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Abstract: A new strategy against dengue is proposed by the use of the Wolbachia
bacterium. In this paper, we analyse the effects of Wolbachia on dengue transmission
dynamics using deterministic and stochastic epidemic models. The reduction in the
reproduction number is measured and the probability of disease extinction is deter-
mined. We found that Wolbachia can reduce the reproduction number by up to 64%.
We also found that the probability of extinction is around 90%, although the repro-
duction number is slightly above one. However, if the reproduction number is too
high, which indicates a higher transmission level, the probability of disease extinction
is smaller. Consequently, an outbreak is likely to take off. The results suggest that
Wolbachia can be effective to reduce dengue transmission, particularly in areas with
low to moderate transmission level.
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1 Introduction

Dengue is a vector-borne disease transmitted via the bite of mosquitoes. Over half of
the world’s population is at risk of dengue, particularly in tropical and subtropical areas.
Around 390 million cases happen annually [1] and can result in a higher fatality rate
when no proper treatment is conducted [2].

The traditional strategies such as insecticide have been found less effective and hence
an innovative biological strategy by the use of the Wolbachia bacterium has been pro-
posed [3–6]. Wolbachia reduces the level of dengue virus in salivary glands, which lower
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the transmission probability [3, 7]. It also reduces the mosquito’s lifespan, and hence
mosquitoes have less time to transmit dengue. Furthermore, Wolbachia reduces the
reproductive rate [3] and causes an effect called the bendy proboscis which leads to
a reduced biting rate [8]. Additionally, there is a reproductive advantage for female
mosquitoes since Wolbachia gives the so-called cytoplasmic incompatibility (CI) [9, 10].
The CI causes the Wolbachia-carrying females to reproduce when mating with the non-
Wolbachia or Wolbachia-carrying males. On the other hand, non-Wolbachia females can
only reproduce when mating with non-Wolbachia males.

The field trials of releasing Wolbachia-carrying mosquitoes have been conducted in
several places including Indonesia. The results show that Wolbachia-carrying mosquitoes
can persist in the population [11]. This is align with the results from mathematical
analysis [12,13]. The next crucial step is to determine the effectiveness of the Wolbachia
intervention when it is implemented in the field.

Mathematical models have been widely used to understand the life sciences and
technology-related problems [14–17]. A number of mathematical models have been de-
veloped to measure the effectiveness of Wolbachia to reduce dengue transmission [18–22].
They showed that Wolbachia can reduce dengue transmission by up to 80% and is highly
effective in areas with low to moderate transmission level. However, these models are
deterministic and do not take into account the effects of stochasticity. For a small popu-
lation size, a stochastic approach is more appropriate. In this paper, stochastic epidemic
models in the absence and presence of Wolbachia have been developed to measure the
effectiveness of the Wolbachia intervention. The models are based on the deterministic
mathematical models formulated by Ndii et al. [19, 21]. Furthermore, the reproduction
number and the probability of extinction are determined. This paper is organised as
follows. Section 2 presents the deterministic and stochastic model in the absence of Wol-
bachia and derivation of the probability generating function. Section 3 presents deter-
ministic and stochastic models in the presence of Wolbachia and considers the derivation
of the probability generating function. Results are presented in Section 4. The discussion
and conclusions are presented at the end of the paper.

2 Mathematical Model in the Absence of Wolbachia

The determinsitic and stochastic epidemic models in the absence of Wolbachia are pre-
sented. A deterministic model serves as a basis for the development of a stochastic
epidemic model [23,24].

2.1 Deterministic model

In this section, a deterministic model in the presence of Wolbachia is presented. The
model is in the form of a system of differential equations which has been formulated
by Ndii et al. [21]. The human population is divided into four subpopulations, namely,
Susceptible (SH), Exposed (EH), Infectious (IH) and Recovered (RH). Furthermore, a
constant human population size is assumed, and hence the human birth and death rates
are assumed to be equal, that is, B = µH and NH = SH + EH + IH +RH .

