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Abstract: Generally speaking, it is relatively easy to design a feedback con-
troller to eliminate the possibility of chaos in a nonlinear dynamical system.
Here we examine chaotic control not from the prospective of eliminating chaos,
but from the prospective of producing chaotic motion in order to take advan-
tage of the random like “free ride” a chaotic attractor provides. The idea
is stay with this free ride until the system moves into a target containing a
desired fixed point. Once inside this target, feedback control is applied that
provides asymptotic stability for the fixed point. A basic requirement with
this approach is to determine an appropriate target. It must be a subset of
the domain of attraction to the fixed point under state variable feedback con-
trol. In addition, the target must be large enough so that the time it takes
for the system to reach it, under chaotic control, is not unreasonably large.
After addressing the question as to why this might be a desirable approach for
nonlinear control system design, the focus of this paper is on the presentation
of a general method for applying chaotic control and then demonstrating its
use in controlling an inverted pendulum and a bouncing ball.
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1 Introduction

The full potential of control system design is often overlooked since there exists a strong
prejudice, in classical control text books, to only deal with linear systems. A major
focus of control system design is to achieve asymptotic stability to an equilibrium point.
Since nonlinear systems are generally “linearized” before applying linear control design
methods, chaotic or other motion which can only occur in nonlinear systems is not
generally considered to be a part of the design process. However, for years, controls
engineers have been using traditional linear control methods to control systems which
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have the potential for chaos. This is not thought of as “controlling chaos” as chaos or

any motion other than asymptotic stability or tracking is suppressed.

Poincaré [1] noted in 1892 that certain mechanical systems could display chaotic mo-
tion. However the notion that deterministic models of discrete or continuous nonlinear

dynamical systems could behave chaotically did not attract wide attention until Lorenz [2]

in (1963), May [3] in (1976), and others reported chaotic behavior in very simple dynam-
ical models.

In 1990, Ott, Grebogi and York [4] published the first paper to point out that chaos
could be advantageous in achieving control objectives. Their method, now called the

OGY method, involves stabilizing one of the unstable periodic orbits embedded in the
chaotic attractor using small time dependent perturbations of a system parameter. Chao-

tic motion allows this method to work since all of the unstable periodic orbits will even-
tually be visited. One simply waits until the chaotic motion brings the system near

a neighborhood of the proper unstable periodic orbit, at which time the small control

is applied. Many variants of this method have appeared in the literature [5]. A more
traditional control approach to regulating the Lorenz equations appeared in 1991 [6].

Since that time there have been a number of other papers dealing with the control of

chaotic systems [7 – 12] including feedback control of the Lorenz equations [13, 14]. These

references tend to focus on the problem of designing a stabilizing controller for systems
which, without control, would be chaotic. However, since chaos can be useful in moving

a system to various points in state space, the systems of interest here are not necessarily
chaotic but as in [15 – 17] chaotic motion can be created as a part of the total control

design. We make use of the fact that for many nonlinear systems chaos is easy to create
using open-loop control. In particular, see [18] for a discussion of producing chaos in the

driven pendulum system.

In the chaotic control algorithm given below, two essential ingredients are needed:

a chaotic attractor and a controllable target. It is assumed that chaos can be created
using open loop control. A controllable target is any subset of the domain of attraction

to a equilibrium point, under a corresponding feedback control law, that has a non-

empty intersection with the chaotic attractor. Thus the equilibrium point itself need
not be on the chaotic attractor. If we start the system at any point within the basin of

attraction of the chaotic attractor, the resulting chaotic motion will ultimately arrive in
the controllable target. The chaotic control algorithm simply has to keep track of when

the system enters the controllable target. When it does, the open loop control used to
create chaos is turned off and at the same time the closed-loop feedback control is turned

on.

