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1 Introduction

Fractional partial differential equations (FPDEs) are used in many physical models and
engineering research, see [1–3]. Recently, several numerical techniques have been pro-
posed by researchers for solving the FPDEs. For example, Chen, Sun, and Liu [4] used
the generalized fractional-order Legendre function for solving FPDEs. Al-Khaled [5]
used the Sinc–Legendre collocation method for the non-linear Burger’s fractional equa-
tion. Abbasbandy et al. [6] applied an operational matrix of fractional-order Legendre
functions for solving the time-fractional convection-diffusion equation. Other numerical
methods can be found in [7–11].

In this paper, we apply a numerical method for solving a system of nonlinear fractional
partial differential equations (SNFPDEs) of the following form:
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∂αu(x, t)

∂tα
+ a

∂v(x, t)

∂x
+ bvp(x, t) + cu(x, t) = g(x, t),

∂βv(x, t)

∂tβ
+ d

∂u(x, t)

∂x
+ euq(x, t) + fv(x, t) = h(x, t),

(1)

with the conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), u(0, t) = u1(t), v(0, t) = v1(t), (2)

where p, q ∈ N, (x, t) ∈ Ω = (0, 1)×(0, 1), and 0 < α, β ≤ 1 are the order of the fractional
derivatives in the Caputo sense, the continuous functions g and h are known, and the
functions u(x, t) and v(x, t) are unknown and should be determined.

The aim of this paper is to apply the Sinc functions and Muntz–Legendre polynomials
to achieve the numerical solution of system (1).

This paper is organized as follows. The review of the Caputo fractional derivative
and review of the fractional Muntz–Legendre polynomials are presented in Section 2. In
Section 3, we recall the notation of the Sinc functions and their properties. In Sections
4 and 5, we discuss the convergence analysis and the approximate solution of the SNF-
PDEs based on the Sinc functions and Muntz–Legendre polynomials using the collocation
method. In Section 6, we present some examples of the SNFPDEs to show efficiency and
accuracy of the proposed method. Finally, a conclusion is expressed in Section 7.

2 Preliminaries and Notation

In this section, we give the definition and some properties of the Caputo fractional
derivative and fractional-order Muntz–Legendre polynomials.

2.1 Review of the Caputo fractional derivative

Definition 2.1 The fractional derivative of y(t) in the Caputo sense is defined as

Dα
∗ y(t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1y(m)(τ)dτ

for m− 1 < α < m, m ∈ N and t > 0.

Definition 2.2 Let α > 0. The Riemann–Liouville fractional integral operator Jαt
is defined on L1[a, b] by

Jαt y(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1y(τ)dτ.

Some properties of the Riemann–Liouville fractional integral operator Jαt and the
Caputo fractional derivative operator Dα

∗ , which will be used later, are as follows:

1) Dα
∗C = 0, where C is a constant.

2)

Dα
∗ t
v =

{
Γ(v+1)

Γ(v+1−α) t
v−α, v ∈ N0, v ≥ dαe, or v ∈ N, v > bαc,

0, v ∈ N0, v < dαe,
(3)

where dαe is the smallest integer greater than or equal to α, and bαc is the largest
integer less than or equal to α. Also N0 = {0, 1, . . . }.
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3) The Caputo fractional derivative is a linear operation,

Dα
∗

( n∑
i=1

aiyi(t)
)

=

n∑
i=1

aiD
α
∗ yi(t).

4)

Jαt (Jβt y(t)) = Jβt (Jαt y(t)) = Jα+β
t y(t), α, β > 0.

5)

Jαt t
v =

Γ(v + 1)

Γ(α+ v + 1)
tα+v.

6)
Dα
∗ (Jαt y(t)) = y(t).

7)

Jαt (Dα
∗ y(t)) = y(t)−

n−1∑
i=0

y(i)(0)
ti

i!
, n− 1 < α ≤ n, t > 0.

For more details about the properties of the Caputo fractional derivative operator and
Riemann–Liouville fractional integral operator see [2].

2.2 Review of the fractional-order Muntz polynomials

Definition 2.3 (see [6]) The fractional-order Muntz–Legendre polynomials on the
interval [0, T ] are represented by the formula

Ln(t;α) =

n∑
k=0

Cn,k
( t
T

)kα
, (4)

where

Cn,k =
(−1)n−k

αnk!(n− k)!

n−1∏
v=0

(
(k + v)α+ 1

)
.

