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Abstract: This paper investigates the existence and the stability of artificial equilib-
rium points (AEPs) in the low-thrust restricted three-body problem when the bigger
primary is a source of radiation and the smaller one is a point mass. The linear
stability of the AEPs has been studied. Firstly, we have derived the equations of
motion of the spacecraft in the synodic coordinate system. The AEPs are obtained
by cancelling the gravitational and centrifugal forces with continuous control acceler-
ation at the non-equilibrium points. The positions of these AEPs will depend on the
magnitude and directions of low-thrust acceleration. Secondly, we have calculated the
numerical values of the AEPs and their movement shown graphically for given thrust
parameters. We have found the stability regions in the x− y, x− z, y− z-planes and
studied the effect of the radiation pressure on the motion of the spacecraft. Further,
we have drawn the zero velocity curves (ZVCs) to determine the possible regions of
motion in which the spacecraft is free to move.
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1 Introduction

The restricted three-body problem with many perturbing forces, like oblateness, radia-
tion forces of the primaries, Coriolis and centrifugal forces have been studied by many
scientists and researchers. There are five Lagrangian points in the classical restricted
three-body problem (R3BP), three of them are on the straight line joining the primaries,
called collinear libration points, and two of them set up equilateral triangle with the
primaries. Szebehely [1] has investigated the five libration points. The collinear libration
points L1,2,3 are always unstable in the linear sense for any value of the mass parameter µ,
whereas the triangular libration points L4,5 are stable if µ < µc = 0.03852. Kunitsyn and
Perezhogin [2], Kumar and Choudhry [3], Abouelmagd [4], and Singh and Emmanuel [5]
have studied the stability properties of the equilibrium points in the photogravitational
R3BP. Zotos [6] has studied numerically the case of the planar circular photogravitational
R3BP where the more massive primary is an emitter of radiation. He has found that
the radiation pressure factor has a huge impact on the character of orbits. Srivastava
et al. [7] have introduced the Kustaanheimo-Stiefel (KS)-transformation to reduce the
order of singularities arising due to the motion of an infinitesimal body in the vicinity
of the smaller primary in the R3BP when the bigger primary is a source of radiation
and the smaller one is an oblate spheroid. They have found that the KS-regularization
reduces the order of the pole from five to three at the point of singularity of the governing
equations of motion. Correa et al. [8] introduced two models of the restricted three-body
and four-body problems. They have investigated the transfer orbits from a parking or-
bit around the Earth to the halo orbit in both the dynamical models. Also, they have
compared the total velocity increment to both the models. Prado [9] has worked on the
space trajectories in the circular restricted three-body problem. Further, he assumed
that the spacecraft moves under the gravitational forces of two massive bodies which
are in circular orbits. He also investigated the orbits which can be used to transfer a
spacecraft from one body back to the same body or to transfer a spacecraft from one
body to the respective Lagrangian points L4 and L5.

The Lagrangian points are only five positions in space where the small object if placed
there, would maintain its position relative to the two massive bodied. If, however, the ob-
ject is equipped with a suitable propulsion system, capable of balancing the gravitational
pull of the two massive bodies, other equilibrium points can be generated allowing the
third body to be stationary with respect to the first two bodies. According to Dusek [10]
these new points are usually known as the Artificial Equilibrium Points(AEPs). Recently,
low-thrust propulsion systems such as the solar sail and the electric propulsion systems
are being developed not only for controlling satellite orbit, but also as main engines for
interplanetary transfer orbits. These low-thrust propulsion systems are able to provide
continuous control acceleration to the spacecraft and thus increase mission design flex-
ibility. Describing the locations and investigating the stability conditions of the AEPs
have been made by many authors. In particular, Farquhar [11] has studied the concept of
telecommunication systems using the Lagrange points and investigated ballistic periodic
orbits about these points in the Earth-Moon system. Simmons et al. [12] and Broschart
and Scheeres [13] have studied the stability of equilibrium points with continuous control
acceleration. Scheeres et al. [14] have analyzed a control law which stabilizes unstable pe-
riodic halo orbits about an Earth-Sun libration point with continuous acceleration taking
hills problem and discussed applications to the spacecraft formation flight. Thereafter,
many authors have been worked on the solar sails, see Morimoto et al. [15, 16], Baig and
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McInnes [17], Bombardelli and Pelaez [18]. They have studied the stability of the artificial
equilibrium points in the circular restricted three-body problem. Also, they have investi-
gated the equilibrium points for hybrid low-thrust propulsion system. Bu et al. [19] have
investigated the positions and dynamical characteristic of the AEPs in a binary asteroid
system with continuous low-thrust. They have found the stable regions of the AEPs by a
parametric analysis and studied the effect of the mass ratio and ellipsoid parameters on
the stable region. Further, they have analyzed the effect of the continuous low-thrust on
the feasible region of motion by ZVCs. More recently, Sushil et al. [20] have been studied
the existence and stability of equilibrium points in the restricted three-body problem
with a geo-centric satellite including the Earth’s equatorial ellipticity.