The chaotic control algorithm has some distinct advantages in designing controllers

for nonlinear systems. Its main advantage is simplicity. Consider for a moment one

of the alternatives. Optimal control [19 – 21] is well suited for nonlinear problems and
numerical methods are available [22] for solving complex problems. However optimal

control solutions, for nonlinear problems, obtained by applying Pontryagin’s maximum
principle are generally open-loop. One could use this open-loop control to drive the

system to a controllable target in a direct fashion. However such a control program
would not be robust in the sense that if a perturbation were to drive the system outside

of the controllable target, one could not simply turn the open loop control back on. The

only alternative would be to start over again.
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2 Stability under Chaotic Control

Consider the class of dynamical systems, subject to control, which can be described by
either nonlinear difference equations of the form (discrete system)

X(t+1) = F(X,U) (2.1)

or nonlinear differential equations of the form (continuous system)

Ẋ = F[X,U], (2.2)

where F = [F1 · · · FNX
] is an NX dimensional vector function of the state vector

X = [X1 · · · XNX
], and control vector U = [U1 · · · UNU

]. Current time is indicated
by t and the subscript (t + 1) is used to denote one time unit latter. The dot (˙)
denotes differentiation with respect to time. For the discrete system, t is just a counter
and need not denote actual time. The functions Fi are assumed to be continuous and
continuously differentiable in their arguments. The control will, in general, be bounded
and it is assumed that at every time t, the control U must lie in a subset of the control
space U defined by the inequalities

Uimin
≤ Ui ≤ Uimax

for i = 1 · · ·NU .
The control input U is either a specified function of time, U(t) (open-loop) or a speci-

fied function of the state, U(x) (closed-loop). Assume that for all t there exists a specified

open-loop control input Û(t) such that the system has a chaotic attractor. Furthermore

assume that for a specified constant control, Û(t) ≡ Ū, there is a corresponding fixed
point of interest which is near the chaotic attractor. The fixed point satisfies

X̄ = (X̄, Ū)

for the discrete difference equation system and it satisfies

F(X̄, Ū) = 0

for the continuous differential equation system.
Given the above assumptions, the controllable target is obtained using a method

of linearization and Lyapunov function estimates [16, 21]. The nonlinear system is first
linearized about the fixed point. The resulting linear system is assumed to be controllable
and the LQR method [23, 24] is used to design a full state variable feedback controller
that will guarantee the origin for this system is asymptotically stable. This, in turn,
implies that for the nonlinear system, the fixed point will be asymptotically stable in
some neighborhood containing the fixed point. An under estimate for this neighborhood
is then determined using a Lyapunov function obtained from the linear system. This
under estimate is used as the controllable target. Full details of this approach is given in
[17]. We will now illustrate the application of this chaotic control method to two systems.
The first is continuous and the second is discrete.
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Figure 3.1. Inverted pendulum attached to a DC motor.

3 Inverted Pendulum

Consider the inverted pendulum, attached to a DC motor as shown in Figure 3.1. The
pendulum is free to rotate through all angles so that it has stable downward equilibrium
positions at θ = π(1 ± 2n), (n = 0, 1, 2, . . . ) and unstable upright equilibrium position
at θ = 2nπ, (n = 0, 1, 2, . . . ). Let x1 = π− θ be the angle of the pendulum as measured
from the downward position, ẋ1 be the rate of change of this angle, and bu be the torque
applied by the motor. Positive values are in the counter clockwise direction. In terms of
these variables, the equations of motion are given by

ẋ1 = x2,

ẋ2 = a1 sinx1 + a2x2 + bu,
(3.1)

where a1, a2, and b are constants associated with the system. The term a1 sinx1 is the
torque provided by gravity, a2x2 is damping provided by friction and back EMF of the
motor, bu is the control torque provided by a DC motor, and u is the voltage applied to
the motor, with |u| ≤ umax. The particular system that we will examine here has [21]

a1 = −17.627 rad/sec2

a2 = −0.187 sec−2

b = 0.6455 rad/volt-sec2

umax = 18 volts.

