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Abstract: The paper deals with the singularly perturbed Benjamin-Bona-Mahony
equation with variable coefficients. It plays an important role in various applica-
tions, in particular, for the description of waves in liquid. The equation appears in
mathematical modeling of the wave processes in the media with small dispersion and
variable characteristics. In the case of constant coefficients, this equation is known
as the regularized long-wave equation or the regularized Korteweg-de Vries equation.
We study the problem of estimating the difference between the exact solution and
asymptotic soliton-like solution to the Cauchy problem for the singularly perturbed
Benjamin-Bona-Mahony equation with variable coefficients. The initial data for the
Cauchy problem are defined according to the concept of asymptotic soliton-like solu-
tion. It means that the approximate solutions are deformations of the soliton solutions
to the Benjamin-Bona-Mahony equation with corresponding constant coefficients.
Asymptotic estimates for the difference between the exact solution to the Benjamin-
Bona-Mahony equation and the N-th approximation for the asymptotic soliton-like
solution are obtained. In particular, the case of the main term of the solution is
considered in detail. Similarly to the case of the singularly perturbed Korteweg-de
Vries equation with variable coefficients these estimates are local. Nevertheless, they
show that the asymptotic soliton-like solutions constructed through the nonlinear
WKB method for the singularly perturbed Benjamin-Bona-Mahony equation with
variable coefficients are sufficiently suitable as approximate solutions.
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1 Introduction

The paper deals with asymptotic estimates for the difference between the exact solution
and asymptotic soliton-like solution to the singularly perturbed Benjamin-Bona-Mahony
equation with variable coefficients

a(x, t, ε)ut + b(x, t, ε)ux + c(x, t, ε)uux − ε2uxxt = 0, (x, t) ∈ R× (0;T ), (1)

where a(x, t, ε), b(x, t, ε), c(x, t, ε) are some functions described below, and ε > 0 is a
small parameter. At ε = 1 and constant coefficients, equation (1) coincides with the
following one:

ut + ux + uux − uxxt = 0, (2)

that has been deduced in [1], where it was studied through the numerical methods for
the case of the wave form initial data.

In the sequel, Benjamin T.B., Bona J.L., and Mahony J.J. [2] studied the initial
value problem for equation (2) whose solution was supposed to be a real smooth non-
periodic function. In particular, they pointed the following: “We shall refer to (2) as the
regularized long wave equation, reflecting in this term our view that the Korteweg-de Vries
equation is an unsuitably posed model for long waves”. Therefore, at present, equation
(2) is known as the regularized long wave equation or the regularized Korteweg-de Vries
equation. It is also called the Benjamin-Bona-Mahony equation [3], abbreviated to the
BBM equation.

The different properties of equation (2), as well as those of its generalizations, were
studied by Eilbeck J.C., and McGruire G.R. [4], [5], Wang B. [6], Wazwaz A.M. [7, 8],
Arora R., and Kumar A. [9], Seadway A.R., and Sayed A. [10], El G.A., Hoefer M.A.,
and Shearer M. [11], and other authors. It was found that the BBM equation possesses
soliton solutions [7]

u(x, t) = 3(a− 1) cosh−2

(
1

2

√
a− 1

a
(x− at) + C

)
, (3)

where a, C are some real constants, and the inelastic collision of two solitary waves of the
BBM equation was discovered [12], but it has neither two- nor multi-soliton solutions [13].

Equation (2), as well as the Korteweg-de Vries equation, describes propagation of
soliton waves and cnoidal waves in different media, in particular, in shallow water. Similar
waves have also appeared in many areas of science such as solid physics, biology [14],
telecommunications [15], etc. Therefore, in the case of the medium with variable characte-
ristics [16] and small dispersion [17,18] the equation of type (1) should be studied.

One of the most effective methods of constructing approximate solutions to the singu-
larly perturbed equations is the asymptotic analysis [19,20]. Asymptotic soliton-like so-
lutions to equation (1) were constructed in paper [21] through the approach based on the
nonlinear WKB method that has been successfully applied for constructing asymptotic
soliton-like solutions to many different problems (see, for example, [22], [23], [24], [25]).
In the sequel, the nonlinear WKB technique was used for constructing the asymptotic
soliton-like solutions to a number of partial differential equations of integrable type with
singular perturbation [23].

Elaboration of algorithms for finding asymptotic expansions of different kinds and
their justification consisting of determining asymptotic accuracy with which the solu-
tions satisfy the equation under consideration are the main tasks of the perturbation
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theory. This traditionally completes the asymptotic analysis of equations with small
perturbations.

