) ≤ vii(xi) ≤ c̄iiϕ

2
i2(‖xi‖);

(3) (Dxi
vii(xi))

Tfi(xi) ≤ γiiψ
2
i (‖xi‖) for all xi ∈ Ni,

i = 1, 2, . . . ,m.

It is clear (see [3, 5]) that under conditions of Assumption 3.1 the equilibrium states
xi = 0 of nonlinear isolated subsystems

dxi

dt
= fi(xi), i = 1, 2, . . . ,m (3.1)

are

(a) uniformly asymptotically stable in the whole, if γii < 0 and
(ϕi1, ϕi2, ψi) ∈ KR-class;

(b) stable, if γii = 0 and (ϕi1, ϕi2) ∈ K-class;
(c) unstable, if γii > 0 and (ϕi1, ϕi2, ψi) ∈ K-class.
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The approach proposed in this section takes large scale systems (2.3) into consider-
ation, subsystems (3.1) having various dynamical properties specified by conditions of
Assumption 3.1.

Assumption 3.2 There exist open connected neighborhoods Ni ⊆ Rni of the equi-
librium states xi = 0, functions vij ∈ C1,1,1(Tτ × Rni × Rnj , R), comparison functions

ϕi1, ϕi2 ∈ K(KR), positive constants (η1, . . . , ηm)T ∈ Rm, ηi > 0 and arbitrary con-
stants c

¯ij , c̄ij , i, j = 1, 2, . . . ,m, i 6= j such that

(1) vij(t, xi, xj) = 0 for all (xi, xj) = 0 ∈ Ni×Nj , t ∈ Tτ , i, j = 1, 2, . . . ,m, (i 6= j);
(2) c

¯ijϕi1(‖xi‖)ϕj1(‖xj‖) ≤ vij(t, xi, xj) ≤ c̄ijϕi2(‖xi‖)ϕj2(‖xj‖) for all (t, xi, xj) ∈
Tτ ×Ni ×Nj , i 6= j;

(3) Dtvij(t, xi, xj) + (Dxi
vij(t, xi, xj))

Tfi(xi)

+(Dxj
vij(t, xi, xj))

Tfj(xj) + ηi

2ηj
(Dxi

vii(xi))
Tgij(t, xi, xj) (3.2)

+
ηj

2ηi
(Dxj

vjj(xj))
Tgji(t, xi, xj) = 0;

It is easy to notice that first order partial equations (3.2) are a somewhat variation of
the classical Liapunov equation proposed in [8] for determination of auxiliary function
in the theory of his direct method of motion stability investigation. In a particular case
these equations are transformed into the systems of algebraic equations whose solutions
can be constructed analytically.

Assumption 3.3 There exist open connected neighbourhoods Ni ⊆ Rni of the
equilibrium states xi = 0, comparison functions ψ ∈ K(KR), i = 1, 2, . . . ,m, real
numbers α1

ij , α
2
ij , α

3
ij , ν

1
ki, ν

1
kij , µ

1
kij and µ2

kij , i, j, k = 1, 2, . . . ,m, such that

(1) (Dxi
vii(xi))

TGi(t, x) ≤ ψi(‖xi‖)
m
∑

k=1

ν1
kiψ(‖xk‖) +R1(ψ)

for all (t, xi, xj) ∈ Tτ ×Ni ×Nj ;

(2) (Dxi
vij(t, ·))Tgij(t, xi, xj) ≤ α1

ijψ
2
i (‖xi‖) + α2

ijψi(‖xi‖)ψj(‖xj‖) + α3
ijψ

2
j (‖xj‖)

+R2(ψ) for all (t, xi, xj) ∈ Tτ ×Ni ×Nj ;

(3) (Dxi
vij(t, ·))TGi(t, x) ≤ ψj(‖xj‖)

m
∑

k=1

ν2
ijkψk(‖xk‖) +R3(ψ)

for all (t, xi, xj) ∈ Tτ ×Ni ×Nj ;

(4) (Dxi
vij(t, ·))Tgik(t, xi, xk) ≤ ψj(‖xj‖)(µ1

ijkψk(‖xk‖) + µ2
ijkψi(‖xi‖)) +R4(ψ)

for all (t, xi, xj) ∈ Tτ ×Ni ×Nj .