The mosquito population is divided into subpopulations of Aquatic (AN ) which con-
sists of eggs, larvae and pupae, Susceptible (SN ), Exposed (EN ) and Infectious (IN )
mosquitoes. The total adult female mosquito population is FN = SN + EN + IN . The
subscript N is used to denote the non-Wolbachia mosquitoes. We use this subscript here
for consistency and to differentiate from the Wolbachia-carrying mosquitoes included in
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the models in the later sections. We group eggs, larvae and pupae into one compartment
as they are not involved in the transmission of dengue. No recovered class is required for
mosquitoes as they remain infected for the rest of their lives.

The deterministic mathematical model for dengue in the absence of Wolbachia is
governed by the following system of differential equations:

dSH
dt

= BNH −
bNTNIN
NH

SH − µHSH , (1)

dEH
dt

=
bNTNIN
NH

SH − γHEH − µHEH , (2)

dIH
dt

= γHEH − σIH − µHIH , (3)

dRH
dt

= σIH − µHRH , (4)

dAN
dt

= ρN
FN
2

(
1− AN

K

)
− (τN + µNA)AN , (5)

dSN
dt

= τN
AN
2
−
(
bNTNIH
NH

+ µN (t)

)
SN , (6)

dEN
dt

=

(
bNTNIH
NH

)
SN − (γN + µN (t))EN , (7)

dIN
dt

= γNEN − µN (t)IN . (8)

The description of parameters is given in Table 2.
When bitten by the infectious mosquitoes, humans have a chance to be exposed to

dengue at rate of bNTNIN/NH (equations (1) and (2)). The parameter bN is the success-
ful biting rate and TN is the transmission probability from non-Wolbachia mosquitoes
to humans and reverse. The exposed humans move to an infectious class at rate of γH
and recover from dengue at rate of σ.

The aquatic population increases as the male and female mosquitoes mate and breed,
but the population growth is limited by the carrying capacity K through a logistic term

ρN
FNMN

MN + FN

(
1− AN

K

)
.

Since there are equal numbers of male and female mosquitoes, MN = FN , this be-
comes ρNFN (1−AN/K)/2 (equation (5)). The aquatic mosquito population dies at rate
of µNA and mature into susceptible female mosquitoes at rate of τN , where only half of
the maturing aquatics are female. Susceptible mosquitoes progress to the exposed class
after biting infectious humans at rate of bNTNIH/NH . They then become infectious at
rate of γN (equation (8)), where 1/γN is the extrinsic incubation period.
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The reproduction number is obtained by creating the next generation matrix and
finding the maximum eigenvalues of that matrix. The reproduction number of that
model is given by

R2
0 =

b2NT
2
NγHγNSN

NHµN (γH + µH) (σ + µH) (γN + µN )
. (9)

2.2 Stochastic model

We developed a stochastic version of deterministic model using a continous-time Markov
chain (CTMC) model, where time is continous and the states are discrete. Let

X(t) = (SH(t), EH(t), IH(t), AN (t), SN (t), EN (t), IN (t))

denote the discrete-valued random variables. It is assumed that the number of infections
produced by an individual type i is independent of the number of infections produced by
any other type. The individuals of type i have the same probability generating function
(pgf). Let {Xji}nj=1 be the offspring random variables for type i, where Xji is the number
of infected individuals of type j produced by the individuals of type i. The probability
that one individual of type i produces xj infected individuals of type j is given by

Pi(x1, x2, ..., xn) = Prob {X1i = x1, ..., Xni = xn} . (10)

The corresponding transition probabilities for the model in the absence of Wolbachia
are