On the other hand, in many cases it is necessary to examine the question of how much
the constructed approximate solution differs from the exact solution to the equation.
This problem is usually given much less attention than the previous one [26] since it
is necessary to study the equation under additional conditions, for example, under the
initial data. Thus, a problem on studying asymptotic solutions to the Cauchy problem
for equations with small perturbations appears.

For the case of the asymptotic soliton-like solutions we need to take into account the
properties of soliton solutions to the corresponding equation with constant coefficients
[21]. Therefore, the initial conditions for the appropriate Cauchy problem should be
selected in a special way. In particular, the initial functions must belong to certain
functional spaces, for example, the space of quickly decreasing functions.

The problem on estimation of the difference between the exact solution and asymp-
totic approximation under the same initial condition appears naturally. Namely, this
task is considered in the present paper.

The paper is organized as follows. Firstly, the problem under consideration is formu-
lated, then necessary definitions and notations are given. In the sequel, the algorithm
of constructing the asymptotic soliton-like solutions to equation (1) is briefly described,
and statements on asymptotic estimates for the norm of difference between the exact
solution and its constructed asymptotic approximation are finally proved. There is con-
sidered the case of the main term of the asymptotic solution as well as the case of the
N -th asymptotic approximation.

2 Formulation of the Problem, Preliminary Notes and Definitions

We are facing a problem of constructing the asymptotic soliton-like solution to the Cauchy
problem for the singularly perturbed BBM equation with variable coefficients (1) under
the initial condition

u(x, t, ε)
∣∣
t=0

= f(x, ε), x ∈ R. (4)

It should be noted that the choice of the initial condition essentially influences the
asymptotic estimate between the exact solution to the Cauchy problem [27] in question
and its constructed asymptotic approximation. We consider the problem with the initial
function f(x, ε) obtained from the formulae for asymptotic soliton-like solution [21] to
equation (1). The coefficients a(x, t, ε), b(x, t, ε), c(x, t, ε) of equation (1) are supposed
to be represented as

a(x, t, ε) =

N∑
k=0

εkak(x, t) +O(εN+1), b(x, t, ε) =

N∑
k=0

εkbk(x, t) +O(εN+1),

c(x, t, ε) =

N∑
k=0

εkck(x, t) +O(εN+1), (5)

where the functions a0(x, t), b0(x, t), c0(x, t) do not equal zero for all (x, t) ∈ R× [0;T ].

Now we recall some notions and definitions.
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Let S = S(R) be a space of quickly decreasing functions, i.e., the space of infinitely
differentiable on R functions satisfying, for any integers m,n ≥ 0, the condition

sup
x∈R

∣∣∣∣xm dn

dxn
u(x)

∣∣∣∣ < +∞.

By C∞(R×(0;T );S) we denote a space of infinitely differentiable functions of (x, t) ∈
R× (0;T ) such that, for any integers k, m, n ≥ 0, the following inequality

sup
t∈[0;T ]

 +∞∫
−∞

(
∂ n+ku

∂xn∂tk

)2

dx +

+∞∫
−∞

(1 + x2)m
(
∂ ku

∂tk

)2

dx

 < +∞

holds.
Let G1 = G1(R × [0;T ] × R) be a space of infinitely differentiable functions f =

f(x, t, τ), (x, t, τ) ∈ R× [0;T ]×R, for which the following conditions are fulfilled [23]:
10. the relation

lim
τ→+∞

τn
∂ p

∂xp
∂ q

∂ tq
∂ r

∂τ r
f(x, t, τ) = 0, (x, t) ∈ K,

takes place;
20. there exists a differentiable function f−(x, t) such that the condition

lim
τ→−∞

τn
∂ p

∂ xp
∂ q

∂ tq
∂ r

∂ τ r
(
f(x, t, τ)− f−(x, t)

)
= 0, (x, t) ∈ K,

is satisfied uniformly in (x, t) ∈ K for any non-negative integers n, p, q, r and every
compact set K ⊂ R× [0;T ].

Let G0
1 = G0

1(R × [0;T ] × R) ⊂ G1 be a space of functions f = f(x, t, τ) ∈ G1,
(x, t, τ) ∈ R × [0;T ] × R, for which the following condition lim

τ→−∞
f(x, t, τ) = 0 takes

place uniformly in (x, t) on every compact K ⊂ R× [0;T ].

Definition 2.1 A function u = u(x, t, ε), where ε is a small parameter, is called an
asymptotic soliton-like function [23] if for any integer N ≥ 0, it can be represented in
the form

u(x, t, ε) =

N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] +O(εN+1), τ =
x− ϕ(t)

ε
, (6)

where ϕ(t) ∈ C∞([0;T ]) is a scalar real function; uj(x, t) ∈ C∞(R× [0;T ]), j = 0, N ;
V0(x, t, τ) ∈ G0

1; Vj(x, t, τ) ∈ G1, j = 1 , N .

