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Abstract: The paper studies the numerical approximation of the exact boundary
controllability for the vibrating rod by the Hilbert uniqueness method (HUM). This
study is based on the knowledge of the asymptotic behavior of the control governing
the system at time T . This is the idea developed in this work concerning the Dirichlet
boundary case. More precisely, an approximate control shall be found which returns
the system under consideration to rest at time T with an estimation of the final state
error and the improvement of it by using the particle swarm optimization algorithm
(PSO).
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1 Introduction

Controllability is a classical problem in control theory. The idea that motivated this work
is that control theory is certainly, at present, one of the most interdisciplinary areas of
research. It is nowadays a rich crossing point of engineering and mathematics. Many
problems of control theory such as optimal control and stabilizability may be solved un-
der assumption that the system is controllable, see [9,16,19]. Controllability means that
it is possible to drive a dynamic system from an arbitrary initial state to an arbitrary
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final state using the set of admissible controls. There are two basic concepts of controlla-
bility in the case of infinite dimensional systems: approximate and exact controllability.
Approximate controllability allows to drive the dynamic system to arbitrary small neigh-
bourhood of final state while exact controllability means that the dynamic system can
be driven to arbitrary final state.
In the case of finite dimensional systems, these concepts are equivalent, see [18].

Approximate controllability has been studied for different types of semilinear dynam-
ical systems, see, for example, [1, 14] and the references therein.

Regarding the problem of exact controllability of linear systems, great efforts have
been devoted to its study both theoretically and numerically.

The theory of solving this problem has been introduced in [17] by the use of the semi-
group approach. In [15], a new approach called the Hilbert uniqueness method (HUM)
has been proposed to solve this problem for hyperbolic systems. Another approach has
been proposed to solve this problem for parabolic systems, see, for instance, [2].

Numerically, the problem has been studied in [6,10–12] through the numerical imple-
mentation of the Hilbert uniqueness method.

This method leads to the resolution of the equation

Λ{ψ0, ψ1} = {u1,−u0} , (1)

where u0 and u1 are the initial conditions of the system and Λ is an isomorphism between
the Hilbert space F and its dual F ′ .

The conjugate gradient method was introduced in [6], later on this method was de-
veloped in [10] in order to solve (1). The approximate solutions obtained do not converge
to the exact solutions as the temporal and spatial grid sizes tend to zero. Methods of
regularization including the Tikhonov regularization that result in convergent approx-
imations were introduced in the papers on HUM-based methods. This method shows
that this technique improves the last results.

In [11,12], an alternative to the Tikhonov regularization procedure based on spectral
analysis is presented. It was shown that this approach improves the method described
in [6, 10].

Another computational method for boundary controllability of the wave equation is
the one based on the method proposed in [13]. This approach permits to directly solve
an optimization problem in which the equations of the linear system act as equality con-
straints. To resolve this problem, two methods are proposed. The first one is based on
the Lagrange multiplier method. The second one transforms the constrained optimiza-
tion problem to an unconstrained optimization problem and uses the conjugate gradient
method for its resolution. The computational results show that this method provides
convergent approximations for problems in which existing methods produce divergent
approximations unless they are regularized in some manner. Therefore, this method
improves the results found in [6].

The numerical methods cited studied the exact controllabilty of hyperbolic systems.
For parabolic systems, see [4].

Motivated by the existence in the literature of these numerical studies, we want to
feed it by the numerical study of a system which is neither hyperbolic nor parabolic.
More precisely, we study numerically the exact Dirichlet boundary controllability of the
vibrating rod.

This study goes through the numerical resolution of equation (1), which determines
explicit formulas for ψ0 and ψ1 and therefore, the approximate control that steers the
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system under consideration to rest time T with an estimation of the final state error.
By a particular example, we present the graphics of the approximate control, the cost

function, and the final state error when the points are equidistant and improve it by using
a stochastic optimization algorithm named the particle swarm optimization (PSO).

The remaining of the paper is organized as follows.
Section 2 defines the exact Dirichlet boundary controllability of the vibrating rod.
Section 3 describes the HUM approach. In Section 4, we present the method of solving
the problem under consideration. In Section 5, we give explicit formulas. In Section 6,
experimental results are presented. In Section 7, a stochastic optimization algorithm is
used to improve the final error. The results obtained confirm it. Section 8 concludes the
paper.