In the present paper, we have studied the effect of radiation pressure of the bigger
primary on the motion of the spacecraft. This paper is an extension of the work of
Morimoto et al. [15]. This paper is organized as follows. In Section 2, we have derived
the equations of motion of the spacecraft. In Section 3, we have found the locations of
the AEPs. In Section 4, we have found the stability conditions and stable regions. In
Section 5, we have drawn the zero velocity curves. Finally, in Section 6, we have concluded
the results obtained.

Figure 1: Configuration of the problem.

2 Equation of Motion

Let two celestial bodies of masses m1 and m2 (m1 > m2) be the primaries moving with
angular velocity ω in circular orbits about their center of mass O taken as the origin,
and let the infinitesimal body (a spacecraft) of mass m3 is moving in the plane of motion
of m1 and m2. The motion of the spacecraft is affected by the motion of m1 and m2 but
without affecting their motion. In this problem, we assume that the bigger primary is a
source of radiation and the smaller one is a point mass. The line joining the primaries
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m1 and m2 is taken as the X-axis, the line which passes through O and is perpendicular
to the X-axis and lying in the plane of motion of m1 and m2 is considered as the Y -axis,
and the line which passes through the origin and is perpendicular to the plane of motion
of the primaries is taken as the Z-axis. We have taken the synodic system of coordinates
O (xyz), initially coincident with the inertial system of coordinates O (XY Z), rotating
with the angular velocity ω about the z-axis (the z-axis is coincident with the Z-axis).
A complete diagram of the formulated problem is shown in Figure 1. Let the primaries
of masses m1 and m2 be located at P1 (−µ, 0, 0) and P2 (1 − µ, 0, 0), respectively, and
the spacecraft is located at the point P3 (x, y, z) (see Fig. 1). The angular velocity of the

primaries is given by the relation ω =
√

G(m1+m2)
l3 , where l is the distance between the

primaries, and G is the gravitational constant. We scale the units by taking the sum
of the masses and the distance between the primaries both equal to unity. Therefore,
m1 = 1− µ, m2 = µ, µ = m2

m1+m2
and µ ∈ (0, 0.5] with m1 +m2 = 1. The scale of time

is chosen so that the gravitational constant is unity and thus, the angular velocity of the
primaries is one. The equation of motion of the spacecraft in vector form is expressed as

d2r

dt2
+ 2ω × dr

dt
= a −∇Ω = F, (1)

where Ω is the effective potential of the system that combines the gravitational potential
and the potential from the centripetal acceleration, and which is given by

Ω = −n
2

2
(x2 + y2)− q (1− µ)

r1
− µ

r2
,

and

F = the total force acting on m3

= F1 + F2,

F1 = the gravitational force exerted on m3 due

to m1 along P3P1,

F2 = the gravitational force exerted on m3 due

to m2 along P3P2.

The vector a = (ax, ay, az) is the low-thrust acceleration and r = (x, y, z)T is the
position vector of the spacecraft. Thus, the equations of motion of the spacecraft with
continuous low-thrust in the dimensionless co-ordinate system can be written as

ẍ− 2nẏ = −Ωx + ax = −Ω∗x,

ÿ + 2nẋ = −Ωy + ay = −Ω∗y,

z̈ = −Ωz + az = −Ω∗z,

 (2)

where
Ω∗ is the potential of the system with continuous low-thrust that can be written as
Ω∗ = Ω− a .r = Ω− axx− ayy − azz,

= −n
2

2
(x2 + y2)− q (1− µ)

r1
− µ

r2
− axx− ayy − azz,
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where

r1 =

√
(x+ µ)

2
+ y2 + z2, r2 =

√
(x+ µ− 1)

2
+ y2 + z2,

and
q = 1− Fp

Fg
= 1− p,

q=the radiation parameter,
p=the radiation pressure,
Fg= the gravitational attraction force due to the bigger primary m1,
Fp= the radiation pressure due to bigger primary m1,
n is the mean motion of the primaries whose value is one in this problem. The magnitude
of control acceleration is given by
a =

√
ax2 + ay2 + az2.