The function Lk(t;α), k = 0, 1, . . . , n, forms an orthogonal basis for Mn,α =
Span{1, tα, . . . , tnα}, t ∈ [0, T ]. Also it satisfies

L0(t;α) = 1,

L1(t;α) =
( 1

α
+ 1
)( t
T

)α − 1

α
,

b1,nLn+1(t;α) = b2,n(t)Ln(t;α)− b3,nLn−1(t;α),

where

b1,n = a
0, 1α−1
1,n , b2,n(t) = a

0, 1α−1
2,n

(
2(
t

T
)α − 1

)
, b3,n = a

0, 1α−1
3,n ,

aα,β1,n = 2(n+ 1)(n+ α+ β + 1)(2n+ α+ β),

aα,β2,n (x) = (2n+ α+ β + 1)[(2n+ α+ β)(2n+ α+ β + 2)x+ α2 − β2],

aα,β3,n = 2(n+ α)(n+ β)(2n+ α+ β + 2).
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Theorem 2.1 Let Ln(t;α) be the fractional-order Muntz–Legendre polynomials; then
we have the following Caputo fractional derivative of the functions Ln(t;α):

Dα
∗Ln(t;α) =

n∑
k=1

Dn,k

( t
T

)(k−1)α
, (5)

where

Dn,k =
Γ(1 + kα)

Γ(1 + kα− α)Tα
Cn,k,

and Cn,k is defined in Ln(t;α).

Proof. It is a result of equations (3) and (4).

Theorem 2.2 Let α > 0 be a real number and let t ∈ [0, 1]. Then

Ln(t;α) = P
(0, 1α−1)
n (2tα − 1),

where P
(α,β)
n are the Jacobi polynomials with parameters α, β > −1, see [12, 13].

Proof. See [14].

3 Sinc Function and its Properties

In this section, we recall the notation and properties of the Sinc function and derive
useful formulas that will be used in this paper. The Sinc function is defined on R as
(see [15])

Sinc(x) =


sin(πx)

πx
, x 6= 0,

1, x = 0.

Let g(x) be a function defined on R, and let h > 0 be a step size. Consider the Whittaker
cardinal function of g defined by the series

C(g, h)(x) =

∞∑
k=−∞

g(kh) Sinc(
x− kh
h

).

This series converges (see [15]), and the kth Sinc function is defined on R as

S(k, h)(x) = Sinc(
x− kh
h

).

Now, for the positive integer N , the function g can be approximated by truncating as
follows:

CN (g, h)(x) =

N∑
k=−N

g(kh) Sinc(
x− kh
h

).

The properties of the Whittaker cardinal expansion have been extensively studied in [15].
These properties are derived in the infinite strip DS-plane of the complex ω-plane, where,
for d > 0,

DS = {w = u+ iv : |v| < d ≤ π/2}.
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To construct approximations on the interval [a, b], which are used in this paper, the
eye-shaped domain in the z-plane (see [15]),

DE = {z = u+ iv : |arg(
x− a
b− x

)| < d ≤ π/2},

is mapped conformally onto the infinite strip DS via

ω = ψ(z) = ln(
x− a
b− x

).

The basic functions on [a, b] are taken to be the translated Sinc functions

Sk(x) ≡ S(k, h) ◦ ψ(x) = Sinc(
ψ(x)− kh

h
), (6)

where S(k, h) ◦ ψ(x) is defined by S(k, h)(ψ(x)). The inverse map of ω = ψ(z) is

z = ψ−1(ω) =
a+ beω

1 + eω
.

Thus we may define the inverse images of the real line and of the evenly spaced nodes

xk = ψ−1(kh) =
a+ bekh

1 + ekh
, k = 0,±1,±2, . . . .

Definition 3.1 (see [16]) Let B(DE) be the class of functions g that are analytic in
DE and satisfy ∫

ψ−1(x+L)

|g(z)|dz → 0, x→ ±∞,

where
L = {iy : |y| < d ≤ π/2},

and those on the boundary of DE satisfy∫
∂DE

|g(z)|dz <∞.

4 Convergence Analysis

The following expressions show that the Sinc interpolation on B(DE) converges expo-
nentially.

Theorem 4.1 (see [15,16]) Assume that gψ′ ∈ B(DE); then, for all x in [a, b],

|g(x)−
∞∑

k=−∞

g(kh)S(k, h) ◦ ψ(x)| ≤ 2N(gψ′)

πd
e−πd/h.