2 The Problem under Study

Let T be a given positive number, u0(x) and u1(x) denote given functions defined on
Ω =]0, L[. Let Σ={0, L}×]0, T [, Q =]0, L[×]0, T [ and (u0, u1) ∈ L2(Ω) ×H−2(Ω). The
exact Dirichlet boundary controllability problem for the vibrating rod is as follows.
Find a control function g defined on Σ such that u satisfies the system



utt + uxxxx = 0 in Q,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) in Ω,

u(x, T ) = 0,
∂u

∂t
(x, T ) = 0 in Ω,

u(0, t) = 0, u(L, t) = 0, t ∈ [0, T ],
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) =g(t), t ∈ [0, T ].

(2)

The first equation in (2) represents the vibrations of the rod. It models the vertical
motion of a thin, horizontal rod with small displacements from the rest position. It is
neither hyperbolic nor parabolic. u(x, t) denotes the displacement of the point x of the
rod, at the instant t. u0(x) and u1(x) represent, respectively, the initial position and the
initial velocity of the rod. The third equation in (2) is the final condition and is called
the equilibrium condition. It is well known that when T > 0, the exact controllability
problem (2) admits at least one state-control solution pair (u,g); furthermore, the exact
controller g having minimum boundary L2 norm is unique, see [15,20].

Our work consists in solving numerically the exact boundary controllability of the
vibrating rod when the control is of the Dirichlet type. For this purpose, we consider
the control given by the HUM approach and we develop some techniques which allow
computation of the control that steers the system at hand to rest at time T with a final
error

‖ξ‖2 = ‖u(x, T )‖2L2(Ω) +

∥∥∥∥∂u(x, T )

∂t

∥∥∥∥2

L2(Ω)

. (3)

3 Choice of the Control

We recall briefly how the control which steers the system (2) to rest at time T is found.
Let F = H2

0 (Ω) × L2(Ω) and F ′ = H−2(Ω) × L2(Ω). For any {ψ0, ψ1} ∈ F , solve the
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system 
ψtt + ψxxxx = 0 in Q,

ψ(x, 0) = ψ0(x),
∂ψ

∂t
(x, 0) = ψ1(x) in Ω,

ψ =
∂ψ

∂x
= 0 on Σ,

and then resolve the reverse system in Θ:
Θtt + Θxxxx = 0 in Q,

Θ(x, T ) =
∂Θ

∂t
(x, T ) = 0 in Ω,

Θ =
∂2ψ

∂x2
on Σ.

This enables us to (implicitly) define a linear operator Λ by

Λ{ψ0, ψ1} = {∂Θ

∂t
(x, 0),−Θ(x, 0)} .

So, for convenient ψ0, ψ1 and T , if one can solve the equation (1), then it is possible to
obtain the control g explicitly.

We obtain the corresponding unique minimum L2-norm control by setting g = ∂2ψ
∂x2 .

It is proved in [15] that λ is an isomorphism from F to F ′. Consequently, for any initial
data u0, u1, such that {u1,−u0} ∈ F ′, equation (1) has a unique solution {ψ0, ψ1} ∈ F.
The Θ system is, in fact, the u one (reverse) and the state {0, 0} is reached at time T .
See [15] for more details.

4 Presentation of the Resolution Method

In this section, we will show how to solve equation (1) and give expressions for ψ0 and
ψ1 which can be used for numerical simulations.
Using the techniques of standard optimization, we know that solving (1) is equivalent to
solving the minimization problem

Inf
{ψ0,ψ1}∈F

J
(
{ψ0, ψ1}

)
, (4)

where

J({ψ0, ψ1}) =
1

2

∫ T

0

[
∂2ψ(L, t)

∂x2

]2

dt−
∫

Ω

[
ψ0u1 − ψ1u0

]
dx. (5)

In the problems of controllability, the knowledge of the asymptotic behavior of the
control governing the system at time T may be used for its calculation. This idea will
be used to determine explicit formulas for ψ0 and ψ1.

