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Abstract: Based on the improved chaos searching strategy, an enhanced Bi-
directional chaotic optimization algorithm (EBCOA)is proposed in this study. A
Lozi chaos mapping is used as a chaos generator to produce a chaos variable. In
the process of EBCOA, and in order to make the chaos search more efficient, a new
sub-step local chaos optimization method is proposed and a global search is done to
find the current optimal solution in a certain range, and then a fine search reduces
the space of optimized variables. Compared with the algorithm of traditional chaos
search, the proposed algorithm is more accurate and can respond quickly. Simulation
and experimental results confirm the efficiency of the proposed algorithm.
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1 Introduction

In the field of mathematics, physics and engineering science, it is well recognized that
chaos theory can be applied as a very useful technique in practical application. Chaos
is aperiodic behavior in a deterministic system which exhibits sensitive dependence on
initial conditions, and thus provides great diversity based on the ergodic property of
the chaos phase, which transits every state without repetition in certain ranges. Chaos
is a term used to describe behavior that is seemingly random, but has an underlying
mathematical order to it [1–5]. Chaos is very common in nature, but is often mistaken
for random behavior. It is generated through a deterministic iteration formula. Due to
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these characteristics, chaos theory can be applied in the optimization algorithm [6, 7].
[9] proposed a chaotic differential evolution algorithm for multi-objective optimization.
Many deterministic, stochastic methods for solving the global optimization problem have
been proposed which, in turn, employed local moves or local exploitation, i.e., a new
candidate point is generated in a neighborhood of the current one. For example, all
Multistart-like algorithms generate candidate points in a neighborhood of the current
one, Genetic Algorithms use mutation to generate a point in the neighborhood of a
member of the current population, etc. The number of local minima is a critical issue for
global optimization problems. It is well known that local moves alone are not enough to
detect a global minimum because of geting trapped into a local minimum. Therefore, we
need to employ other techniques to escape from local minima such random generation
of starting points in Multistart-like algorithms; crossover in Genetic Algorithms, chaotic
generation of starting points in two-phase algorithms (COA) [10–17].

In this study, an enhanced bi-directional chaos optimization algorithm (EBCOA)
based on a new chaos search strategy is proposed in order to deal with premature con-
vergence in later evolution. From the testing results of the benchmark functions, the
results of EBCOA are obviously better than those of the standard bi-directional chaos
optimization algorithm (BCOA). The rest of the paper is organized as follows. In Section
2, we describe the BCOA presented in the literature and we present a new approach, the
EBCOA, based on the nested phases strategy and the use of 2-D chaotic sequences. In
Section 3, simulation results are provided to validate the effectiveness of the proposed
method. The paper ends with the conclusion as Section 4 followed by the references.

2 Chaos Search Strategy

Chaos occurs in many nonlinear systems, which is generated by deterministic equations.
Chaotic systems with their interesting properties such as topologically mixing and dense
periodic orbits, ergodicity and intrinsic stochasticity, can be used in various applications
such as global optimization. In feature selection, chaos search is more capable of es-
caping from local optima than random search. One way of application with chaos is a
chaotic optimization algorithm (COA) [6,7,13,16,17], which utilizes the nature of chaos
sequence including the quasi-stochastic property and ergodicity. The experimental stud-
ies assert that the benefits by chaotic variables instead of random variables are more
obvious although the mathematical theory can not be formulated.

2.1 Generation of chaotic sequences

In this section, we present the chaotic maps used, which generate chaotic sequences
in the process of evolutionary algorithms [12]. Chaos theory studies the behavior of
systems that follow deterministic laws but appear to be random and unpredictable,
i.e., dynamical systems. Chaotic variables can go through all states in certain ranges
according to their own regularity without repetition [10–12]. A chaotic map is a map
that exhibits some type of chaotic behavior. In this work, we applied 2-D chaotic maps
that are common in the literature, namely, the Lozi map [18] given by{

y1(k) = 1− a|(y1(k − 1))|+ by(k − 1),

y(k) = y1(k − 1),
(1)
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z(k) =
y(k)− α
α′ − α

, (2)

where k is the iteration number. In this work, the values of y are normalized in the
range [0;1] to each decision variable in n-dimensional space of the optimisation problem.
Therefore, y1 ∈ [−0.6417; 0.6716] and (α;α

′
) = (−0.6418; 0.6716).