Moreover, if |g(x)| = Ce−γ|ψ(x)|, x ∈ Γ, for some positive constants C and γ and the
selection h =

√
πd/γN ≤ 2πd/ln(2), then

|d
ng(x)

dxn
−

N∑
k=−N

g(kh)
dn

dxn
S(k, h) ◦ ψ(x)| ≤ kN (n+1)/2e−

√
πdγN

for all n = 0, 1, 2, . . . ,m.
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Also, the nth derivative of the function g at some points xk can be approximated (see [17])
as follows:

δ
(0)
k,j = [S(k, h) ◦ ψ(x)]|x=xj = δk,j ,

where

δk,j =

{
1, j = k,

0, j 6= k.

It has been shown that

δ
(1)
k,j =

d

dψ
[S(k, h) ◦ ψ(x)]|x=xj =

1

h

{
0, j = k,
(−1)(j−k)

j−k , j 6= k.

So the approximate of a function u(x) by the Sinc expansion is

uN (x, t) '
N∑

i=−N
ciSi(x), (7)

where Si(x) is defined in equation (6). Now, for arbitrary fixed tj ∈ (0, 1), we define
u(xk) = u(xk, tj). Then, to approximate the first derivative at the Sinc nodes xk, we
have

∂uN,n(xk, tj)

∂x
=
du(xk)

dx
=
duN (xk)

dx
+ E1 =

N∑
i=−N

ci
( d
dx

[Si(x)]
)
x=xk

+ E1 (8)

=

N∑
i=−N

ci
( d
dψ

[S(i, h) ◦ ψ(x)]
dψ

dx

)
x=xk

+ E1

=

N∑
i=−N

ciδ
(1)
i,k

dψ(xk)

dx
+ E1,

where

E1 = O(Ne−
√
πdγN ).

5 Approximate Solution to the S-N-FPDEs

In this section, we approximate the solution of equation (1) by applying the Sinc function
and fractional Muntz–Legendre polynomials, which are discussed in the previous sections.

First, we approximate the unknown functions u(x, t) and v(x, t) as follows:

uN,n(x, t) '
N∑

i=−N

n∑
j=0

aijSi(x)Lj(t;λ), (9)

vN,n(x, t) '
N∑

i=−N

n∑
j=0

bijSi(x)Lj(t;λ), (10)

where Si(x) and Lj(t;λ) are defined in equations (6) and (4), respectively. Also, λ is
the parameter such that α = k1λ, β = k2λ, and k1, k2 are the smallest natural numbers.
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Moreover, let xk be the Sinc collocation points. Then we approximate the differential
∂u(x, t)

∂x
,
∂v(x, t)

∂x
,
∂αu(x, t)

∂tα
, and

∂αv(x, t)

∂tα
as follows:

∂uN,n(xk, t)

∂x
=

N∑
i=−N

n∑
j=0

aij
( d
dx

[Si(x)]
)
x=xk

Lj(t;λ) (11)

=

N∑
i=−N

n∑
j=0

aij
( d
dψ

[S(i, h) ◦ ψ(x)]
dψ

dx

)
x=xk

Lj(t;λ)

=

N∑
i=−N

n∑
j=0

aijδ
(1)
i,k

dψ(xk)

dx
Lj(t;λ),

∂vN,n(xk, t)

∂x
=

N∑
i=−N

n∑
j=0

bij
( d
dx

[Si(x)]
)
x=xk

Lj(t;λ) (12)

=

N∑
i=−N

n∑
j=0

bij
( d
dψ

[S(i, h) ◦ ψ(x)]
dψ

dx

)
x=xk

Lj(t;λ)

=

N∑
i=−N

n∑
j=0

bijδ
(1)
i,k

dψ(xk)

dx
Lj(t;λ),

and

∂αuN,n(xk, t)

∂tα
=

N∑
i=−N

n∑
j=0

aijSi(x)Dα
∗Lj(t;λ), (13)

∂βvN,n(xk, t)

∂tβ
=

N∑
i=−N

n∑
j=0

bijSi(x)Dβ
∗Lj(t;λ), (14)

where Dα
∗ and Dβ

∗ are defined in Theorem 2.1.
Substituting equations (9)–(14) into equation (1) and the condition (2), we get

∂αuN,n(xk, t)

∂tα
+ a

∂vN,n(xk, t)