Let {ψ0
T , ψ

1
T } be the solution of (4). We introduce a T factor to transform the

functional (5) in the following way:

T.J({ψ0, ψ1}) =
T

2

∫ T

0

[
∂2ψ(L, t)

∂x2

]2

dt−
∫

Ω

[
u1Tψ0 − u0Tψ1

]
dx.
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Let φ = T.ψ, where φ is the solution of the system
∂2φ

∂t2
+
∂4φ

∂x4
= 0 in Q,

φ(x, 0) = φ0,
∂φ

∂t
(x, 0) = φ1 in Ω,

φ =
∂φ

∂x
= 0 on Σ.

T.J({ψ0, ψ1}) =
1

2T

∫ T

0

[
∂2φ(L, t)

∂x2

]2

dt−
∫

Ω

[
u1φ0 − u0φ1

]
dx = J

(
{φ0, φ1}

)
. (6)

The problem (4) becomes
Inf J

(
{φ0, φ1}

)
. (7)

Assume the solution of (7) is {φ0
T , φ

1
T }, then we have φ0

T = T.ψ0
T and φ1

T = T.ψ1
T .

Consider
φ0 = lim

T→+∞
φ0
T , φ1 = lim

T→+∞
φ1
T ,

then, according to [3], it is possible to determine explicitly (φ0, φ1). Numerical approxi-
mations useful for calculations are determined by this approach. Then, it will be possible
to calculate ψ0

T and ψ1
T by using

ψ0
T =

1

T
φ0, ψ1

T =
1

T
φ1.

5 Resolution of the Problem

Denote the orthonormal eigenfunctions by ωj(x) and the eigenvalues by λ2
j of d4

dx4 with

the homogeneous Dirichlet condition. Consider (6) and look for lim
T→+∞

J
(
{φ0, φ1}

)
.

Let

u0 =

∞∑
j=1

u0
jωj , u

1 =

∞∑
j=1

u1
jωj

with u0
j = (u0, ωj) and u1

j = (u1, ωj). Then∫
Ω

u0φ1dx =
∑
j

(u0, ωj)(φ
1, ωj),

∫
Ω

u1φ0dx =
∑
j

(u1, ωj)(φ
0, ωj).

We have, in the same way,

φ(x, t) =
∑
j

φj(t)ωj(x) ,

where

φj(t) = (φ0, ωj)cos(λjt) +
1

λj
(φ1, ωj)sin(λjt) .

Thus

1

2T

∫ T

0

[
∂2φ(L, t)

∂x2

]2

dt =
1

2T

∫ T

0

∑
j,l

φj(t).φl(t)
d2ωj(L)

dx2
.
d2ωl(L)

dx2

 dt
=

1

2

∑
j,l

d2ωj(L)

dx2
.
d2ωl(L)

dx2

[
1

T

∫ T

0

φj(t).φl(t)dt

]
.
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By developing, we obtain

1

T

∫ T

0

φj(t).φl(t)dt

=
1

T

∫ T

0

{
(φ0, ωj)cos(λjt) + (φ1, ωj)

sin(λjt

λj

}{
(φ0, ωl)cos(λlt) + (φ1, ωl)

sin(λlt

λl

}
dt

=
1

T

∫ T

0

[
(φ0, ωj)(φ

0, ωl)cos(λjt)cos(λlt)
]
dt+

1

T

∫ T

0

[
(φ0, ωj)(φ

1, ωl)cos(λjt)
sin(λlt

λl

]
dt

+
1

T

∫ T

0

[
(φ1, ωj)(φ

0, ωl)cos(λlt)
sin(λjt

λj

]
dt+

1

T

∫ T

0

[
(φ1, ωj)(φ

1, ωl)
sin(λjt).sin(λlt)

λj .λl

]
dt

For j 6= l, the calculation gives

1

T

∫ T

0

φj(t).φl(t)dt −→ 0 as T −→∞.

and for j = l, we have

1

T

∫ T

0

φj(t).φl(t)dt −→

[
1

2
(φ0, ωj)

2 +
1

2λ2
j

(φ1, ωj)
2

]
as T −→∞.

Finally,

1

T

∫ T

0

φj(t).φl(t)dt −→ δj l

[
1

2
(φ0, ωj)

2 +
1

2λ2
j

(φ1, ωj)
2

]
as T −→∞ ,

where δj l = 1 if j = l and δj l = 0 if j 6= l, and then

1

2T

∫ T

0

[
∂2φ(L, t)

∂x2

]2

dt −→ 1

4

∑
j

[
(φ0, ωj)

2 +
1

λ2
j

(φ1, ωj)
2

] [
d2ωj(L)

dx2

]2

.