The parameters used in this study are a = 1.7 and b = 0.5, see Figure 1, these values
are suggested in [13].

Figure 1: Attractor and temporal series of the Lozi map.

2.2 Two-phase methods and basic BCOA

In this section we briefly recall the BCOA introduced by Ying Song [1]. Many chaotic
strategies in global optimization consist of two phases: the global phase and the local
phase. During the global phase, chaotic points are drawn from the domain of searches
X according to a certain, often uniform, distribution. Then, the objective function is
evaluated in these points. During the local phase, the sample points are manipulated
by means of local search to yield a candidate global minimum. Consider the following
optimization problem for a nonlinear function:

minf(X), X = [x1, x2, x3, ....., xn],

Li ≤ xi ≤ Ui.

The chaotic variables are
Z(k+1) = g(Zk),

where Zk are chaotic states generated by the chaotic equation.
The basic process of the BCOA [1] strategy can be described as follows.
Step 1: also called the first carrier wave. Define a chaotic sequences generator based

on the Logistic map. Generate a sequence of the chaotic points and map it to a sequence
of decision points in the original decision space. Then, calculate the objective functions
with respect to the generated decision points, and choose the point with the minimum
objective function as the current optimum.

The ergodic area of chaotic variables to the variance range of optimisation variables
is

Xk = c+ d · Zk,
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where c and d are constant vectors such as amplification gains and, respectively, consist
of n elements ci = Li and di = Ui − Li.

Step 2: also called the second carrier wave. The current optimum is assumed to be
close to the global optimum after certain iterations, and it is viewed as the center with a
little chaotic perturbation and the global optimum is obtained through the fine search.
Repeat the above two steps until some specified convergence criterion is satisfied, and
the global optimum is obtained.

The approach of the second carrier wave is as follows:

X = X∗ + βX∗(0.5− Z),

so the search is on both two sides of the sub-optimal solution. Here X∗ is the so far best
solution. β is the parameter of the second carrier.

We have

−0.5β ≤ β(0.5− Z) ≤ 0.5β as β ≥ 0, (3)

0.5β ≤ β(0.5− Z) ≤ −0.5β as β ≤ 0, (4)

so the search is on both two sides of the sub-optimal solution.

3 Proposed EBCOA

3.1 Block flow diagram of EBCOA

Applying the local search technique has been hot and can bring two benefits to the whole
search procedure. First, the search can be driven into a better area further from local
optima. Second, but not less important, the exploitation of some promising areas of the
search space can be enhanced so as to speed up the convergence of the search.

The BCOA method [1] is then improved by the local search around every point
obtained by the chaotic series. The logistic map [1, 6, 7] is usually adopted in the COA.
But the distribution of chaotic sequences produced by the logistic map is uniformly
leading to the slow constringent. The Lozi map marked by (1) is a Gaussian map with
which we replace the logistic map to accelerate the rate of convergence.

The EBCOA can be illustrated as follows, where Mg, Ml and Mgl are the maximum
number of iterations of the chaotic global search, maximum number of iterations of the
chaotic local search and maximum number of iterations of the chaotic local search in the
global search, respectively. β is the step size in the chaotic local search, x̄i is the best
solution.

3.2 Step-size control

It is well-established that the convergence of a chaotic optimization algorithm directly
depends on how it controls the step size. Moreover, the step-size control influences to a
large extent the rate at which a chaotic optimization algorithm approaches the optimum.
The step-size adaptation mechanisms are all based on the idea that the smaller the step
size, the higher the probability of sampling good solutions.
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Figure 2: Block flow diagram of the EBCOA.