Here Rs(ψ) are polynomials in ψ = (ψ1(‖x1‖, . . . , ψm(‖xm‖)) in a power higher than
three, Rs(0) = 0, s = 1, . . . , 4.

Under conditions (2) of Assumptions 3.1 and 3.2 it is easy to establish for function

v(t, x, η) = ηTU(t, x)η =

m
∑

i,j=1

vij(t, ·)ηiηj (3.3)

the bilateral estimate (cf. [4])

uT
1H

TC
¯
Hu1 ≤ v(t, x, η) ≤ uT

2H
TC̄Hu2, (3.4)

where

u1 = (ϕ11(‖x1‖, . . . , ϕm1(‖xm‖))T,

u2 = (ϕ12(‖x1‖, . . . , ϕm2(‖xm‖))T,
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which holds true for all (t, x) ∈ Tτ ×N , N = N1 × · · · × Nm.
Based on conditions (3) of Assumptions 3.1, 3.2 and conditions (1) – (4) of Assump-

tion 3.3 it is easy to establish the inequality estimating the auxiliary function variation
along solutions of system (2.3). This estimate reads

Dv(t, x, η)
∣

∣

(2.1)
≤ uT

3Mu3, (3.5)

where u3 = (ψ1(‖x1‖), . . . , ψm(‖xm‖) and holds for all (t, x) ∈ Tτ ×N .
Elements σij of matrix M in the inequality (3.8) have the following structure

σii = η2
i γii + η2

i νii +

m
∑

k=1, k 6=i

(ηkηiν
2
kii + η2

i ν
2
kii) + 2

m
∑

j=1, j 6=i

ηiηj(α
1
ij + α3

ji);

σij =
1

2
(η2

i ν
1
ji + η2

j ν
1
ij) +

m
∑

k=1, k 6=j

ηkηjν
2
kij +

m
∑

k=1, k 6=i

ηiηjν
2
kij

+ ηiηj(α
2
ij + α2

ji) +

m
∑

k=1, k 6=i,
k 6=j

(ηkηjµ
1
kji + ηiηjµ

2
ijk + ηiηkµ

1
kij + ηiηjµ

2
jik),

i = 1, 2, . . . ,m, i 6= j.

4 Test for Stability Analysis

Sufficient criteria of various types of stability of the equilibrium state x = 0 of system
(2.3) are formulated in terms of the sign definiteness of matrices C

¯
, C̄ and M from

estimates (3.4), (3.5). We shall show that the following assertion is valid.

Theorem 4.1 Assume that the perturbed motion equations are such that all condi-
tions of Assumptions 3.1 – 3.3 are fulfilled and moreover

(1) matrices C
¯

and C̄ in estimate (3.4) are positive definite;
(2) matrix M in inequality (3.5) is negative semi-definite (negative definite).

Then the equilibrium state x = 0 of system (2.1) is uniformly stable (uniformly
asymptotically stable).

If, additionally, in conditions of Assumptions 3.1 – 3.3 all estimates are satisfied for
Ni = Rni ,Rk(ψ) = 0, k = 1, ...4 and comparison functions (ϕi1, ϕi2) ∈ KR-class,
then the equilibrium state of system (2.1) is uniformly stable in the whole (uniformly
asymptotically stable in the whole).

Proof If all conditions of Assumptions 3.1 – 3.2 are satisfied, then it is possible for sys-
tem (2.1) to construct function v(t, x, η) which together with total derivative Dv(t, x, η)
satisfies the inequalities (3.4), and (3.5). Condition (1) of Theorem 4.1 implies that
function v(t, x, η) is positive definite and decreasing for all t ∈ Tτ . Under condition
(2) of Theorem 4.1 function Dv(t, x, η) is negative semi-definite (definite). Therefore all
conditions of Theorem 2.3.1, 2.3.3 from [9] are fulfilled. The proof of the second part of
Theorem 4.1 is based on Theorem 2.3.4 from the same monograph [9].
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5 Nonautonomous Oscillator

We shall study the motion of two non-autonomously connected oscillators whose be-
haviour is described by the equations

dx1

dt
= γ1x2 + v cosωty1 − v sinωty2,

dx2

dt
= −γ1x1 + v sinωty1 + v cosωty2,

dy1
dt

= γ2y2 + v cosωtx1 + v sinωtx2,

dy2
dt

= −γ2y2 + v cosωtx2 − v sinωtx1,

(5.1)

where γ1, γ2, v, ω, ω + γ1 − γ2 6= 0 are some constants.
For the independent subsystems

dx1

dt
= γ1x2,

dx2

dt
= −γ1x1

dy1
dt

= γ2y2,
dy2
dt

= −γ2y1

(5.2)

the auxiliary functions vii, i = 1, 2, are taken in the form

v11(x) = xTx, x = (x1, x2)
T,

v22(y) = yTy, y = (y1, y2)
T.