The initial problem (7) is transformed to the minimization problem according to φ0 and
φ1

1

4

∑
j

[
(φ0, ωj)

2 +
1

λ2
j

(φ1, ωj)
2

] [
d2ωj(L)

dx2

]2

−
∫

Ω

(u1φ0 − u0φ1)dx

=
∑
j

[
1

4
(φ0, ωj)

2

[
d2ωj(L)

dx2

]2

− u1
j (φ

0, ωj)

]

+
∑
j

[
1

4λ2
j

(φ1, ωj)
2

[
d2ωj(L)

dx2

]2

+ u0
j (φ

1, ωj)

]
(8)

We see that in this equality, the first term does not depend on φ1 and the second does
not depend on φ0. Therefore, the minimization of (8) conducts to the minimization of

1

4
(φ0, ωj)

2

[
d2ωj(L)

dx2

]2

− u1
j (φ

0, ωj) according to φ0
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and

1

4λ2
j

(φ1, ωj)
2

[
d2ωj(L)

dx2

]2

+ u0
j (φ

1, ωj) according to φ1.

The minimum is determined by

1

2
(φ0, ωj)

[
d2ωj(L)

dx2

]2

− u1
j = 0,

1

2λ2
j

(φ1, ωj)

[
d2ωj(L)

dx2

]2

+ u0
j = 0.

Finally, when T −→∞, we obtain

φ0 =

∞∑
j=1

2.(u1, ωj).ωj[
d2ωj(L)
dx2

]2 ,

φ1 = −
∞∑
j=1

2λ2
j (u

0, ωj).ωj[
d2ωj(L)
dx2

]2 .

We conclude the following approximations:

ψ0
T =

2

T

n∑
j=1

(u1, ωj).ωj[
d2ωj(L)
dx2

]2 , (9)

ψ1
T =

−2

T

n∑
j=1

λ2
j (u

0, ωj).ωj .[
d2ωj(L)
dx2

]2 (10)

are explicit formulas.

6 Computational Results

In this section, we determine the graphs of the approximate control, the cost function
and the final error (3) at the instant t = T and the initial data
u0(x) = Ax(1 + x); u1(x) = (1 + A)u0(x). A is a coefficient chosen by numerical

considerations. The control steering the system (2) to rest at time T is given by g∗ = ∂2ψ
∂x2 ,

where ψ is the solution of the system
∂2ψ(x, t)

∂t2
+
∂4ψ(x, t)

∂x4
= 0 in Q ,

ψ(x, 0) = ψ0
T ,

∂ψ(x, 0)

∂t
= ψ1

T in Ω,

ψ =
∂ψ

∂x
= 0 on Σ,

(11)

and ψ0
T , ψ1

T are the initial conditions given in (9) and (10).
We use the following algorithm for the implementation.
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Algorithm 6.1 1: Choice of the initial data u0 and u1.
2: Choice of the order n.
3: Calculation of the explicit formulas ψ0

T and ψ1
T using (9) and (10).

4: Resolution of the system (11).
5: Calculation of the explicit control g∗.
6: Calculation of the cost function ‖g ∗ ‖2.
7: Resolution of the system (2) using the explicit control g∗.
8: Calculation of the final state error ‖ξ‖2.
Return to 2.

Remark 6.1 The numerical method for resolution of systems (2) and (11) is based
on a symmetric finite difference scheme, see [7]. This scheme leads to the resolution of a
linear system whose matrix is pentadiagonal symmetric positive.

We have introduced a new approach to determine explicitly the control driving the
system (2) to rest at time T with an estimation of the final state error. Particular
attention is paid to the system which is neither hyperbolic nor parabolic.

Our paper presents a new view for the numerical approximation of the exact boundary
controllability.

We have the following graphs with L = 1, n = 4 and T = 1.
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Figure 1: The form of approxi-
mate control g∗ steering the system
(2) to rest at time T .
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Figure 2: Illustration of the
cost function obtained by the cor-
responding unique minimum L2-
norm control.

