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Abstract: An increased order generalized combination synchronization (IOGCS)
of non-identical dimensional fractional-order systems with suitable different observ-
able variable functions is proposed and analyzed in this paper. This synchronization
scheme is applied for the combination of two fractional-order unified drive systems
and the fractional-order Liu response system. In view of the stability property of
linear fractional-order systems, an effective nonlinear control scheme is designed to
achieve the desired synchronization. Theoretical analysis and numerical simulations
are shown to demonstrate the effectiveness of the proposed method.
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1 Introduction

Fractional calculus can be dated back to the 17th century as studied by Podlubny [1].
Over the last decades, fractional calculus has applied in various fields such as control
processing [2], reaction difusion equation [3], biological phenomena [4] and so on.

Chaos synchronization schemes for fractional-order dynamical systems have also been
investigated in several fields such as secure communication and data encryption [5, 6].
Up to now, a variety of approaches of chaos synchronization have been developed, such
as complete synchronization [7], generalized synchronization [8], inverse matrix projec-
tive synchronization [9], modified projective synchronization [10], coexistence of different
types of chaos synchronization [11], and Q− S synchronization [12].

However, most of researchers mainly focused on the usual drive-response synchroniza-
tion model, which has one drive system and one response system.

Recently, studying synchronization between the combination of two (or more) drive
systems and one response system becomes an interesting problem due to its potential
applications in secure communication [13].

Now, some results on the combination synchronization of several chaotic fractional or-
der systems are obtained. For example, the combination synchronization of three classic
chaotic systems using active backstepping design is investigated in [14]. The combination
synchronization of three identical or different nonlinear complex hyperchaotic systems is
achieved in [15]. The reduced order function projective combination synchronization of
three Josephson junctions using the backstepping technique is investigated in [16]. An
adaptive function projective combination synchronization of three different fractional
order chaotic systems is investigated in [17]. The generalized combination complex syn-
chronization for fractional-order chaotic complex systems is investigated in [18]. And the
generalized combination synchronization of three different dimensional fractional chaotic
and hyperchaotic systems by using three scaling matrices is achieved in [19]. However,
these studies are mainly concerned with the combination synchronization between chaotic
systems with respect to the scaling matrices. Therefore the combination synchronization
of non-identical dimensional chaotic fractional order systems with respect to the variable
functions becomes an interesting and challenging work.

By exploiting the idea of the stability property of linear fractional order systems,
an effective nonlinear controller for the IOGCS of three fractional-order chaotic systems
with suitable different observable variable functions is designed in this paper, and the
stability criterion for the above-mentioned systems is found. To simplify our discussions,
the synchronization scheme is applied for the combination of two fractional-order unified
drive systems and the fractional-order Liu response system.

The rest of the paper is organized as follows. In Section 2, based on the stability
property of linear fractional order systems, a powerful scheme is proposed to realize the
IOGCS of non-identical fractional order dynamical chaotic systems. In Section 3, numer-
ical simulations show that the method can ensure the occurrence of the IOGCS between
the fractional-order unified chaotic system and fractional-order Liu system. Finally, con-
clusion is given in Section 4.

2 Problem Formulation of the IOGCS

In this section, we introduce the concept of the IOGCS of three non-identical dimension
fractional-order systems with suitable different observable variable functions. The model
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can be given as follows
Dαx = f(x), (1)

Dαy = g(y), (2)

Dαz = h(z) + u, (3)

where Dα is the Caputo differential operator [1] which is defined as

Dαξ(t) = Jn−αξ(n)(t), α ∈ (n− 1, n) , (4)

where Jα is the α -order Riemann–Liouville integral operator which is defined as

Jαξ(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1ξ(τ)dτ, (5)

and

Γ(α) =

∫ +∞

0

zα−1 exp(−z)dz (6)

is the gamma function, x = (x1, x2, ..., xn)T ∈ Rn and y = (y1, y2, ..., yn)T ∈ Rn are
the state variables of two drive systems, z = (z1, z2, ..., zm)T ∈ Rm(n < m) is the state
variable of the response system, f, g : Rn → Rn and h : Rm → Rm are the continuous
vector-valued functions and u = (u1, u2, ..., um)T ∈ Rm is the controller vector which will
be designed.