(5.3)

We use the equation (3.2) (see Assumption 3.2) to determine the non-diagonal element
v12(x, y) of the matrix-valued function U(t, x, y) = [vij(·)], i, j = 1, 2. To this end set

η = (1, 1)T and v12(x, y) = xTP12y, where P12 ∈ C1(Tτ , R
2×2). For the equation

dP12

dt
+

(

0 −γ1

γ1 0

)

P12

+ P12

(

0 γ2

−γ2 0

)

+ 2v

(

cosωt − sinωt

sinωt cosωt

)

= 0,

(5.4)

the matrix

P12 = −
2v

ω + γ1 − γ2

(

sinωt cosωt

− cosωt sinωt

)

is a partial solution bounded for all t ∈ Tτ .
Thus, for the function v(t, x, y) = ηTU(t, x, y)η it is easy to establish the estimate of

(3.4) type with matrices C
¯

and C̄ in the form

C
¯

=

(

c
¯11 c

¯12

c
¯12 c

¯22

)

, C̄ =

(

c̄11 c̄12

c̄12 c̄22

)

,

where c̄11 = c
¯11 = 1; c̄22 = c

¯22 = 1, c̄12 = −c
¯12 = |2v|

|ω+γ1−γ2|
. Besides, the vector

uT
1 = (‖x‖, ‖y‖) = uT

2 since the system (5.1) is linear.



198 A.A. MARTYNYUK AND V.I. SLYN’KO

For system (5.1) the estimate (3.5) becomes

Dv(t, x, y)
∣

∣

(5.1)
= 0

for all (x, y) ∈ R2 ×R2 because M = 0.
Due to (5.4) the motion stability conditions for system (5.1) are established basing on

the analysis of matrices C
¯

and C̄ property of having fixed sign.
It is easy to verify that the matrices C

¯
and C̄ are positive definite, if

1 −
4v2

(ω + γ1 − γ2)2
> 0.

Consequently, the motion of nonautonomously connected oscillators is uniformly stable
in the whole, if

|v| <
1

2
|ω + γ1 − γ2|.

6 Large Scale Linear System

Assume that in the system

dx1

dt
= A11x1 +A12x2 +A13x3,

dx2

dt
= A21x1 +A22x2 +A23x3,

dx3

dt
= A31x1 +A32x2 +A33x3,

(6.1)

the state vectors xi ∈ Rni , i = 1, 2, 3, and Aij ∈ Rni×nj are constant matrices for
all i, j = 1, 2, 3.

For the independent systems

dxi

dt
= Aiixi, i = 1, 2, 3 (6.2)

we construct auxiliary functions vii(xi) as the quadratic forms

vii(xi) = xT
i Piixi, i = 1, 2, 3 (6.3)

whose matrices Pii are determined by

AT
iiPii + PiiAii = −Gii, i = 1, 2, 3, (6.4)

where Gii are prescribed matrices of definite sign. In order that to construct non-diagonal
elements vij(xi, xj) of matrix-valued function U(x) we employ equation (3.2) from As-
sumption 3.2. Note that for system (6.1)

fi(xi) = Aiixi, fj(xj) = Ajjxj ,

gij(xi, xj) = Aijxj , Gi(t, x) = 0, i = 1, 2, 3.
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Since for the bilinear forms

vij(xi, xj) = vji(xj , xi) = xT
i Pijxj , (6.5)

the correlations

Dxi
vij(xi, xj) = xT

jP
T
ij , Dxj

vij(xi, xj) = xT
i Pij ,

are true, equation (3.2) becomes

xT
i

(

AT
iiPij + PijAjj +

ηi

ηj
PiiAij +

ηj

ηi
AT

jiPii

)

xj = 0.