Remark 6.2 The results obtained are satisfactory althought many approximations
have been made (asymptotic aspect, truncation, etc.). However, we think that increasing
the value of n increases the efficiency of formulas (9), (10) and allows to make the final
state error close to zero. In this perspective, we are trying in the following section to
improve the result of the final state error so that the control steers the considered system
(2) to rest at time T .
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Figure 3: Estimation of the final state error with equidistant points so that the system (2)
steers to rest at time T .

7 Improvement of the Final State Error

In this section, the calculation of the final state error is improved to make it as small
as possible. The problem that we consider is to minimize (3) using the particle swarm
optimization algorithm (PSO) and taking the same example treated in Section 6. For
this, we try to determine xi by the PSO so that the final state error (3) is close to zero.
This method is an effective way to improve the final state error.

7.1 Basic particle swarm optimization algorithm

The particle swarm optimization (PSO) is a non deterministic method simulated by
social behavior of bird flocking or fish schooling, that can be used to optimize a function
objective, and was described in [5, 8]. In the PSO algorithm, each individual is called
the “particle”, which represents a potential solution in a swarm.

We present in the following, the main steps of the basic PSO algorithm. Three M− di-
mensional vectors compose each particle: the current position Yj = (yj1, yj2, ..., yjM ), the
velocity Vj = (vj1, vj2, ..., vjM ) which represents its direction of searching, and the pre-
vious best position that it has individually found Pj = (pj1, pj2, ..., pjM ), called (pbest),
the subscipt j ranges from 1 to s, where s indicates the size of swarm. Habitually, each
particle stores its position and its best value so far (pbest), and therefore recognizes the
best value in the swarm, called (sbest) between the set of values (pbest).

The following system shows the displacement of each particle j:

vk+1
jl = wjlv

k
jl + c1r

k
1 [(pbest)kjl − xkjl],+c2rk2 [(sbest)kjl − xkjl] (12)

xk+1
jl = vk+1

jl + xkjl , (13)

where vk+1
jl , xk+1

jl are the velocity and the position of particle j, respectively, at iteration
k + 1, wjl is the inertia weight with its value that ranges from 0.9 to 1.2, c1 and c2 are
two parameters situated in the range of 2 to 4, called the acceleration coefficients and
rk1 , r

k
2 are two random numbers uniformly distributed in the range [0, 1]. In the double
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subscript in the equations (12) and (13) the first subscript stands for the particle j and
the second one for the dimension l. The (basic) process for imlementing the PSO is in
the algorithm below.

Algorithm 7.1 Particle Swarm Optimisation.
1: Set the dimension M , and the size s of the swarm.
2: Set the iteration number k to zero.
3: Evaluate, for each particle, the velocity vector using its memory and equation (12),
where pbest and sbest can be modified.
4: Move each particle to its new position, according to equation (13).
5: Let k = k + 1.
6: Go to step 2, and repeat until convergence condition is satisfied.

Remark 7.1 This section was the subject of a personal communication entitled
“Particle Swarm Optimization Algorithm to Improve the Final State Error of the Exact
Boundary Controllability”, presented at the Sixth International Conference on Meta-
heuristics and Nature Inspired Computing that was organized in Marrakech (Morocco)
in October 2016.

From Figure 4 shown below, it can be seen that the final state error is improved.
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Figure 4: Estimation of the final state error with points chosen by the PSO so that the system
(2) steers to rest at time T .

7.2 Discussion

Figure 4 illustrates the decrease of the final state error in comparison with Figure 3 of
Section 6. It can be said that the particle swarm optimization (PSO) algorithm has
improved the value of the final state error.

The main limitation of the experimental result is the non-comparison of the final
error provided by the PSO with other metaheuristics such as the ABC (Artificial Bee
Colony), FWA (Fireworks Algorithm), FPA algorithm (Flower Pollination Algorithm).
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8 Conclusion

The numerical implementation of the Hilbert uniqueness method allowed us to approxi-
mate the exact control for the vibrating rod with an estimation of the final state error.
The calculation of this error when the selected points are equidistant is compared with
the error when points are chosen by the PSO. The results show the improvement of the
final error in the second case compared to the first one. In the future, we intend to study
the comparison of the final error provided by the PSO with other metaheuristics and
study the case of dimension two of the same system.
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[20] E. Zuazua. Contrôlabilité exacte d’un modèle de plaques vibrantes en un temps arbitraire-
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