Prob{∆SH = 1|X)} = BNH∆t+O(∆t),

Prob{(∆SH ,∆EH) = (−1,+1)} = bNTNSHIN/NH∆t+O(∆t),

Prob{(∆EH ,∆IH) = (−1,+1)} = γHEH∆t+O(∆t),

Prob{(∆IH ,∆RH) = (−1,+1)} = σIH∆t+O(∆t),

Prob{(∆SH) = −1} = µHSH∆t+O(∆t),

Prob{(∆EH) = −1} = µHEH∆t+O(∆t),

Prob{(∆IH) = −1} = µHIH∆t+O(∆t),

Prob{(∆RH) = −1} = µHRH∆t+O(∆t),

Prob{(∆EN ) = −1} = µNEN∆t+O(∆t),

Prob{(∆IN ) = −1} = µNIN∆t+O(∆t),

Prob{(∆AN ) = 1} = (ρNFN/2)(1−AN/K)∆t+O(∆t),

Prob{(∆AN ,∆SN ) = (−1,+1)} = τN/2AN∆t+O(∆t),

Prob{(∆SN ,∆EN ) = (−1,+1)} = bNTNSNIH/NH∆t+O(∆t),

Prob{(∆EN ,∆IN ) = (−1,+1)} = γNEN∆t+O(∆t),

Prob{(∆SN ) = −1} = µNSN∆t+O(∆t),

Prob{(∆EN ) = −1} = µNEN∆t+O(∆t),

Prob{(∆IN ) = −1} = µNIN∆t+O(∆t).

(11)
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2.3 Continous-time branching processes

We construct the branching process and probability of extinction. The offspring pgf for
EH , given EH(0) = 1 and IH(0) = 0, EN (0) = 0, IN (0) = 0, is

f1(u1, u2, u3, u4) =
γHu2 + µH
γH + µH

, u1, u2, u3, u4 ∈ [0, 1].

The expression γH/(γH + µH) means the probability that an exposed individual be-
comes infectious. The expression µH/(γH + µH) means the probability that an exposed
individual leaves compartment due to death.

The offspring pgf for IH , given IH(0) = 1, EH(0) = EN (0) = IN (0) = 0, is

f2(u1, u2, u3, u4) =
(bNTNSN/NH)u2u3 + σ + µH

(bNTNSN/NH) + σ + µH
, u1, u2, u3, u4 ∈ [0, 1].

The expression bNTNSN/NH/(bNTNSN/NH + σ + µH) means the probability that
an infectious individual results in a new exposed mosquito. The expression (σ +
µH)/(bNTNSN/NH +σ+µH) means the probability that an infectious individual leaves
the compartment due to recovery or death.

The offspring pgf for EN , given EN (0) = 1, EH(0) = IH(0) = IN (0) = 0, is

f3(u1, u2, u3, u4) =
γNu4 + µN
γN + µN

, u1, u2, u3, u4 ∈ [0, 1].

The expression γN/(γN +µN ) means the probability that an exposed mosquito becomes
infectious. The expression µN/(γN + µN ) means the probability that an exposed indi-
vidual leaves compartment due to death.

The probability generating function for IN , given IN (0) = 1, EN (0) = 0, EH(0) =
0, IH(0) = 0, is

f4(u1, u2, u3, u4) =
bNTNu1u4 + µN
bNTN + µN

, u1, u2, u3, u4 ∈ [0, 1].

The expression bNTN/(bNTN +µN ) is the probability that an infectious mosquito results
in a new exposed individual. The expression µN/(bNTN +µN ) is the probability that an
infectious mosquito leaves the compartment due to death.

The expectation matrix Mc = [Mji] of the pgf is an n×n non-negative matrix where
the elements of that matrix (mij) are the expected number of offsprings of group j
produced by an individual in group i:

mji =
dfi
duj
|u1=...=un=1 <∞. (12)

The extinction threshold is the spectral radius of the expectation matrix, denoted by
ρ(M). The elements of the expectation matrix are found using (12).

The expectation matrix of the model is as follows:

M =


0 0 0 bNTN

bNTN+µN
γH

γH+µH

bNTNSN/NH

bNTNSN/NH+σ+µH
0 0

0 bNTNSN/NH

bNTNSN/NH+σ+µH
0 0

0 0 γN
γN+µN

bNTN

bNTN+µN

 .
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The eigenvalues of the expectation matrix are the roots of the characteristic equations

λ4 + (A+ C)λ3 + CAλ2 −ABCD = 0, (13)

where

A =
bNTN

bNTN + µN
, B =

γN
γN + µN

, C =
bNTNSN/NH

bNTNSN/NH + σ + µN
, D =

γN
γN + µN

.

Allen and Driessche [25] showed the general relationship between R0 and ρ(M) as
follows:

R0 < 1(= 1, > 1) if and only if ρ(M) < 1(= 1, > 1).