The function x− ϕ(t) is called a phase of the soliton-like function u(x, t, ε), and the
curve Γ = {(x, t) : x = ϕ(t), t ∈ [0;T ]} is called a discontinuity curve.

Here and below we use the notation Ψ(x, t, ε) = O(εN ). It means that |Ψ(x, t, ε)| ≤
CNε

N for all ε ∈ (0; ε0), where CN , ε0 are some positive values, (x, t) ∈ K ⊂ R× [0;T ]
and K is a compact set.

The constant CN depends only on the number N and the set K.
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Remark 2.1 The term “soliton-like solution” reflects the following property of the
asymptotic solution to the equations with constant coefficients having soliton solutions.
In the case of such a partial differential equation in the presence of variable coefficients,
it is expected that its solutions are certain deformations of the soliton-type solutions.
Therefore, it is natural to look for asymptotic solutions to the singularly perturbed
Benjamin-Bona-Mahony equation with variable coefficients in the form that is similar to
the representation of soliton solutions. Moreover, in the case of constant coefficients, the
singular part of the asymptotic solution constructed through the nonlinear WKB method
coincides with soliton solution (3) to the singularly perturbed Benjamin-Bona-Mahony
equation with account of calibrate transformations.

2.1 Scheme of constructing the asymptotic solution

Now we briefly describe the algorithm of constructing the asymptotic soliton-like solution
to the BBM equation (1). The asymptotic solution is represented as [21]

u(x, t, ε) =

N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] +O(εN+1), τ =
x− ϕ(t)

ε
. (7)

Here the function UN (x, t, ε) =

N∑
j=0

εjuj(x, t) is called a regular part of asymptotic

solution (7) and the function VN (x, t, τ, ε) =

N∑
j=0

εjVj(x, t, τ) gives a singular part of

asymptotic solution (7). The terms of the regular part solve the equations

a0(x, t)
∂u0

∂t
+ b0(x, t)

∂u0

∂x
+ c0(x, t)u0

∂u0

∂x
= 0, (8)

a0(x, t)
∂uj
∂t

+ b0(x, t)
∂uj
∂x

+ c0(x, t)

(
uj
∂u0

∂x
+ u0

∂uj
∂x

)
= (9)

= fj(x, t, u0, u1, . . . , uj−1), j = 1, N,

and the terms of the singular part satisfy the equations

ϕ ′
∂3V0

∂τ3
+ [b0(x, t)− a0(x, t)ϕ ′(t)]

∂V0

∂τ
+ c0(x, t) [u0 + V0]

∂V0

∂τ
= 0, (10)

ϕ ′
∂3Vj
∂τ3

+ (b0(x, t)− a0(x, t)ϕ ′(t))
∂Vj
∂τ

+ c0(x, t)

(
u0
∂Vj
∂τ

+
∂

∂τ
(V0Vj)

)
= Fj(x, t, τ),

(11)
where the functions fj(x, t, u0, u1, . . . , uj−1), j = 1, N , are obtained recurrently through
the terms u0(x, t), u1(x, t), . . ., uj−1(x, t), j = 1, N , and the functions Fj(x, t, τ) =
Fj(t, V0(x, t, τ), . . . , Vj−1(x, t, τ), u0(x, t), . . . , uj(x, t)), are determined recurrently
through the terms u0(x, t), u1(x, t), . . ., uj(x, t), V0(x, t, τ), V1(x, t, τ), . . ., Vj−1(x, t, τ),
j = 1, N .

Solutions to equations (8), (9) can be found through the method of characteristics.
The singular part of asymptotic solution (7) is constructed in a special way [21]. Firstly,
equations (10), (11) are studied on the discontinuity curve Γ that is determined through



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 20 (1) (2020) 92–106 97

the solution ϕ = ϕ(t), t ∈ [0;T ], of certain second order ordinary differential equation
(see equation (29) ). The functions vj = vj(t, τ) = Vj(x, t, τ)

∣∣
Γ

, j = 0, N , solve the
following partial differential equations:

ϕ ′(t)
∂3v0

∂τ3
+ (b0(ϕ, t)− a0(ϕ, t)ϕ ′(t) + c0(ϕ, t)u0(ϕ, t))

∂v0

∂τ
+ c0(ϕ, t) v0

∂v0

∂τ
= 0, (12)

ϕ ′(t)
∂3vj
∂τ3

+(b0(ϕ, t)− a0(ϕ, t)ϕ ′(t) + c0(ϕ, t)u0(ϕ, t))
∂vj
∂τ

+c0(ϕ, t)
∂

∂τ
(v0vj) = Fj(t, τ),

(13)
where Fj(t, τ) = Fj(x, t, τ)