Our objective is to stabilize the inverted pendulum in the vertical upright position.
If we linearize this system about X̄ = [π 0 ]T, then we can use LQR design [24] with

Q and R identity matrices to obtain the feedback gains

K =
[
54.6333 12.7624

]
,
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Figure 3.2. Domain of attraction for the inverted pendulum.

with the eigenvalues for the linearized controlled system given by λ1 = −4.5397 and
λ2 = −3.8855. Under LQR design the feedback control law is given by

u(x) = −K(x− X̄). (3.2)

However since there are bounds on the control, the actual feedback control law used is
that of saturating feedback control [21].

We can find the domain of attraction under saturating LQR control as applied to the
nonlinear system (3.1) by integrating backward from points very close to the equilibrium
points obtained when the control is set equal to ±umax. The results are illustrated in
Figure 3.2. In order to “see” the domain of attraction in this figure, first pinpoint the
star located inside the ellipse. This represents X̄. The domain of attraction, to this point
is the set of all points obtained by “flooding” with a color, from the star, or by drawing
all continuous curves from the star which do not cross any of the curves contained in the
figure other than the ellipse. Observe that, in places, the domain of attraction narrows
down and becomes tubular.

Note that the x1 and x2 axis are in multiples of π. The equilibrium point X̄ and the
first 2π multiple to the right and left are marked with a star, the squares locates stable
equilibrium points, and the circles locate the equilibrium solutions obtained if saturating
LQR control is used outside the domain of attraction.

Consider any one of the lob-like objects which contain a square and a small circle. If
the system, under saturating LQR control is started anywhere inside the lob, including
its tubular extension, it will remain in it, ultimately arriving at the equilibrium point
contained in the lobe. Clearly these regions are not in the domain of attraction to X̄.
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In fact, the domain of attraction to X̄ is simply all other points. Note that these other
points include the stars located at 2π multiples of θ = 0. Saturating LQR controller
will not stabilize the system to these points since it does not recognize any vertical

equilibrium position other than the one corresponding to θ = θ̇ = 0. In other words if
the system were started at the upright position x1 = 3π, x2 = 0, the LQR controller
would “unwind” the pendulum to bring it to x1 = x2 = 0.

3.1 Controllable targets

Under LQR control the linearized system is stable and we can solve the matrix Lyapunov
equation [21] to find a Lyapunov function for this system

V = xTPx, where P =

[
1.3450 0.0283

0.0283 0.0627

]
. (3.3)

Since P is a positive definite matrix, lines of constant V are ellipses. We now seek the

largest level curve V = Vmax for which V̇ < 0 everywhere inside the ellipse using (3.1)
under saturating LQR control. Since the problem is two dimensional, a value for Vmax

may be obtained by choosing a sufficiently small value for Vmax so that integrating around

the ellipse results in V̇ < 0 everywhere on this curve. A larger value for Vmax may then

be chosen and the process repeated until the inequality is satisfied with V̇ very close to
zero. Using this procedure results in Vmax = 0.18 for this problem. One advantage of
this method for finding Vmax is that it provides a numerical verification that the region
inside the ellipse defined by (3.3) is a region of guaranteed asymptotic stability for the
equilibrium point x1 = π, x2 = 0. The ellipse of Figure 3.2 is the one given by (3.3)
with V = Vmax.

3.2 Chaotic attractor

In seeking an open loop control which will provide chaotic motion, it must be able to
swing the pendulum to the upright vertical position from any given starting condition.
An easy way to do this is to apply a sinusoidal voltage to the motor. For example,
applying the control

u = 11 cos 3t (3.4)

will drive the system “over the top”. This is a necessary but not a sufficient condition
for chaos. While there are many amplitude-frequency combinations which will produce
chaos, a small change in one of these values, may result in motion which is not chaotic
[18]. It is not proven here that the control given by (3.4) does actually produce chaos.
What is obtained may be a long chaotic transient [6] with the possibility that after a
sufficiently long time period the trajectory could settle down to a limit cycle. However
as long as (3.4) produces a long term chaotic transient (if not true chaos) over a range
of starting conditions of interest, it remains a viable chaotic controller.