3 Mathematical Model in the Presence of Wolbachia

This section presents a dengue mathematical model in the presence of Wolbachia. The
model has been formulated by Ndii et al. [19, 21]. The model serves as a basis for the
development of a stochastic model in the presence of Wolbachia.

3.1 Deterministic model

A deterministic model in the presence of Wolbachia is governed by the following system
of differential equations. We include the model for Wolbachia-carrying mosquitoes. The
population is divided into Susceptible (S), Exposed (E), Infectious (I) and Recovered (R)
compartments. For the mosquito population, there is an aquatic compartment (A). The
subscripts H, N , and W represent the human, non-Wolbachia and Wolbachia-carrying
mosquitoes.

In this model, the exposed rate is different to that in the absence of Wolbachia.
In this model, a susceptible human has been exposed to dengue after being bitten by
non-Wolbachia or Wolbachia-carrying infectious mosquitoes at rate of bNTNIN/NH or
bWTHW IW /NH , respectively (see equations (17) and (18)). Here bW is the biting rate
for Wolbachia-carrying mosquitoes and THW is the transmission probability from Wol-
bachia-carrying mosquitoes to humans. Note that the transmission probability from
humans to Wolbachia-carrying mosquitoes is assumed to be equal to that from humans
to non-Wolbachia mosquitoes, so TWH = TN . By contrast, there are differences in the
transmission probabilities of dengue from mosquitoes to humans for Wolbachia and non-
Wolbachia mosquitoes.

The effects of the cytoplasmic incompatibility and imperfect maternal transmission on
the mosquito populations are included in this model. The effect of the CI is incorporated
by differences in the mating functions. The non-Wolbachia female mosquitoes reproduce
when mating with the Wolbachia male mosquitoes, and hence it gives

ρNFNMN

P
, (14)

where P = FN + MN + FW + MW . It is assumed that the ratio of male to female
mosquitoes is 1:1, and therefore the equation is reduced to ρNF

2
N/(2(FN+FW )) (see equa-

tion (21)). The aquatic Wolbachia mosquitoes are produced when Wolbachia-carrying
female mosquitoes mate with either non-Wolbachia or Wolbachia males, giving the term

ρWFW (MN +MW )

P
, (15)
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where P = FN + MN + FW + MW , which simplifies to ρWFW /2 (equation (25)). The
growth of aquatic mosquitoes is limited by the carrying capacity K, so that each mating
function is multiplied by

AN +AW
K

. (16)

The Wolbachia-carrying aquatic mosquitoes mature to be the Wolbachia-carrying adult
mosquitoes at rate of τW . To capture the imperfect maternal transmission of Wol-
bachia [3, 26], it is assumed that a proportion α of them become Wolbachia-carrying
adults and the rest (1− α) become non-Wolbachia adults (see equations (22) and (26)).

The mathematical model in the presence of Wolbachia is governed by the following
system of differential equations:

dSH
dt

= BNH −
bNTNIN
NH

SH −
bWTHW IW

NH
SH − µHSH , (17)

dEH
dt

=
bNTNIN
NH

SH +
bWTHW IW

NH
SH − γHEH − µHEH , (18)

dIH
dt

= γHEH − σIH − µHIH , (19)

dRH
dt

= σIH − µHRH , (20)

dAN
dt

= ρN
F 2
N

2(FN + FW )

(
1− (AN +AW )

K

)
− (τN + µNA)AN , (21)

dSN
dt

= τN
AN
2

+ (1− α) τW
AW

2
−
(
bNTNIH
NH

+ µN (t)

)
SN , (22)

dEN
dt

=
bNTNIH
NH

SN − (γN + µN (t))EN , (23)

dIN
dt

= γNEN − µN (t)IN , (24)

dAW
dt

= ρW
FW
2

(
1− (AN +AW )

K

)
− (τW + µWA)AW , (25)

dSW
dt

= τWα
AW

2
−
(
bWTNIH
NH

+ µW (t)

)
SW , (26)

dEW
dt

=
bWTNIH
NH

SW − (γW + µW (t))EW , (27)

dIW
dt

= γWEW − µW (t)IW . (28)

By using the concept of the next generation matrix, we obtain the reproduction
number of the model in the presence of Wolbachia as

R0 =
b2NT

2
NγNγHSN

(γN + µN )µN (γH + µH)(σ + µH)NH
+

b2WTHW γWTNγHSW
(γW + µW )µW (σ + µH)(γH + µH)NH

.