∣∣
Γ

. In particular,

F1(t, τ) = −a0(ϕ, t)v0 t − c0(ϕ, t)u0 x(ϕ, t) v0− (14)

− [c0xu0(ϕ, t) + c0(ϕ, t)u0 x(ϕ, t)− a0x(ϕ, t)ϕ ′(t) + b0x(ϕ, t)] τ v0 τ−
− [c0x(ϕ, t)τ + c1(ϕ, t)] v0v0 τ − [c0(ϕ, t)u1(ϕ, t) + c1(ϕ, t)u0(ϕ, t)−

−a1(ϕ, t)ϕ ′(t) + b1(ϕ, t)] v0 τ + v0 ττt.

Later, an extension of the functions vj(t, τ), j = 0, N, is constructed from the curve
Γ into its neighborhood.

All details of the algorithm can be found in [21].

3 Principal Results

3.1 Main term of the asymptotic solution (7)

At first, we consider a main term of asymptotic expansion (7). The term is determined
through the solution to equation (12) and is given by the formula

V0(x, t, τ) = V0(t, τ) = v0(t, τ) = 3
A(ϕ, t)

c0(ϕ, t)
cosh−2

(√
A(ϕ, t)

ϕ ′(t)

τ − τ0
2

)
, (15)

where A(ϕ, t) = a0(ϕ, t)ϕ ′ − b0(ϕ, t) − c0(ϕ, t)u0(ϕ, t), τ0 is a constant of integration,
and function u0(x, t) is found through the method of characteristics from the Hopf type
equation (8). Here the following condition

A(ϕ, t)ϕ ′(t) > 0, t ∈ [0;T ], (16)

is supposed to be satisfied.

Remark 3.1 The function V0(t, τ) is an exact solution to equation (12) in the space
G0

1. Its partial derivative V0 τ (t, τ) satisfies equation (13) as the right side function
Fj(t, τ) = 0. The last property can be easily verified by direct calculations.

Now we define the initial data of problem (1), (4) more exactly. Let us put

f0(x, ε) = 3
A(ϕ0, 0)

c0(ϕ0, 0)
cosh−2

(√
A(ϕ0, 0)

ϕ ′0

(
x− ϕ0

2 ε
− τ0

2

))
, (17)

where ϕ0 = ϕ(0), ϕ ′0 = ϕ ′(0) 6= 0, τ0 ∈ R are parameters, and let us denote the set of
functions (17) by M0(ε).

The following statements are true.
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Theorem 3.1 Let us suppose the following propositions are fulfilled:

1 0. the functions a0(x, t), b0(x, t), c0(x, t) ∈ C∞(R× [0;T ]) and they do not equal zero
for all (x, t) ∈ R× [0;T ];

2 0. the function f(x, ε) in initial condition (4) can be represented as f(x, ε) = g0(x) +
f0(x, ε), where g0(x) ∈ C∞(R), f0(x, ε) ∈M0(ε);

3 0. the Cauchy problem for equation (8) with the initial condition
u0(x, 0) = g0(x) has the solution u0(x, t) ∈ C∞(R× [0;T ]);

4 0. there exists a function ϕ(t) ∈ C∞([0;T ]) satisfying (16) and ϕ(0) = ϕ0, ϕ ′(0) =
ϕ ′0 6= 0.

Then the main term of the asymptotic soliton-like solution to the Cauchy problem
(1), (4) is given by the formula

Y0(x, t, ε) = u0(x, t) + V0(t, τ), (18)

where u0(x, t) is a solution to equation (8) with the initial condition u(x, 0) = g0(x) and
V0(t, τ) is defined through formula (15).

Function (18) satisfies the Cauchy problem (1), (4) with accuracy O(1) on the set
R× [0;T ]. Moreover, as τ → ±∞, it satisfies the Cauchy problem (1), (4) with accuracy
O(ε) on the set R× [0;T ].

Proof. It is clear that function (18) satisfies initial condition (4). The other statement
of Theorem 3.1 is proved according to the scheme of proof for Theorem 1 in [21]. That
is why we omit the details here.