∂x
+ bvpN,n(xk, t) + cuN,n(xk, t) = g(x, t),

∂βvN,n(xk, t)

∂tβ
+ d

∂uN,n(xk, t)

∂x
+ euqN,n(xk, t) + fvN,n(xk, t) = h(x, t),

(15)

with the conditions

uN,n(x, 0) = u0(x), vN,n(x, 0) = v0(x), uN,n(0, t) = u1(t), vN,n(0, t) = v1(t). (16)

Now, to find the unknown coefficients aij and bij in equations (15) and (16), we use the
collocation method with suitable collocation points (xk, tr), where xk = ekh/(1 + ekh),
h =

√
πd/N , and d = π/2 for k = −N, . . . , N , (see [15]) and tr are the Chebyshev–

Gauss–Lobatto points with the following relation:

tr =
1

2
− 1

2
cos

πr

n
, r = 1, . . . , n.
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Substituting these points into equations (15) and (16), we get

N∑
i=−N

n∑
j=0

aijSi(xk)Dα
∗Lj(tr;λ) + a

N∑
i=−N

n∑
j=0

bijδ
(1)
i,k

dψ(xk)

dx
Lj(tr;λ)

+b
( N∑
i=−N

n∑
j=0

bijSi(xk)Lj(tr;λ)
)p

+ c
N∑

i=−N

n∑
j=0

aijSi(xk)Lj(tr;λ) = g(xk, tr),

N∑
i=−N

n∑
j=0

bijSi(xk)Dβ
∗Lj(tr;λ) + d

N∑
i=−N

n∑
j=0

aijδ
(1)
i,k

dψ(xk)

dx
Lj(tr;λ)

+e
( N∑
i=−N

n∑
j=0

aijSi(xk)Lj(tr;λ)
)q

+ f
N∑

i=−N

n∑
j=0

bijSi(xk)Lj(tr;λ) = h(xk, tr),

N∑
i=−N

n∑
j=0

aijSi(xk)Lj(0;λ)) = u0(xk),

N∑
i=−N

n∑
j=0

bijSi(xk)Lj(0;λ) = v0(xk),

N∑
i=−N

n∑
j=0

aijSi(0)Lj(tr;λ) = u1(tr),

N∑
i=−N

n∑
j=0

bijSi(0)Lj(tr;λ) = v1(tr).

Now, we have a system of nonlinear algebraic equations with unknown coefficients aij
and bij . By using well-known Newtons method, we can find the approximate solutions
given in (9) and (10).

6 Numerical Illustration

In this section, we present some examples of SNFPDEs to show the efficiency of the
proposed method. The results will be compared with the exact solutions. The accuracy
of the present method is estimated by the absolute errors E1

N,n and E2
N,n, which are

given as follows:

E1
N,n(α, β) = |u(xi, tj)− uN,n(xi, tj)|, E2

N,n(α, β) = |v(xi, tj)− vN,n(xi, tj)|.

If α = β = λ, we put EiN,n(α, β) = EiN,n(λ), i = 1, 2.

Example 6.1 Consider the SNFPDEs
∂αu(x, t)

∂tα
+ v2(x, t) + u(x, t) = g(x, t),

∂αv(x, t)

∂tα
+ u2(x, t) + v(x, t) = h(x, t),

with the conditions u(x, 0) = x, v(x, 0) = x2, u(0, t) = tα and v(0, t) = tβ .
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Table 1: The maximum absolute errors max{E1
N,n(λ)} and max{E2

N,n(λ)} for Example 6.1.

{N,n} max{E1
N,n(

1

2
)} max{E2

N,n(
1

2
)} max{E1

N,n(
1

3
)} max{E2

N,n(
1

3
)} max{E1

N,n(
3

5
)} max{E2

N,n(
3

5
)}

{2, 4} 1.11e− 10 1.63e− 10 3.85e− 02 5.10e− 02 1.03e− 02 1.04e− 02
{3, 6} 1.06e− 10 4.51e− 10 3.99e− 15 3.33e− 15 3.30e− 03 3.36e− 03
{4, 8} 1.81e− 11 7.02e− 11 4.66e− 15 6.88e− 15 1.29e− 03 1.31e− 03
{5, 10} 1.33e− 15 1.55e− 15 4.88e− 15 5.32e− 15 6.15e− 04 6.25e− 04

The exact solutions are u(x, t) = x + tα and v(x, t) = x2 + tβ . For various values of
N,n, α, and β, we obtain an approximate solution of this equation. Table 1 shows the
maximum absolute errors for the various values of N,n and α = β = 1

2 ,
1
3 ,

3
5 . From Table

1, we see that the error can be reduced by increasing the number of collocation points.
Also, the absolute errors are shown in Figure 1.
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Figure 1: The absolute error functions with α = β = 3/5 for Example 6.1.