(29)
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3.2 Stochastic model

A stochastic model in the presence of Wolbachia is presented. The model is a corre-
sponding model of the deterministic model as presented in Ndii et al. [19].

Let X(t) = (SH(t), EH(t), IH(t), RH(t), SN (t), EN (t), IN (t), SW (t), EW (t), IW (t)).
The corresponding transition probabilities are

Prob{∆SH = 1|X)} = BNH∆t+O(∆t),

Prob{(∆SH ,∆EH) = (−1,+1)} = bNTNSHIN/NH∆t+bWTHWSHIW /NH∆t+O(∆t),

Prob{(∆EH ,∆IH) = (−1,+1)} = γHEH∆t+O(∆t),

Prob{(∆IH ,∆RH) = (−1,+1)} = σIH∆t+O(∆t),

Prob{(∆SH) = −1} = µHSH∆t+O(∆t),

Prob{(∆EH) = −1} = µHEH∆t+O(∆t),

Prob{(∆IH) = −1} = µHIH∆t+O(∆t),

Prob{(∆RH) = −1} = µHRH∆t+O(∆t),

Prob{(∆AN ) = 1} = (ρNF
2
N/2(FN+FW ))(1−(AN+AW )/K)∆t+O(∆t),

Prob{(∆AN ,∆SN ) = (−1,+1)} = τN/2AN∆t+ (1− α)τWAW /2∆t+O(∆t),

Prob{(∆SN ,∆EN ) = (−1,+1)} = bNTNSNIH/NH∆t+O(∆t),

Prob{(∆EN ,∆IN ) = (−1,+1)} = γNEN∆t+O(∆t),

Prob{(∆SN ) = −1} = µNSN∆t+O(∆t),

Prob{(∆EN ) = −1} = µNEN∆t+O(∆t),

Prob{(∆IN ) = −1} = µNIN∆t+O(∆t),

Prob{(∆AW ) = 1} = (ρWFW /2)(1− (AN +AW )/K)∆t+O(∆t),

Prob{(∆AW ,∆SW ) = (−1,+1)} = τWα/2AW∆t+O(∆t),

Prob{(∆SW ,∆EW ) = (−1,+1)} = bWTNSW IH/NH∆t+O(∆t),

Prob{(∆EW ,∆IW ) = (−1,+1)} = γWEW∆t+O(∆t),

Prob{(∆AW ) = −1} = µWAAW∆t+O(∆t),

Prob{(∆SW ) = −1} = µWSW∆t+O(∆t),

Prob{(∆EW ) = −1} = µWEW∆t+O(∆t),

Prob{(∆IW ) = −1} = µNIN∆t+O(∆t).
(30)

3.3 Continous-time branching processes

This section presents the probability generating function (pgf) of the model in the pres-
ence of Wolbachia. The probability generating function for EH , given EH(0) = 1,
EN (0) = EW (0) = IH(0) = IN (0) = IW (0) = 0, is

φ1(u1, u2, u3, u4, u5, u6) =
γHu2 + µH
γH + µH

, u1, ..., u6 ∈ [0, 1].

The offspring probability generating function for IH , given IH(0) = 1, EN (0) = EW (0) =
EH(0) = IN (0) = IW (0) = 0, is

φ2(u1, u2, u3, u4, u5, u6) =
bNTNSN/NHu2u3 + bWTNSW /NHu2u5 + σ + µH

bNTNSN/NH + bWTNSW /NH + σ + µH
,
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where u1, ..., u6 ∈ [0, 1]. The offspring probability generating function for EN , given
EN (0) = 1, EH(0) = EW (0) = IH(0) = IN (0) = IW (0) = 0, is

φ3(u1, u2, u3, u4, u5, u6) =
γNu4 + µN
γN + µN

, u1, ..., u6 ∈ [0, 1].