3 The Locations of Artificial Equilibrium Points

The AEPs are the solutions of the equations Ω∗x = 0, Ω∗y = 0, Ω∗z = 0. In order to find
the AEPs of the system, take the velocity and acceleration of the system equal to 0,
i.e., ẋ = ẏ = ż = 0, ẍ = ÿ = z̈ = 0. The AEPs denoted by (x0, y0, z0) are the solution
of the equations given by

−x0 +
q (1− µ)

r31
(x0 + µ) +

µ

r32
(x0 − µ1 − 1)− ax = 0,

−y0 +
q (1− µ)

r31
y0 +

µ

r32
y0 − ay = 0,

q (1− µ)

r31
z0 +

µ

r32
z0 − az = 0.


(3)

The AEPs which lie on the x-axis are called collinear and are obtained from Eqs. (3)
by taking y = z = 0. The AEPs which lie in the xy-plane but not on the x-axis are called
non-collinear. We have obtained five AEPs denoted by L1, L2, L3, L4 and L5 for given
parameters. In Tables 1 and 2, we have presented the numerical values of a few AEPs
for the fixed values of µ = 0.1, q = 0.99 and varying a in the x -direction. From Tables
1 and 2, we have observed that there exist three collinear and two non-collinear AEPs.

The locations of the collinear and non-collinear AEPs are shown in Fig. 2 for the
different values of the radiation parameter q(0 < q < 1) and low-thrust acceleration
a = (ax, 0, 0). From Fig. 2 (a), we have observed that when a = (ax, 0, 0) is increasing,
the AEPs L1, L2 and L3 have almost negligible movement, the AEPs L4 and L5 move
towards the y-axis, and we have noticed that the non-collinear AEPs L4 and L5 are
symmetric about the x-axis. From Fig. 2 (b), we have observed that when q is increasing,
all the AEPs are going away from the primary m1 and the AEPs L4 and L5 are symmetric
about the x-axis. We have also observed that the AEPs are the new positions of the
equilibrium points with the effect of the continuous low-thrust a and radiation parameter
q, these points are different from the natural libration points.
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(a) (b)

Figure 2: The locations of the five AEPs in the low-thrust R3BP with the effect of ra-
diation pressure for µ = 0.1. (a) For q = 0.99 and for a = (0.0001, 0, 0) (black, red),
(0.015, 0, 0) (black, green), (0.03, 0, 0) (black, magenta), (0.045, 0, 0) (black, orange). (b) For
a = (0.015, 0, 0) and for q = 0.25 (black, red), 0.50 (black, green), 0.75 (black, magenta),
0.99 (black, orange).

µ = 0.1
q = 0.99

a L1 L2 L3 L4, 5

a = 0.0001 (0.607756, 0) (1.25887, 0) (-1.03844, 0) (0.396291,± 0.864259)
a = 0.0150 (0.606693, 0) (1.25643, 0) (-1.04315, 0) (0.334002, ±0.891111)
a = 0.0300 (0.605617, 0) (1.25400, 0) (-1.04793, 0) (0.251705, ±0.920949)
a = 0.0450 (0.604536, 0) (1.25161, 0) (-1.05276, 0) (0.135929, ±0.951772)

Table 1: The AEPs in the xy-plane when a is varying in the x-direction.

µ = 0.1
a = 0.015

q L1 L2 L3 L4, 5

q = 0.25 (0.413878, 0) (1.20345, 0) (-0.693390, 0) (0.039034, ±0.610877)
q = 0.50 (0.513221, 0) (1.21998, 0) (-0.849261, 0) (0.154312, ±0.747250)
q = 0.75 (0.570035, 0) (1.23791, 0) (-0.958911, 0) (0.251001, ±0.832607)
q = 0.99 (0.606693, 0) (1.25643, 0) (-1.043150, 0) (0.334002, ±0.891111)

Table 2: The AEPs in the xy-plane when q is varying and a = (0.015, 0, 0).