Theorem 3.2 Let the following propositions hold:

1 0. the functions a(x, t, ε), b(x, t, ε), c(x, t, ε) satisfy the assumptions
a(x, t, ε) = a(x, ε) ∈ C∞(R), b(x, t, ε) ∈ C∞(R × [0;T ]),
c(x, t, ε) = c(t, ε) ∈ C∞([0;T ]);

2 0. the inequalities r1 ≤ a(x, ε) ≤ r2, |b(x, t, ε)| < l1,
|bx(x, t, ε)| < l2 take place for all x ∈ R, t ∈ [0;T ], where r1, r2, l1, l2 are
some positive constants;

3 0. the Cauchy problem (1), (4) has a solution u(x, t, ε) ∈ C∞(0, T ;S);

4 0. the functions a0(x) ∈ C∞(R), b0(x, t) ∈ C∞(R× [0;T ]), c0(t) ∈ C∞([0;T ]) do not
equal zero for all x ∈ R, t ∈ [0;T ] and a0(x), b0(x, t) are absolutely bounded for all
x ∈ R, t ∈ [0;T ];

5 0. the function f(x, ε) in initial condition (4) can be represented as f(x, ε) = g0(x) +
f0(x, ε), where g0(x) ∈ S(R), f0(x, ε) ∈M0(ε);

6 0. the Cauchy problem for equation (8) with the initial condition
u0(x, 0) = g0(x), x ∈ R, has a solution in the space C∞(0, T ;S);

7 0. there exists a function ϕ(t) ∈ C∞([0;T ]) satisfying (16) and ϕ(0) = ϕ0, ϕ ′(0) =
ϕ ′0 6= 0.
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Then for the exact solution and the asymptotic soliton-like solution to the Cauchy
problem (1), (4) the following estimate

|||u(x, t, ε)− Y0(x, t, ε)||| ≤ Cε, t ∈ [0; εΘ], (19)

is true, where C is a constat not depending on the parameter ε, Θ > 0 is a real number,
and

|||f |||2 = ||
√
a(x, ε) f ||2 + ε2||fx||2, ||f ||2 =

∫
R

|f(x, t, ε)|2dx.

Proof. For proving the theorem let us consider the function

ω(x, t, ε) = u(x, t, ε)− Y0(x, t, ε), (20)

where u(x, t, ε) is an exact solution to the Cauchy problem (1), (4) and Y0(x, t, ε) is given
by formula (18). Substituting u(x, t, ε) = ω(x, t, ε)+Y0(x, t, ε) into (1), multiplying both
sides by ω(x, t, ε) and integrating the obtained expression in x from −∞ to +∞, we get

− ε2

2

d

dt

+∞∫
−∞

ω2
x(x, t, ε) dx =

1

2

d

dt

+∞∫
−∞

a(x, ε)ω2(x, t, ε)dx− (21)

−1

2

+∞∫
−∞

bx(x, t, ε)ω2(x, t, ε)dx−
+∞∫
−∞

c(t, ε)Y0(x, t, ε)ω(x, t, ε)ωx(x, t, ε)dx+

+

+∞∫
−∞

g(x, t, ε)ω(x, t, ε)dx,

where

g(x, t, ε) = −ε2Y0xxt(x, t, ε) + a(x, ε)Y0t(x, t, ε)+

+ b(x, t, ε)Y0x(x, t, ε) + c(t, ε)Y0(x, t, ε)Y0x(x, t, ε).

Taking into account the conditions of Theorem 3.2 and the technique of constructing
the asymptotic soliton-like solution to the Cauchy problem (1), (4) we conclude that the
function g(x, t, ε) belongs to the space C∞(0, T ;S). Moreover, it satisfies the asymptotic
relation g(x, t, ε) = O(1) as ε→ 0.

From equality (21) we find

1

2

d

dt
E 2 ≤ pE 2 + qE, (22)

where
E 2 = |||ω(x, t, ε)|||2 = ||

√
a(x, ε)ω(x, t, ε)||2 + ε2||ωx(x, t, ε)||2, (23)

p =
1

2
max

(x,t)∈R×[0;T ]

∣∣∣∣ bx(x, t, ε)

a(x, ε)

∣∣∣∣+ max
(x,t)∈R×[0;T ]

∣∣∣∣ c(t, ε) Y0(x, t, ε)

a(x, ε)

∣∣∣∣+ (24)

+
1

ε
max

(x,t)∈R×[0;T ]
| c(t, ε)Y0(x, t, ε) | ,
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q = max
t∈[0;T ]

 +∞∫
−∞

∣∣∣∣∣ g(x, t, ε)√
a(x, ε)

∣∣∣∣∣
2

dx

1/2

.

According to the algorithm of constructing the main term of the asymptotic solution
(7) the values p, q satisfy the following asymptotic relations:

p = O

(
1

ε

)
, q = O(1) as ε→ 0.

To estimate the value y = E(t, ε) we consider the differential inequality

dy

dt
≤ p y + q

under the initial condition y(0) = 0 according to notations (20) and (23).
Similarly to the proof of the Gronwall-Bellman lemma we find the relation

y(t) ≤ q

p

(
e p t − 1

)
.

As a result, we obtain estimate (19).