Given a sufficiently long running time, a chaotic controller will wind up the pendulum
for many revolutions in both directions, moving past the origin many times in a random
way as depicted in Figure 3.3. The small circles represent the location of the pendulum in
state space at every 0.1 second. Clearly the chaotic attractor is very large in comparison
with the controllable target just obtained. This implies that the waiting time between
chaotic control and feedback control may be large. One way to improve the odds is to
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Figure 3.3. Chaotic attraction for the inverted pendulum.

simply increasing the number of targets. One obvious way of doing this is to introduce
the ellipse just obtained at each of the points indicated by the stars in Figure 3.2. At each
of these points the pendulum is in the upright position at zero velocity. The feedback
control at these new targets must be adjusted accordingly. Three targets are illustrated
in Figure 3.3. While the targets appear to have received many “hits” (especially the left
one), there are only 21 points which lie inside the ellipses out of the 2,500 points (which
lie inside the left/right limits of the figure and outside these limits). It should also be
noted that the results shown in Figure 3.3 are only representative. It is possible that
changing the initial conditions only slightly, using the same integration time, could result
in more hits, no hits, or with most of the points lying outside the figure.

3.3 Intermediate targets

It is evident that it would be desirable to add additional targets. It has been previously
shown that the waiting period required with the OGY method can be substantially
reduced by using a “targeting method” [25]. This procedure uses intermediate targets in
moving the system to a final target. We will use a similar procedure here. One way to
arrive at additional intermediate targets is to simply integrate backward, under saturating

LQR control from the neighborhood of the original equilibrium point X̄ =
[
π 0

]T

using the initial conditions x(0) =
[
π ε

]T
and x(0) =

[
π − ε

]T
for a period of

time, ts. This results in two stopping points x+
s and x−

s . At each of these stopping point
we know that there exists some neighborhood about x±

s such that if we integrate the
system forward in time under saturating LQR control the system will be returned to X̄.
Here we will choose ts to be relatively small (e.g. so that the approximation sinx1 = x1
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Figure 3.4. Utilizing chaos in the control of the inverted pendulum.

is valid) and use the controllable target ellipse centered at x±
s to be an estimate of this

additional neighborhood. If the system were indeed linear, the flow of all trajectories
though the new intermediate target would converging to the line described by the retro
trajectory. Unfortunately, for nonlinear systems there is no guarantee that all points in
these intermediate targets will be controllable to the equilibrium point. This possibility
does not defeat the method provided that we allow for it in the control algorithm. One
way to do this is to make sure that chaotic control will be used in a small neighborhood of
all equilibrium points other than the stars. In this way if the system enters a intermediate
target, saturating LQR control is turned on, and the resultant trajectory does not arrive
at a star, the chaotic control sequence will begin again. Clearly the majority of points in
the intermediate target, under saturating LQR control must drive the system to a star
in order for an intermediate target to be of any use.

A sample run using one control target at X̄ and two intermediate targets is illustrated
in Figure 3.4. The system starts at the origin under (3.4) and remains under this control
until it intersects the upper intermediate target. At this point saturating LQR control
is applied which brings the system to X̄. In this case, since the chaotic trajectory is
relatively short, it is shown as a solid line. Other example runs are similar and illustrate
the usefulness of intermediate targets.

4 Bouncing Ball

A theoretical study of the motion of a ball bouncing on an oscillating plate is given in [26].
They construct an approximate map relating the velocity and phase between successive
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impacts of a ball bouncing on an oscillating plate of infinite mass, and show that the
motion of the ball can be chaotic, by demonstrating the existence of a horseshoe. For
certain frequencies of the plate and certain initial conditions of the ball it is possible to
get periodic motion for any integer period. Some of these periodic orbits are stable and
some are not.