4 Simulation Results

In applied mathematics, test functions, known as artificial landscapes, are useful to eval-
uate characteristics of optimization algorithms. For testing our approach, and from the
standard set of benchmark problems available in the literature, we use two well known
nonlinear benchmark functions [21, 22]. In our study, we overcome this limitation using
a number of dimensions 2 and comparing with other heuristic optimization algorithms.
The Griewank function has many irregularities but there is only one unique global min-
imum. The Rastrigin function has many local optimal points and one unique global
minimum. Table 1 resumes the global optimum, the function value at global optimum
and the search range used for each test function. Figure 2 presents the plot for each test
function. All the programs were run on a 2 GHz Pentium IV processor with 2 GB of
random access memory in the MATLAB. In each case study, 50 independent runs were
made for each of the EBCOA methods. In the tested cases to benchmark problems, the
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maximum numbers of iterations maxK and maxK
′

were 10000 and 10000 iterations.

Figure 3: A perspective view and the related contour lines or some of functions when n = 2.

4.1 Results for the Rastrigin function

BCOA EBCOA

K
′

β optimum optimum
1001 700 4.2752e-6 0
1001 500 4.7997e-9 0
1001 400 1.1219e-11 0
2405 200 3.5527e-15 0
1023 0.1 3.9080e-14 3.90798505 e -14
6965 0.01 4.3343e-13 4.192202141 e -13

maxK
′

1e -3 2.6392e-5 5.419204974544 e - 6

maxK
′

1e -4 4.7111e-4 8.3677132572291 e-5

maxK
′

-(1 e -3) 2.8008e-5 2.1552183152806 e-5

maxK
′

-(1 e -4) 4.7392e-4 5.0020093164866 e -5

Table 1: Rastrigin optimum for n = 2 with different β.
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BCOA EBCOA

optimum β K
′

K
′

100 1206 10
0 10 399 10

1 368 10
-100 1918 10
-10 421 10

Table 2: Number of iterations with different β.

From Table 2, for β ≥ 200, the EBCOA can find the actual optimum 0. Here
|β| ∈ [1e − 4, 200]∪] − 120,−(1e − 4)]. The optimum is improved. From Table 3 for
β ∈]0.1, 100], the EBCOA can also find the actual optimum 0 but with the number of
iterations less than that in the BCOA.

The optimum value and the convergence speed are better than those in the COA [7]
and its improvements, such as the MSCOA [19], COA-BFGS [14] and other evolutionary
algorithms (such as the GA, PSO and its improvements) [20–22].

4.2 Results for the Griewank function.

BCOA EBCOA

K
′

β optimum optimum
802 11.12 0 0
346 11.10 0.2533 0
904 -9.93 0 0
372 -9.91 0.2516 0

Table 3: Griewank optimum for n = 2 with different β.

BCOA EBCOA

optimum β K
′

K
′

11.09 802 10
10 550 10

0 1.60 347 10
-9.90 904 10
-10 489 10

-1.33 369 10

Table 4: Number of iterations with different β.

From Table 4 we find that, for β ≥ 11.09 and β ≤ −9.90, the EBCOA can always find
the actual optimum 0, and for β ∈ [1.60, 11.09]∪ [9.90,−1.33], the EBCOA can also find
the actual optimum 0 but with the number of iterations less than that in the BCOA.
The optimum value and the convergence speed are better than those in the COA [7]
and its improvements such as the MSCOA [19], COA-BFGS [14] and other evolutionary
algorithms (such as the GA, PSO and its improvements) [20–22].
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5 Conclusion

Based on the ergodic property, chaos is adopted to enrich the search behavior and pre-
vent solutions from being trapped in the local optimum in optimization problems. This
paper focuses on exploring the effects of chaotic maps and giving guidance for improv-
ing the Bi-directional chaotic optimization algorithm in solving optimization problems.
Through proposing a new algorithm, the EBCOA, we have improved the BCOA doing
some modification in the global step of research, we refined the final solution using a
second bi-directional method of local search. The presented study allows us to conclude
that the proposed method is fast and converges to a good optimum.
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