The definition of the proposed synchronization is given as follows.

Definition 2.1 The two drive systems (1)-(2) and the response system (3) are said
to achieve the IOGCS if there exists a suitable controller u and three continuous smooth
vector functions Q, R : Rn → Rm and S : Rm → Rm, such that the error vector

e(t) = Q (x(t)) +R (y(t))− S (z(t)) (7)

will approach zero for large enough t, i.e.,

lim
t→+∞

‖Q (x(t)) +R (y(t))− S (z(t))‖ = 0, (8)

where ‖.‖ represents the matrix norm.

Remark 2.1 From Definition 2.1, one can show that the IOGCS of three different
fractional-order chaotic systems can be extended to more chaotic systems.

In this paper, we consider the fractional-order unified system (Lorenz, Chen and Lü
systems) [20] as the first drive system, which is described by

Dαx1 = (25δ + 10)(x2 − x1),
Dαx2 = (−35δ + 28)x1 − x1x3 + (29δ − 1)x2,

Dαx3 = x1x2 − (
δ + 8

3
)x3.

(9)

The second drive system is described also by the fractional-order unified system
Dαy1 = (25δ + 10)(y2 − y1),
Dαy2 = (−35δ + 28)y1 − y1y3 + (29δ − 1)y2,

Dαy3 = y1y2 − (
δ + 8

3
)y3,

(10)
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and the controlled response system is chosen as the fractional-order Liu system [21]
Dαz1 = a(z2 − z1) + u1,
Dαz2 = bz1 + z1z3 − z4 + u2,
Dαz3 = −cz3 − z1z2 + z4 + u3,
Dαz4 = dz1 + z2 + u4,

(11)

where xi , yi (i = 1, 2, 3) and zj (j = 1, 2, 3, 4) are the state variables of the master
systems and the slave system, respectively, δ ∈ [0, 1], Dα is the Caputo differential
operator (0 < α ≤ 1),u1, u2 , u3 and u4 are the nonlinear controllers to be designed.
To simplify our discussions, we take the observable variable functions Q,R : R3 → R4

and S : R4 → R4 as

Q(x1, x2, x3) = (x1 − x2, x2, x3 + 1, 2), (12)

R(y1, y2, y3) = (y1 − y2, y2, y3, 0) (13)

and

S(z1, z2, z3, z4) = (z1, z2, z3 + 1, z4 − cz3 + 2). (14)

The error states are defined by
e1 = x1 − x2 + y1 − y2 − z1,
e2 = x2 + y2 − z2,
e3 = x3 + y3 − z3,
e4 = −z4 + cz3.

(15)

Then the error dynamical systems between the drive systems (9), (10) and the response
system (11) can be written as

Dαe1 = (10δ − 38)e1 + (7δ − 27)e2 + (10δ + a− 38)z1+
+ (7δ − a− 27)z2 + x1x3 + y1y3 − u1,

Dαe2 = (29δ − 1)e2 − e4 + (29δ − 1)z2 + (−35δ + 28)(x1 + y1)+
− (x1x3 + y1y3)− bz1 − z1z3 + cz3 − u2,

Dαe3 = −(
δ + 8

3
)e3 + e4 + x1x2 + y1y2 + z1z2 +−(

δ + 8

3
)z3 − u3,

Dαe4 = −ce4 − dz1 − z2 − cz1z2 − u4 + cu3.

(16)

To get the IOGCS to occur, the zero solutions of the error system must be stable, that
is to say, the error evolution of the systems (9), (10) and (11) should tend to zero as
t → +∞. So, a suitable controller ui, i = 1, 2, 3, 4 should be designed which guarantees
that system (16) stabilizes towards the origin. To this end, we need the following theorem
and hypothesis.