From this correlation for determining matrices Pij we get the system of algebraic equa-
tions

AiiPij + PijAjj = −
ηi

ηj
PiiAij −

ηj

ηi
AT

jiPii,

i 6= j, i, j = 1, 2, 3.

(6.6)

Since for (6.3), and (6.5) the estimates (see [4, 6])

vii(xi) ≥ λm(Pii)‖xi‖
2, xi ∈ Rni ;

vij(xi, xj) ≥ −λ
1/2
M (PijP

T
ij)‖xi‖‖xj‖, (xi, xj) ∈ Rni ×Rnj ,

hold true, for function v(x, η) = ηTU(x)η the inequality

wTHTCHw ≤ v(x, η) (6.7)

is satisfied for all x ∈ Rn, w = (‖x1‖, ‖x2‖, ‖x3‖)T and the matrix

C =







λm(P11) −λ
1/2
M (P12P

T
12) −λ

1/2
M (P13P

T
13)

−λ
1/2
M (P12P

T
12) λm(P22) −λ

1/2
M (P23P

T
23)

−λ
1/2
M (P13P

T
13) −λ

1/2
M (P23P

T
23) λm(P33)






.

For system (6.1) the constants from Assumption 3.3 are:

α1
ij = α2

ij = 0; α3
ij = λM (AT

ijPij + PT
ijAij),

ν1
ki = ν2

ijk = 0; ν1
ijk = λ

1/2
M [(PT

ijAik)(PT
ijAik)], µ2

ijk = 0.

Therefore the elements σij of matrix M in (3.5) for system (6.1) have the structure

σii = −η2
i λm(Gii) + 2

3
∑

j=1, j 6=i

ηiηjα
3
ij , i = 1, 2, 3,

σij =
3
∑

k=1, k 6=i,
k 6=j

(ηkηjν
1
ijk + ηiηkν

1
kij), i, j = 1, 2, 3, i 6= j.

Consequently, the function Dv(x, η) variation along solutions of system (6.1) is estimated
by the inequality

Dv(x, η)
∣

∣

(6.1)
≤ wTMw (6.8)

for all (x1, x2, x3) ∈ Rn1 ×Rn2 ×Rn3 .
We summarize our presentation as follows.
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Corollary 6.1 Assume for system (6.1) the following conditions are satisfied:

(1) algebraic equations (6.4) have the sign-definite matrices Pii, i = 1, 2, 3 as their
solutions;

(2) algebraic equations (6.6) have constant matrices Pij , for all i, j = 1, 2, 3, i 6= j
as their solutions;

(3) matrix C in (6.7) is positive definite;
(4) matrix M in (6.8) is negative semi-definite (negative definite).

Then the equilibrium state x = 0 of system (6.1) is uniformly stable (uniformly
asymptotically stable).

This corollary follows from Theorem 4.1 and hence its proof is obvious.

7 Discussion and Numerical Example

To start to illustrate the possibilities of the proposed method of Liapunov function con-
struction we consider a system of two connected equations that was studied earlier by
the Bellman-Bailey approach (see [7, 8], etc.).

Partial case of system (6.1) is the system

dx1

dt
= Ax1 + C12x2,

dx2

dt
= Bx2 + C21x1,

(7.1)

where x1 ∈ Rn1 , x2 ∈ Rn2 , and A, B, C12 and C21 are constant matrices of corresponding
dimensions. For independent subsystems

dx1

dt
= Ax1,

dx2

dt
= Bx2

(7.2)

the functions v11(x1) and v22(x2) are constructed as the quadratic forms

v11 = xT
1P11x1, v22 = xT

2P22x2, (7.3)

where P11 and P22 are sign-definite matrices.
Function v12 = v21 is searched for as a bilinear form v12 = xT

1P12x2 whose matrix is
determined by the equation

ATP12 + P12B = −
η1
η2
P11C12 −

η2
η1
CT

21P22, η1 > 0, η2 > 0. (7.4)

According to Lankaster [7, p.240] equation (7.4) has a unique solution, provided that
matrices A and −B have no common eigenvalues.