3.2 Higher terms of the asymptotic soliton-like solution

Let us describe the initial data of the Cauchy problem (1), (4) corresponding to the higher
terms of asymptotic soliton-like solutions (7). As in the previous case, the initial data is a
sum of two functions. One of these functions is a sufficiently smooth one connected with
the regular part of asymptotic solution (7). The other function belongs to the defined
above space G1 and is associated with the singular part of asymptotic solution (7).

To clarify the type of the last element of the initial data we go back to the algorithm
of constructing the singular part of asymptotic solution (7) and recall some results of
paper [21]. The terms of the singular part are represented as follows:

Vj(x, t, τ) = u−j (x, t)ηj(t, τ) + ψj(t, τ), j = 1, N, (25)

where u−j (x, t), j = 1, N , is a solution to the Cauchy problem

Λu−j (x, t) = f−j (x, t), (26)

u−j (x, t)
∣∣
Γ

= νj(t), j = 1, N. (27)

Here the differential operator Λ is written as

Λ = a0(x, t)
∂

∂t
+ [b0(x, t) + c0(x, t)u0(x, t)]

∂

∂x
+ c0(x, t)u0x(x, t),

the right side functions f−j (x, t), j = 1, N , are recursively determined, and, for example,

f−1 (x, t) = 0,

f−2 (x, t) = −a1(x, t)
∂u−1
∂t
− b1(x, t)

∂u−1
∂x
− c1(x, t)u−1

∂u0

∂x
− (28)
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−c0(x, t)u−1
∂u1

∂x
− c0(x, t)u1

∂u−1
∂x
− c0(x, t)u−1

∂u−1
∂x
− c1(x, t)u0

∂u−1
∂x

;

νj(t) = [−a0(ϕ, t)ϕ′(t) + b0(ϕ, t) + c0(ϕ, t)u0(ϕ, t) ]
−1

lim
τ→−∞

Φj(t, τ),

Φj(t, τ) = −
+∞∫
τ

Fj(t, ξ)dξ, j = 1, N ;

ηj(t, τ) ∈ G1 is a function such that lim
τ→−∞

ηj(t, τ) = 1; the function ψj(t, τ) belongs to

the space G0
1, and u0(x, t) is the main term of the regular part of asymptotic solution

(7).
Besides, the function ϕ = ϕ(t), t ∈ [0;T ], is a solution to the second order ordinary

differential equation of the following form:[
A1ϕ

′ 2 +A2ϕ
′ +A3

]
ϕ ′′ +A4 ϕ

′ 4 +A5 ϕ
′ 3 +A6 ϕ

′ 2 +A7 ϕ
′ = 0, (29)

where the coefficients Ak = Ak(ϕ, t), k = 1, 7, are given as follows:

A1 = 24 a2
0 c0, A2 = −8 a0 c0 α, A3 = − c0 α2, A4 = −40 c0x a

2
0 + 30a0 a0x c0,

A5 = 60 a0 c0x α+ 20 a0 a0t c0 − 24 a2
0 c0t − 30 a0 c0 αx − 15 a0x c0 α+ 20a0 c

2
0 u0x,

A6 = −20 a0 c0 αt − 5 a0t c0α+ 15 c0 ααx + 28 a0 c0t α− 20 c20u0x α− 20 c0x α
2,

A7 = 5 c0 ααt − 20 c0t α
2,

where α = b0 + c0u0, a0 = a0(ϕ, t), b0 = b0(ϕ, t), c0 = c0(ϕ, t), u0 = u0(ϕ, t).
Ordinary differential equation (29) is nonlinear and, in general, it possesses a solution

on the finite time interval denoted by [0;T ].
We suppose that the Cauchy problem (26), (27) has a solution in the domain {(x, t) :

x < ϕ(t), t ∈ [0;T ]}. In the case, asymptotic solution (7) to the Cauchy problem (1), (4)
is written as

YN (x, t, ε) =

=



N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] , (x, t) ∈ Ωµ(Γ),

u0(x, t) +
N∑
j=1

εj
[
uj(x, t) + u−j (x, t)

]
, (x, t) ∈ D−\Ωµ(Γ),

N∑
j=0

εjuj(x, t), (x, t) ∈ D+\Ωµ(Γ),

(30)

where
Ωµ(Γ) = {(x, t) ∈ R× [0;T ] : |x− ϕ(t)| < µ},

D− = {(x, t) ∈ R× [0;T ] : x < ϕ(t)},

D+ = {(x, t) ∈ R× [0;T ] : x > ϕ(t)},

µ is a positive number.
Taking into account Remark 3.1 we find the representation of the initial values in (4).