Example 6.2 Consider the SNFPDEs


∂αu(x, t)

∂tα
+
∂v(x, t)

∂x
+ v3(x, t) = g(x, t),

∂βv(x, t)

∂tβ
+
∂u(x, t)

∂x
+ u3(x, t) = h(x, t),

with the conditions

u(x, 0) = v(x, 0) = u(0, t) = v(0, t) = 0.
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Table 2: The maximum absolute errors max{E1
N,n(λ)} and max{E2

N,n(λ)} for Example 6.2.

{N,n} max{E1
N,n( 1

2 )} max{E2
N,n( 1

2 )} max{E1
N,n( 1

3 )} max{E2
N,n( 1

3 )}

{2, 4} 3.9767e− 02 3.5755e− 02 5.0258e− 02 3.7833e− 02
{3, 6} 2.4553e− 02 2.1419e− 02 2.2845e− 02 2.0500e− 02
{4, 8} 5.8731e− 03 6.0509e− 03 5.5623e− 03 6.3847e− 03
{5, 10} 6.1088e− 03 5.9381e− 03 6.1866e− 03 5.8873e− 03
{6, 12} 1.9400e− 03 1.9239e− 03 1.8999e− 03 1.9470e− 03
{7, 14} 2.1785e− 03 2.1212e− 03 2.1709e− 03 2.1308e− 03
{8, 16} 9.8963e− 04 8.4617e− 04 1.3835e− 03 1.4523e− 04
{9, 18} 9.1436e− 04 8.9726e− 04 9.0637e− 04 8.9827e− 04
{10, 20} 5.1216e− 04 4.8690e− 04 5.0375e− 04 4.9526e− 04
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Figure 2: The absolute error functions with α = β = 1/2 and α = β = 1/3 for Example 6.2.
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Table 3: The computational convergence order for for Example 6.2.

{N,n}new {N,n}old Order1
( 1
2 ) Order2

( 1
2 ) Order1

( 1
3 ) Order2

( 1
3 )

{3, 6} {2, 4} 2.3785 2.5275 3.8891 3.0225
{4, 8} {3, 6} 9.9447 8.7880 9.8214 8.1098
{10, 20} {9, 18} 11.0020 11.6037 11.1497 11.3019

0

0.5

1

1.5

2

2.5

3

3.5

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

x 10
−3

 

t
x

 

E
1 N

,n
(1

/3
,2

/3
)

Absolute error for N=5, n=10, α=1/3,β=2/3

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

x 10
−3

 

tx
 

E
2 N

,n
(1

/3
,2

/3
)

Absolute error for N=5, n=10, α=1/3, β=2/3

Figure 3: The absolute error functions with α = 1/3, β = 2/3 for Example 6.2.

The exact solutions are u(x, t) = t sinx and v(x, t) = t2 sinx. For various values of
N,n, α, and β, we obtain an approximate solution of this equation. The absolute error
is shown in Figure 2. Figure 3 shows the maximum absolute error for α = 1

3 , β = 2
3 .

Also, Figure 4 and Table 2 show the maximum absolute error for the various values of
N,n and α = β = 1

2 ,
1
3 . We see that the error can be reduced by increasing the number

of collocation points. Also, Table 3 shows the computational convergence orders of the
proposed method. We compute the practical orders of convergence as follows:

Orderi(α) =
log
(

max{EiN,nnew (λ)}
max{EiN,nold (λ)}

)
log
(
hnew
hold

) , i = 1, 2,

where
hnew =

π√
2Nnew

, hold =
π√

2Nold
.

7 Conclusion

In this paper, we applied a basis of the Sinc function and fractional Muntz–Legendre
polynomials to obtain the numerical solution of a system of nonlinear fractional partial
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Figure 4: The maximum absolute error convergence of Example 6.2.

differential equations. To get the unknown coefficients of the fractional Muntz–Legendre
polynomials, we used the collocation method. The results of the numerical examples
showed the efficiency and accuracy of the proposed method.
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