The probability generating function for IN , given IN (0) = 1, EH(0) = EW (0) = EN (0) =
IH(0) = IW (0) = 0 , is

φ4(u1, u2, u3, u4, u5, u6) =
bNTNu1u4 + µN
bNTN + µN

, u1, ..., u6 ∈ [0, 1].

The probability generating function for EW , given EW (0) = 1, EH(0) = EN (0) =
IN (0) = IH(0) = IW (0) = 0, is

φ5(u1, u2, u3, u4, u5, u6) =
γWu6 + µW
γW + µW

, u1, ..., u6 ∈ [0, 1].

The probability generating function for IW , given IW (0) = 1, EH(0) = EW (0) =
EN (0) = IN (0) = IH(0), is

φ6(u1, u2, u3, u4, u5, u6) =
bWTHWu1u6 + µW
bWTHW + µW

, u1, ..., u6 ∈ [0, 1].

Using the procedure given in equation (12), we obtain the expectation matrix. The
expectation matrix is

M =

0 0 0 bNTN

bNTN+µN
0 bWTHW

bWTHW+µW
γH

γH+µH

bNTNSN/NH+bWTNSW /NH

bNTNSN/NH+bWTNSW /NH+σ+µH
0 0 0 0

0 bNTNSN/NH

bNTNSN/NH+bWTNSW /NH+σ+µH
0 0 0

0 0 γN
γN+µN

bNTN

bNTN+µN
0 0

0 bWTNSW /NH

bNTNSN/NH+bWTNSW /NH+σ+µH
0 0 0 0

0 0 0 0 γW
γW+µW

bWTHW

bWTHW+µW


.

The spectral radius of the matrix M determines whether the system is sub critical, critical
or supercritical.

4 Results

This section presents the reproduction number and the probability of disease extinction.

4.1 Reproduction number

We compare the reproduction number of the model in the absence and presence of Wol-
bachia. Therefore, the aims to assess the reduction in the reproduction number and
hence the effectiveness of the Wolbachia intervention can be determined. The expres-
sions for the reproduction number in the absence and presence of Wolbachia are given in
equations (9) and (29), respectively. The parameter values for the models are given in
Table 2.
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The reproduction number for the model in the absence and presence of Wolbachia
is 3.31 and 1.17, respectively. This shows that there is around 64.65% reduction in the
reproduction number. An epidemic would not take off whenR0 < 1, otherwise it will take
off. The result implies that the Wolbachia intervention can stop dengue transmission in
areas with the reproduction number being at most around 3, which indicates a moderate
transmission level. This is because the Wolbachia intervention can reduce the basic
reproduction number below one. When the reproduction number is higher than three,
Wolbachia can still reduce dengue transmission though the epidemic still takes off. The
numerical simulation is presented in Figure 1.

Time (days)
0 50 100 150 200 250 300 350 400

In
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ct
io

us
 H

um
an

 (
I H

)
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10

20
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40

50

60

I
H

 in the absence of Wolbachia

I
H

 in the presence of Wolbachia

Figure 1: The number of infectious individuals in the absence and presence of Wolbachia.

Figure 1 shows that the peak of an outbreak is reduced in the presence of Wol-
bachia. An epidemic peak happens on around the 100th day. Furthermore, the number
of infectious individuals at the peak time is around 60. It declines when the Wolbachia
intervention is implemented. Nevertheless, the end time of epidemic is relatively similar.
This indicates that the Wolbachia intervention is effective in reducing dengue transmis-
sion.

4.2 Probability of extinction

This section presents the probability of extinction (P0) in the absence and presence of
Wolbachia. This aims to measure the performance of Wolbachia in reducing dengue
transmission. When the basic reproduction number is less than one, the probability of
extinction is one. Therefore, we investigate the scenario where the reproduction number
is greater than one and determine the probability of disease extinction.

The fixed point of the probability generating function is used to determine the prob-
ability of extinction

P0 = lim
t→∞

Prop{I(t) = P (t) = 0} =

{
1, if ρ(M) ≤ 1,

q
ik0
k , if ρ(M) > 1,



224 M. Z. NDII AND A.K. SUPRIATNA

where qk is the fixed point of the probability generating function and ik0 denotes the
initial conditions of the infectious individuals of type k.