Two variables, the position of the plate and the time interval between bounces, can
be used as state variables used to model the ball map. Each time the ball bounces on
the plate there is an opportunity to measure the state of the system and apply a control.
We will be controlling the frequency of the plate in order to achieve a specified objective
for the motion of the ball. In particular, our objective is to position the ball so as to
maintain the system at a specified fixed point of the ball map when the plate is moving
at a specified nominal frequency ω̄.

The command frequency applied just after a bounce (at time tj) is given by

ωj = ω̄ + uj

where uj is the change in frequency from the nominal value. Between the last bounce
and the next, therefore, the plate is controlled according to

y(t) = A sin(ωjτ + φj) (4.1)

where y(t) is the displacement of the plate in the vertical direction, A is the amplitude
of the plate, τ = t− tj , is time since the last bounce and

φj = ωj(tj − tj−1) + φj−1

is the phase angle of the plate at the time of the last bounce. For this situation, it is not
difficult to show that under the assumption that the bounce height is large compared to
A, that the ball map is given by [27]

φj+1 = φj +
ωj

ω̄
ψj ,

ψj+1 = −a2ψj + â1ω̄ωj cosφj+1,

(4.2)

where ψj is the change in phase between bounces (related to the time interval between
bounces) a2 and â1 are constants whose values depend on the mass ratio of the ball to
the plate, the coefficient of restitution, the amplitude of the plate, and the acceleration
of gravity.

When equations (4.2) are iterated to produce a dynamical solution, the first equation
is evaluated modulo 2π since φ refers to a physical position of the plate. The second
equation is not evaluated modulo 2π since the plate may go through more than one cycle
before the next bounce.

There are many possible periodic solutions to (4.2). For example the ball can bounce
to a fixed height at every n cycles of the plate. It can also bounce to m different heights
at n×m cycles of the plate before repeating the pattern.

Figure 4.1 shows some of the kinds of dynamics possible with an actual bouncing ball
system. In the top figure, the initial conditions were set very close to those correspond-
ing to an unstable period-1 solution. We see the ball diverge from this solution and
approaches a stable period-2 solution corresponding to m = 2, n = 1. In the middle



214 T.L. VINCENT

Figure 4.1. Ball and plate motion. (top) A stable period-2 solution at ω =
30 rad/sec. (middle) Chaotic motion at ω = 45 rad/sec. (bottom) The ball can

ride on the plate when ω = 22 rad/sec.

figure, the ball bounces chaotically, with different n values between different steps. In
the bottom figure, the plate frequency is such that a stable period one solution exists,
however in this case, the initial conditions are not near this solution and the ball ends
up riding on the plate after a few bounces.

4.1 Chaotic attractor

For the experimental bouncing ball system located at the University of Arizona non-linear
control system laboratory, the parameters are given by a2 = −0.733 and â1 = 0.00459.
With these values, it turns out that the high-bounce map (4.2) produces chaotic motion
with ω̄ = 45 rad/sec as shown in the middle illustration of Figure 4.1. Figure 4.2
illustrates the corresponding chaotic attractor. The map was obtained by starting the
system at φ(0) = 0 and ψ(0) = 9.1743 radians and run for 1000 iterations. The values
of φ and ψ are divided by 2π before plotting. The resulting chaotic attractor lies between
an upper and lower bound as indicated in the figure. The upper bound is related to the
height the ball would bounce, if it could bounce periodically at the phase angle φ and
the lower bound is related to the height the ball would achieve if were to impact the
plate at the phase angle φ with zero velocity. Under the high-bounce map (4.2) negative
values for ψ are possible (corresponding to a negative bounce height). Since this is not
physically possible, a slight modification of the map was used to produce Figure 4.2.
Details of this modification are discussed in [17].
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Figure 4.2. Chaotic attractor for the high-bounce map when ω = 45 rad/sec.

4.2 Feedback controllers for the ball

We will consider only one case with m = n = 1 for a bounce pattern that is unstable in
the absence of control.

We seek fixed point solutions (with ωj = ω̄) for

φ̄ = φ̄+ ψ̄,

ψ̄ = −a2ψ̄ + â1ω̄
2 cos(φ̄+ ψ̄).