4 Stability Analysis and Stable Regions

To establish the spacecraft at a non-equilibrium point, a continuous low-thrust is provided
to the spacecraft. Now, give the small displacement to (x0, y0, z0) as x = x0 + δx, y =
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y0 + δy, z = z0 + δz, (δx, δy, δz << 1). Using the above displacements, the linearized
equations of motion (according to Morimoto et al. [16]) corresponding to Eqs. (2) are
given by

δ̈x − 2nδ̇y = Ω0
xxδx + Ω0

xyδy + Ω0
xzδz,

δ̈y + 2nδ̇x = Ω0
yxδx + Ω0

yyδy + Ω0
yzδz,

δ̈z = Ω0
zxδx + Ω0

zyδy + Ω0
zzδz,

 (4)

where the superscript “ 0 ” overhead in Eqs. (4) indicates that the values are to be cal-
culated at the AEP (x0, y0, z0) under consideration. The characteristic root λ satisfies
the given characteristic equation

λ6 + (Ω0
xx + Ω0

yy + Ω0
zz + 4)λ4 + (Ω0

xxΩ0
yy + Ω0

xxΩ0
zz + Ω0

yyΩ0
zz − (Ω0

xy)2

−(Ω0
xz)2 − (Ω0

yz)2 + 4Ω0
zz)λ2 + Ω0

xxΩ0
yyΩ0

zz + 2 Ω0
xyΩ0

xzΩ0
yz − (Ω0

xy)2Ω0
zz

−(Ω0
xz)2Ω0

yy − (Ω0
yz)2Ω0

xx = 0.

 (5)

If k = λ2, we obtain

k3 + (Ω0
xx + Ω0

yy + Ω0
zz + 4) k2 + (Ω0

xxΩ0
yy + Ω0

xxΩ0
zz + Ω0

yyΩ0
zz − (Ω0

xy)2

−(Ω0
xz)2 − (Ω0

yz)2 + 4Ω0
zz) k + Ω0

xxΩ0
yyΩ0

zz + 2 Ω0
xyΩ0

xzΩ0
yz − (Ω0

xy)2Ω0
zz

−(Ω0
xz)2Ω0

yy − (Ω0
yz)2Ω0

xx = 0.

 (6)

The Eqn. (6) is a cubic equation in k that can be written as

k3 + d1k
2 + d2k + d3 = 0, (7)

where

d1 = Ω0
xx + Ω0

yy + Ω0
zz + 4 = 1,

d2 = Ω0
xxΩ0

yy + Ω0
xxΩ0

zz + Ω0
yyΩ0

zz − (Ω0
xy)2 − (Ω0

xz)2 − (Ω0
yz)2 + 4Ω0

zz,

d3 = Ω0
xxΩ0

yyΩ0
zz + 2 Ω0

xyΩ0
xzΩ0

yz − (Ω0
xy)2Ω0

zz − (Ω0
xz)2Ω0

yy − (Ω0
yz)2Ω0

xx.

Now, we determine the linear stability of the AEPs by finding the characteristic roots
of Eqn. (7). We know that all the characteristic roots of a cubic equation are either real
numbers or one of them is a real number and the other characteristic roots are imaginary
numbers. According to the stability theory, a necessary and sufficient condition for an
AEP to be linearly stable is that all the characteristic roots of Eqn. (5) lie in the left-hand
side of the λ-plane (i.e.,λ ≤ 0). If one or more characteristic roots of Eqn. (5) lie in the
right-hand side of the λ-plane, then the AEP is always unstable. If all the characteristic
roots of Eqn. (5) lie to the left-hand side of the λ-plane, then Eqn. (7) must have three
real and negative roots. The resulting linear stability conditions according to Morimoto
et al. [16] and Descarte’s sign rule often are D ≥ 0, d2 > 0 and d3 > 0, where D is the
discriminant of the cubic Eqn. (7) and is given by

D =
1

4

(
d3 +

16− 18 d2
27

)2

+
1

27

(
d2 −

4

3

)3

. (8)
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Finally, it is concluded that the system of AEPs is linearly stable when D ≥ 0, d2 > 0
and d3 > 0.

Further, we have plotted the stability regions in the x − y, x − z and y − z-planes
as shown in Fig. 3. The gray areas in Figs. 3 indicate the stability regions of the AEPs
satisfying the stability conditions D ≥ 0, d2 > 0 and d3 > 0. From Fig. 3 (a, b), we have
observed that the stability regions reduce around m2 and expand around m1 for the
increasing values of radiation parameter q (0 < q < 1). Further, from Fig. 3 (c, d, e, f),
we have observed that the stability regions increase around both the primaries m1 and
m2 for the increasing values of radiation parameter q (0 < q < 1).

5 Zero Velocity Curves

The Jacobian integral of the equations of motion in the classical system is defined as

C = 2Ω + (ẋ2 + ẏ2 + ż2). (9)

The Jacobian integral of the equations of motion with the continuous low-thrust is defined
as

C ′ = 2Ω∗ + (ẋ2 + ẏ2 + ż2). (10)

We have plotted the ZVCs by taking ẋ = ẏ = ż = 0. The white domains correspond to
the Hills region, and the cyan color indicates the forbidden regions, while the thick black
lines show the ZVCs. In these ZVCs, the black dots indicate the positions of the AEPs,
while the blue dots indicate the positions of two primaries.