So, by substituting τ = (x− ϕ(t))/ε and putting t = 0, we get

fj(x, ε) := Vj(x, t, τ)
∣∣∣
t=0, τ=

x−ϕ0
ε

= u−j (x, 0)ηj

(
0,
x− ϕ0

ε

)
+ (31)
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+ψj

(
0,
x− ϕ0

ε

)
+ ρjV0τ (t, τ)

∣∣∣
t=0,τ=

x−ϕ0
ε

, j = 1, N,

where ρj , j = 1, N , are real parameters.
The set of values fj(x, ε) is denoted by Mj(ε) for any j = 1, N .
So, the following theorem is true.

Theorem 3.3 Let the following propositions be fulfilled:

10. the functions ak(x, t), bk(x, t), ck(x, t) ∈ C∞(R × [0;T ]), k = 0, N , and the in-
equality a0(x, t) b0(x, t) c0(x, t) 6= 0 holds for all (x, t) ∈ R× [0;T ];

20. the function f(x, ε) in initial condition (4) can be represented as

f(x, ε) =

N∑
j=0

εj [gj(x) + fj(x, ε) ],

where gj(x) ∈ C∞(R) and fj(x, ε) ∈Mj(ε), j = 0, N ;

30. equation (8) with the initial condition u0(x, 0) = g0(x), x ∈ R, as well as equation
(9) with the initial condition uj(x, 0) = gj(x), x ∈ R, has the solution uj(x, t) ∈
C∞(R× [0;T ]), j = 0, N ;

40. the function Fj(t, τ) ∈ G 0
1 , j = 1, N, and the orthogonality condition

+∞∫
−∞

Fj(t, τ)v0(t, τ)dτ = 0, j = 1, N ; (32)

is satisfied;

50. the function Fj(t, τ), j = 1, N, is such that the property

lim
τ→−∞

Φj(t, τ) = 0, j = 1, N, (33)

takes place;

60. equation (29) has a solution ϕ(t) ∈ C∞([0;T ]) such that inequality (16) is true and
ϕ(0) = ϕ0, ϕ ′(0) = ϕ0

′ 6= 0 hold.

Then the asymptotic soliton-like solution to the Cauchy problem (1), (4) can be written
as

YN (x, t, ε) =

N∑
j=0

εj [uj(x, t) + Vj(x, t, τ)] . (34)

It satisfies the Cauchy problem with accuracy O(εN ) for all (x, t) ∈ R × [0;T ].
Moreover, as τ → ±∞, function (34) satisfies the Cauchy problem (1), (4) with accuracy
O(εN+1), N ∈ N.

Proof. It is clear that function (34) satisfies initial condition (4). The other part of
Theorem 3.3 is proved according to the scheme of proof for Theorem 1 in [21].
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Remark 3.2 Condition 50 of Theorem 3.3 provides solution (7), singular part of
which belongs to the space G0

1. Therefore, we can put Vj(x, t, τ) = Vj(x, t, τ)
∣∣
Γ

= vj(t, τ),

j = 0, N .
In the opposite case, the asymptotic soliton-like solution to the Cauchy problem (1),

(4) can be written as (30).

Theorem 3.4 Suppose the following propositions are fulfilled:

10. conditions 10 – 40, 60 of Theorem 3.3 are true;

20. the Cauchy problem (26), (27) has a solution in the domain D−.

Then the asymptotic soliton-like solution to problem (1), (4) is written as (30) and
satisfies the Cauchy problem with accuracy O(εN ), N ∈ N, for all (x, t) ∈ R × [0;T ].
Moreover, as τ → ±∞, function (30) satisfies the Cauchy problem (1), (4) with accuracy
O(εN+1), N ∈ N.

Proof. It is obvious that function (30) satisfies initial condition (4). The last part
of Theorem 3.4 is proved according to the scheme of proof for Theorem 2 in [21].

Now let us consider the estimate for the difference between the exact solution and
asymptotic soliton-like solution to the Cauchy problem (1), (4).

The following theorem is true.

Theorem 3.5 Suppose the following propositions are satisfied:

1 0. the functions a(x, t, ε), b(x, t, ε), c(x, t, ε) satisfy the assumptions
a(x, t, ε) = a(x, ε) ∈ C∞(R), b(x, t, ε) ∈ C∞(R × [0;T ]),
c(x, t, ε) = c(t, ε) ∈ C∞([0;T ]);

2 0. the inequalities r1 ≤ a(x, ε) ≤ r2, |b(x, t, ε)| < l1, |bx(x, t, ε)| < l2 take place for
all x ∈ R, t ∈ [0;T ], where r1, r2, l1, l2 are some positive constants;

3 0. the Cauchy problem (1), (4) has a solution u(x, t, ε)
∈ C∞(0, T ;S);