(4.3)

In order to obtain equilibrium solutions from (4.3) the right hand side of the first equation
must be evaluated modulo 2π, in which case we obtain

ψ̄ = 2π,

cos φ̄ =
2π(1 + a2)

â1ω̄2
.

(4.4)

In order to design an LQR feedback controller, it is assumed that system is near enough
to the fixed point to so that the motion may be approximated by a linear map. Let

x1 = φ− φ̄,

x2 = ψ − ψ̄

be perturbations in φ and ψ from the nominal values given by (4.4) and let

u = ω − ω̄



216 T.L. VINCENT

be a perturbation in frequency from the nominal value ω̄. First order changes in (4.2)
are given by

x1j+1
= x1j

+
ωj

ω̄
x2 +

ψj

ω̄
uj,

x2j+1
= −â1ω̄ωj sinφjx1j+1

− a2x2j
+ â1ω̄ cosφj+1uj.

Evaluating these equations at ωj = ω̄, ψj = ψ̄, φj = φ̄, and φj+1 = φ̄+ ψ̄, results in

xj+1 = Axj + Buj

with

A =

[
1 1

a21 −a2 + a21

]
B =

[
ψ̄

ω̄

a21
ψ̄
ω̄

+ â1ω̄ cos φ̄

]
,

where a21 = −â1ω̄
2 sin φ̄.

The LQR method for discrete systems may now be applied [23]. Once the gains have
been determined by this process the system is controlled by adjusting the frequency every
time the ball bounces according to

ω = ω̄ − k1(φ − φ̄) − k2(ψ − ψ̄). (4.6)

4.3 Ball under control

With a plate frequency of ω̄ = 30 there is an unstable period-1 (m = 1, n = 1) solution
to the high-bounce map, with φ̄ = 1.154 and ψ̄ = 2π. The eigenvalues have magnitudes
−0.4625 and −1.5855, so the solution is unstable. This is shown in the top illustration
of Figure 4.1 where the initial condition was chosen very close to the fixed point solution.
We see in this case that while the period-1 solution is unstable, the period-2 solution
corresponding to ω̄ = 30 is obviously stable. Our objective in this case is to stabilize
the unstable solution.

The linearization of the high-bounce map results in

A =

[
1 1

−3.780 −3.047

]
b =

[
0.2094

−0.7358

]
.

Using LQR design with Q = I, R = 1, the MATLAB command dlqr results in the
feedback gains

k =
[
3.931 2.843

]

with eigenvalues for the controlled system Ā = A − Bk given by

λ = −0.3890± 0.1975i (|λ| = 0.4363)

all of which demonstrates that the system is locally asymptotically stable. Thus there
must exist a 2 × 2 symmetric positive definite solution for P satisfying the discrete
Lyapunov equation

P = Q̂ + ATPA,
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where Q̂ is any 2 × 2 symmetric positive definite matrix such that

V = xTPx

is a Lyapunov function for the system. Choosing Q̂ = I, we obtain

P =

[
2.6290 1.5560

1.5560 2.5834

]
.

Finding the largest V for which V̇ < 0 around a constant V contour results in Vmax =
0.5. This is the elliptical level curves illustrated in Figure 3.3. A small “+” locates the
equilibrium solution.

5 Discussion

The procedures used here have actually been used to control both the inverted pendu-
lum and the bouncing ball and have resulted in very satisfactory performance [16]. The
bouncing ball is the more difficult system to control and it was found that due to inac-
curacies in measuring φ and ψ, a somewhat larger value of Vmax needs to be used. As a
consequence, from time to time, the ball is not captured when the closed-loop feedback
control is turned on. However the overall performance is quite satisfactory. The system
is always started with the ball at rest on the plate. Generally fewer bounces under the
ω = 45 rad/sec control are needed to enter a controllable target than might be expected
from the ball map results illustrated in Figure 4.2.

References
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