Table 1: The initial conditions and the probability of extinction in the
absence and presence of Wolbachia. The initial conditions are for EH ,
IH , EN , IN , EW , IW . Here W stands for Wolbachia.

Initial conditions P0 non-W P0 with-W
1 0 0 0 0 0 0.6622 0.9470
1 1 0 0 0 0 0.4384 0.8969
2 0 0 0 0 0 0.4385 0.8969
0 2 0 0 0 0 0.4385 0.8969
5 5 0 0 0 0 0.0162 0.5803

The results show that the probability of extinction for the model in the presence of
Wolbachia is higher than that in the absence of Wolbachia. Furthermore, it is found
that the probability of extinction declines when the initial number of infected individuals
increases. In the absence of Wolbachia, the probability of extinction is around 0.6622. It
becomes 0.9470 when Wolbachia-carrying mosquitoes are introduced into the population.
Furthermore, the probability of extinction is close to 60% when there are 10 initially
infected individuals in the population. However, the probability of extinction is close to
zero for the same initial condition without the Wolbachia intervention.

5 Discussion and Conclusion

In this paper, we formulated stochastic models for dengue in the presence of Wolbachia.
This research aims to measure the effectiveness of the Wolbachia intervention to reduce
dengue transmission. We determine the proportion of reduction in the basic reproduction
number and also the probability of extinction. The result shows that there is around
64% reduction in the basic reproduction number in the presence of Wolbachia. This is
relatively similar to the result found by Ferguson et al. [18]. They found a reduction of 65-
75% in the basic reproduction number when the Wolbachia intervention is implemented.
Furthermore, when the reproduction number is significantly high, the reduction in the
reproduction number is not sufficient to end dengue transmission. This is similar to
the result obtained by Hughes and Britton [27]. The results imply that the Wolbachia
intervention may be effective in regions with moderate transmission level.

The mathematical expression of the probability of extinction is derived. We found
that the probability of extinction is higher in the presence of Wolbachia-carrying
mosquitoes than that in the absence of Wolbachia. A 90% chance of disease extinc-
tion is obtained when the Wolbachia intervention is implemented. Around 60% chance
of disease extinction is still obtained, although the number of the initially infected in-
dividuals is around ten. This implies that a Wolbachia intervention can be effective in
reducing dengue transmission.

It can be concluded that the use of the Wolbachia bacterium can be an alterna-
tive strategy against dengue where the probability of disease extinction can reach 90%.
Additionally, the use of the Wolbachia bacterium would be effective in reducing dengue
transmission, particularly in areas with moderate transmission level. Therefore, the com-
bination of the Wolbachia bacterium and the other strategy such as vaccination may be
needed to optimise the delivery of the intervention.
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Appendix

Parameter Descriptions

The following table presents the parameter descriptions and values of the models.

Table 2: The description, values, units, and references of the parameters for the mathematical
model. The letter W is to denote Wolbachia.

Symbol Description Value Unit Source
α Maternal transmission 0.9 N/A [3,12,26]
bN Biting rate 0.63 day-1 [28]
ρW Reproductive rate of Wolbachia-

carrying mosquitoes
0.95ρN N/A [3]

THW Transmission probability from Wol-
bachia-carrying mosquitoes to hu-
man

0.5TN N/A [29]

µW Death rate of Wolbachia 1.1 µN N/A [3,10]
bW Biting rates of Wolbachia-carrying

mosquitoes
0.95 bN N/A [8]

γH Progression rate from exposed to in-
fectious human

1/5.5 day-1 [30]

γN Progression from exposed to infec-
tious non-W

1/10 day-1 [31]

γW Progression rate from exposed to in-
fectious

1/10 day-1 [31]

µN Adult mosquito death rate (non-W) 1/14 day-1 [32]
µNA Death rate of aquatic non-W 1/14 day-1 [32]
µWA Aquatic death rate 1/14 day-1 [32]
ρN Reproductive rate of non-W 1.25 day-1 [12]
σ Recovery rate 1/5 day-1 [30]
TN Transmission probability 0.2614 N/A [19]
τN Maturation rate of non-W 1/10 day-1 [32]
τW Maturation rate of W 1/10 day-1 [32]
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