In Figs. 4, we have plotted the ZVCs for the fixed values of µ = 0.1, q = 0.99,
C ′ = −3.57174 and for different values of low-thrust acceleration a . Fig. 4 (a) indicates
the ZVC for the low-thrust acceleration a = (0.0001, 0, 0) and shows that there exists a
circular land (white domains) around both the primaries and the spacecraft is trapped in
these regions, where the motion is possible, and the circular strip (the cyan color) shows
the forbidden region where the motion is not possible. Thus, the spacecraft can move
around both the primaries and can not move from one primary to the other primary.

In Fig. 4 (b), as we have increased the value of the low-thrust acceleration a =
(0.15, 0, 0), it is observed that the spacecraft can freely move in the entire white do-
main. In Fig. 4 (c), there exist a limiting situation for a = (0.245, 0, 0) and a cusp at
L3, it is observed that the spacecraft can freely move in the entire white domain. In
Fig. 4 (d), the curves of zero velocity constitute two branches for a = (0.335, 0, 0). The
first branch contains L4 and the other branch contains L5. Also, the curves split into two
parts at L3 and shrink to the tadpole shaped curves around L4 and L5. Hence, there is
only forbidden region around L4 and L5 in the tadpole shaped region and the spacecraft
is free to move everywhere in the plane.

6 Conclusion

In this paper, we have studied the existence and stability of the AEPs in the low-thrust
R3BP when the bigger primary is a source of radiation and the smaller one is a point mass.
The AEPs are obtained by introducing the continuous low-thrust at the non-equilibrium
points. The positions of these AEPs will depend on the magnitude and directions of
the low-thrust acceleration. We have calculated a few AEPs numerically as shown in
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The stable regions (gray area) in the low-thrust R3BP with the effect of the radiation
pressure q (0 < q < 1) for fixed value of the mass parameter µ = 0.1. (a, b) In the x − y-plane
for q = 0.1, 0.95, respectively; (c, d) In the x − z-plane for q = 0.1, 0.95, respectively; (e, f) In
the y − z-plane for q = 0.1, 0.95, respectively.
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(a) (b)

(c) (d)

Figure 4: The ZVCs in the low-thrust R3BP for the fixed values of µ = 0.1, q = 0.99 and for
different values of the low-thrust acceleration a .
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Tables 1 and 2. From Tables 1 and 2, we have observed that there exist three collinear
and two non-collinear AEPs. It is noticed that the non-collinear AEPs L4 and L5 are
symmetric about the x-axis for the varying low-thrust acceleration in the x-direction.
The movement of the AEPs is shown graphically and displayed in Figs. 2 with the effect
of the radiation and low-thrust parameters. It is found that the radiation parameter has
more impact on the positions of the AEPs. In our case, the positions of the AEPs are
different from those in Morimoto et al. [16], Baig and McInnes [17] and Bu et al. [19] due
to the presence of the radiation parameter q (0 < q < 1) of the bigger primary. But the
positions of these AEPs can be similar to those in the works of Morimoto et al. [16], Baig
and McInnes [17], and Bu et al. [19] when q = 1 and a 6= (0, 0, 0).

Next, the effect of the radiation parameter q (0 < q < 1) is studied on stable regions of
the spacecraft. From Figs. 3 (a, b), we have observed that the stable regions reduce around
the second primary m2 and expand around the first primary m1 for the increasing values
of the radiation parameter q (0 < q < 1) and for a fixed value of the mass parameter
µ = 0.1. Further, from Figs. 3 (c, d, e f), we have observed that the stable regions in
the x− z and y − z-planes increase for the increasing values of the radiation parameter
q (0 < q < 1) and for a fixed value of the mass parameter µ = 0.1. We have observed
that the stability regions are different from those in Morimoto et al. [16] and Bu et al. [19]
when q (0 < q < 1) is effective. When a = (0, 0, 0) and q = 1, the obtained results are in
agreement with those by Szebehely [1]. Furthermore, from Figs. 3, it is also observed that
the AEPs which lie in the stable regions (gray areas) will be linearly stable and otherwise
unstable.

Finally, in Figs. 4, we have drawn the ZVCs. It is concluded that for different values
of the low-thrust acceleration a and for a fixed value of the mass parameter µ = 0.1, we
have different trapped areas in which the spacecraft can freely move. It is clear that the
low-thrust acceleration a has subsequent impact on the regions where the spacecraft can
move.
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