4 0. the functions ak(x) ∈ C∞(R), bk(x, t) ∈ C∞(R × [0;T ]), ck(t) ∈ C∞([0;T ]),
k = 0, N , are absolutely bounded for all x ∈ R, t ∈ [0;T ], and the inequality
a0(x) b0(x, t) c0(t) 6= 0 holds for all x ∈ R, t ∈ [0;T ];

50. the function f(x, ε) in initial condition (4) can be represented as

f(x, ε) =

N∑
j=0

εj [gj(x) + fj(x, ε) ],

where gj(x) ∈ S(R), fj(x, ε) ∈Mj(ε), j = 0, N ;

60. equation (8) with the initial condition u0(x, 0) = g0(x), x ∈ R, as well as equation
(9) with the initial condition uj(x, 0) = gj(x), x ∈ R, j = 1, N , has the solution
uj(x, t) ∈ C∞(0, T ;S), j = 0, N ;

70. the conditions 40 – 60 of Theorem 3.3 are true.
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Then for the exact solution u(x, t, ε) and asymptotic solution (34) to the Cauchy
problem (1), (4) the following asymptotic estimate

|||u(x, t, ε)− YN (x, t, ε)||| ≤ CεN+1, t ∈ [0; εΘ], (35)

is true, where C is a constant not depending on the parameter ε, and Θ is a positive
number.

Proof. Similarly to the proof of Theorem 3.2 let us consider the difference
ωN (x, t, ε) = u(x, t, ε)− YN (x, t, ε). As above, we obtain

− ε2

2

d

dt

+∞∫
−∞

|ωN x(x, t, ε) |2 dx =
1

2

d

dt

+∞∫
−∞

a(x, ε)ω2
N (x, t, ε)dx− (36)

−1

2

+∞∫
−∞

bx(x, t, ε)ω2
N (x, t, ε)dx−

+∞∫
−∞

c(t, ε)YN (x, t, ε)ωN (x, t, ε)ωN x(x, t, ε)dx+

+

+∞∫
−∞

gN (x, t, ε)ωN (x, t, ε)dx,

where
gN (x, t, ε) = −ε2YNxxt(x, t, ε) + a(x, ε)YNt(x, t, ε)+

+b(x, t, ε)YNx(x, t, ε) + c(t, ε)YN (x, t, ε)YNx(x, t, ε).

According to Theorem 3.3 and the technique of constructing the asymptotic soliton-
like solution to problem (1), (4), the function gN (x, t, ε) belongs to the space C∞(0, T ;S).
Moreover, it satisfies the asymptotic relation gN (x, t, ε) = O(εN ) as ε→ 0.

From (36) we find
1

2

d

dt
E 2
N ≤ pE 2

N + q EN , (37)

where

E 2
N = |||ωN (x, t, ε)|||2 = ||

√
a(x, ε)ωN (x, t, ε)||2 + ε2||ωN x(x, t, ε)||2, (38)

p =
1

2
max

(x,t)∈R×[0;T ]

∣∣∣∣bx(x, t, ε)

a(x, ε)

∣∣∣∣+ max
(x,t)∈R×[0;T ]

∣∣∣∣c(t, ε)YN (x, t, ε)

a(x, ε)

∣∣∣∣+ (39)

+
1

ε
max

(x,t)∈R×[0;T ]
|c(t, ε)YN (x, t, ε)| ,

q = max
t∈[0;T ]

 +∞∫
−∞

∣∣∣∣∣ gN (x, t, ε)√
a(x, ε)

∣∣∣∣∣
2

dx

1/2

. (40)

It is easy to see that the values p, q satisfy the asymptotic equalities

p = O

(
1

ε

)
, q = O

(
εN
)

as ε→ 0.
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Inequality (37) is equivalent to the relation

dy

dt
≤ py + q, y(0) = 0, (41)

where y = y(t) = EN (x, t, ε).
It now follows that

y(t) ≤ q

p

(
e p t − 1

)
providing asymptotic estimate (35).

4 Conclusions

The problem of estimating the difference between the exact solution and asymptotic
soliton-like solution to the Cauchy problem for the singularly perturbed BBM equation
with variable coefficients is considered. The initial data for the Cauchy problem are
defined according to the concept of asymptotic soliton-like solution. In other words, it is
taken into account that the asymptotic soliton-like solution is a certain deformation of
the soliton solution for the corresponding BBM equation with constant coefficients.

We present asymptotic estimates for the difference between the exact solution to the
BBM equation and the N-th approximation for the constructed asymptotic soliton-like so-
lution. Similarly to the singularly perturbed Korteweg-de Vries equation, these estimates
are local [27,28]. Nevertheless, they show that the asymptotic soliton-like solutions con-
structed through the nonlinear WKB method for the singularly perturbed BBM equation
with variable coefficients are sufficiently suitable as the approximate solutions.
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