Theorem 2.1 [22] Consider the fractional-order linear system

Dαx = Ax, (17)

where x ∈ Rn is the state vector. The previous system is asymptotically stable if and only

if |arg(λi (A))| > α
π

2
for i = 1, 2, ..., n, where arg(λi (A)) denotes the argument of the

eigenvalue λi of A.
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Hypothesis: We assume that the controllers ui, i = 1, 2, 3, 4 are chosen as

u1 = (10δ + a− 38)z1 + (7δ − a− 27)z2 + x1x3 + y1y3 + k1e1,
u2 = (29δ − 1)z2 + (−35δ + 28)(x1 + y1)− (x1x3 + y1y3)− bz1 − (z1 − c)z3 + k2e2,

u3 = x1x2 + y1y2 + z1z2 − (
δ + 8

3
)z3,

u4 = −dz1 − z2 + c

(
x1x2 + y1y2 +−(

δ + 8

3
)z3

)
,

(18)
where k1 and k2 are the feedback gains satisfying

k1 > 10δ − 38 and k2 > 29δ − 1. (19)

Now, due to Theorem 2.1, we have the following results.

Theorem 2.2 If the controllers ui, i = 1, 2, 3, 4 are given by (18), and the feedback
gains k1 and k2 are given by (19), then

lim
t→+∞

‖Q (x(t)) +R (y(t))− S (z(t))‖ = 0,

that is to say, the IOGCS occurs between the systems (9), (10) and (11) with respect to
the variable functions Q,R and S.

Proof. By hypothesis (18), the error system (16) becomes
Dαe1 = (10δ − 38− k1)e1 + (7δ − 27)e2,
Dαe2 = (29δ − 1− k2)e2 − e4,

Dαe3 = −(
δ + 8

3
)e3 + e4,

Dαe4 = −ce4,

(20)

and the characteristic equation is

1

3
(λ+ c) (3λ+ δ + 8) (λ− 29δ + k2 + 1) (λ− 10δ + k1 + 38) = 0. (21)

It is easy to obtain its characteristic roots as

λ1 = −c, λ2 = −(
δ + 8

3
), λ3 = 29δ − 1− k2 and λ4 = 10δ − 38− k1. (22)

Since δ ∈ [0, 1] and by hypothesis (19), all roots of (21) are negative. Therefore,

|arg λi | > α
π

2
for i = 1, 2, 3, 4 and 0 < α < 1.

In view of Theorem 2.1, the error system (20) is asymptotically stable, which implies
that the desired synchronization is achieved.

3 Numerical Simulations

In order to verify the theoretical results obtained in the above section, the corresponding
numerical simulations will be performed. In the simulations, we take: α = 0.97, δ = 1,
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k1 = −27, k2 = 29. The initial values of the two drive and the response systems are
chosen as (x1(0), x2(0), x3(0))T = (0.1, 0.1, 0.1)T , (y1(0), y2(0), y3(0))T= (0.1, 0.1, 0.1)T

and (z1(0), z2(0), z3(0), z4(0))T = (0.3, 0.3, 0,−0.3)T , respectively. The initial conditions
for the error system are thus (e1(0), e2(0), e3(0), e4(0))T = (−0.3,−0.1, 0.2, 0.3)T .

Figures 1, 2 , 3 and 4 display the chaotic behaviors of the Lorenz system (9) (when
δ = 0), the Lü system (9) (when δ = 0.8), the Chen system (9) (when δ = 1), and the
Liu system (11) (when a = 10, b = 35, c = 1.4 and d = 5), respectively. Figure 5 shows
the curves of the synchronization errors (20) under the controllers (18).
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Figure 1: The chaotic attractor of the Lorenz system (9), when δ = 0.
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Figure 2: The chaotic attractor of the Lü system (9), when δ = 0.8.

Remark 3.1 From Figure 5, it can be seen that the components of the error system
(20) decay towards zero as t → +∞, which implies that the desired synchronization is
achieved with our designed scheme.
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Figure 3: The chaotic attractor of the Chen system (9), when δ = 1.
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Figure 4: The hyperchaotic attractor of the Liu system (11).
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Figure 5: The curves of the synchronization errors (20).
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4 Conclusion

In this paper, we have investigated a new type of combination synchronization, called
IOGCS, between two drive systems of dimension 3 and a slave system of dimension 4
by introducing suitable observable variable functions. In view of the stability theory of
linear fractional-order systems, a suitable controller is designed to achieve the desired
synchronization. The method of this scheme has been applied for the combination of
two fractional-order unified drive systems and the fractional-order Liu response system.
Finally, numerical simulations are provided to verify the effectiveness of the proposed
scheme.
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