Matrix C in (6.7) for system (7.1) reads

C =

(

λm(P11) −λ
1/2
M (P12P

T
12)

−λ
1/2
M (P12P

T
12) λm(P22)

)

. (7.5)
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Here λm(·) are minimal eigenvalues of matrices P11, P22, and λ
1/2
M (·) is the norm of

matrix P12P
T
12.

Estimate (6.7) for function Dv(x, η) by virtue of system (7.1) is

Dv(x, η) |(7.1)≤ wTΞw, (7.6)

where w = (‖x1‖, ‖x2‖)
T, Ξ = [σij ], i, j = 1, 2;

σ11 = λ1η
2
1 + η1η2α22,

σ22 = λ2η
2
2 + η1η2β22,

σ12 = σ21 = 0.

The notations are
λ1 = λM (ATP11 + P11A),

λ2 = λM (BTP22 + P22B),

α22 = λM (CT
12P12 + PT

12C12),

β22 = λM (CT
21P

T
12 + P12C21),

λ(·) is maximal eigenvalue of matrix (·). Partial case of Assumption 3.1 is as follows.

Corollary 7.1 For system (7.1) let functions vij(·), i, j = 1, 2 be constructed so that
matrix C for system (7.1) is positive definite and matrix Ξ in inequality (7.6) is negative
definite. Then the equilibrium x = 0 of system (7.1) is uniformly asymptotically stable.

We consider the numerical example. Let the matrices from system (7.1) be of the form

A =

(

−2 1

3 −2

)

, B =

(

−4 1

2 −1

)

, (7.7)

C12 =

(

−0.5 −0.5

0.8 −0.7

)

, C21 =

(

1.1 0.5

−0.6 −0.3

)

. (7.8)

Functions vii for subsystems

ẋ = Ax, x = (x1, x2)
T,

ẏ = By, y = (y1, y2)
T

are taken as the quadratic forms

v11 = 1.75x2
1 + x1x2 + 1.5x2

2,

v22 = 0.35y2
1 + 0.9y1y2 + 0.95y2

2.
(7.9)

Let η = (1, 1)T. Then λ1 = λ2 = −1,

P12 =

(

−0.011 0.021
−0.05 −0.022

)

,

α22 = 0.03, β22 = −0.002.
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It is easy to verify that σ11 < 0, and σ22 < 0, and hence all conditions of Corollary 7.1,
are fulfilled in view that

λ
1/2
M (P12P

T
12) ≤ (λm(P11)λm(P22))

1/2,

for the values of λ
1/2
M (P12P

T
12) = 0.06, λm(P11) = 1.08, λm(P22) = 0.115. This implies

uniform asymptotic stability in the whole of the equilibrium state of system (7.1) with
matrices (7.7), and (7.8).

Let us show now that stability of system (7.1) with matrices (7.7), and (7.8) can not
be studied in terms of the Bailey [2] theorem.

We recall that in this theorem the conditions of exponential stability of the equilibrium
state are

(1) for subsystems (7.2) there must exist functions (7.3) satisfying estimates
(a) ci1‖xi‖2 ≤ vi(t, xi) ≤ ci2‖xi‖2,
(b) Dvi(t, xi) ≤ −ci3‖xi‖2,
(c) ‖∂vi/∂xi‖ ≤ ci4‖xi‖ for xi ∈ Rni ,

where cij are some positive constants, i = 1, 2, j = 1, 2, 3, 4;
(2) the norms of matrices Cij in system (2.4.17) must satisfy the inequality (see

Abdullin, et al. [1, p. 106])

‖C12‖‖C21‖ <

(

c11c21
c12c22

)1/2(
c13c23
c14c24

)

. (7.10)

We note that this inequality is refined as compared with the one obtained firstly by
Bailey [2].

The constants c11, . . . , c24 for functions (7.9) and system (7.1) with matrices (7.7),
and (7.8) take the values

c11 = 1.08, c21 = 0.115, c12 = 2.14,

c22 = 2.14, c22 = 1.135, c13 = c23 = 1, c14 = 4.83, c24 = 2.4.

Condition (7.10) requires that ‖C12‖‖C21‖ < 0.0184 whereas for system (7.1), (7.7), and
(7.8) we have

‖C12‖‖C21‖ = 1.75.

Thus, the Bailey theorem turns out to be nonapplicable to this system and the condition
(7.10) is “super-sufficient” for the property of stability.
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