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Abstract: In this paper, the strongly nonlinear fractional undamped Duffing equa-
tion for undamped oscillators is studied. The physical and the mathematical model
of nonlinear fractional Duffing equation for undamped oscillators is presented. The
modified fractional power series (MFPS) method is employed to compute an ap-
proximation to the solution of this problem. The validity of the MFPS method is
ascertained by comparing our results with numerical results and other methods in
the literature. The results reveal that the proposed analytical method can achieve
excellent results in predicting the solutions of such problems. The existence of the
solution is proved. In addition, the convergence of the proposed method is investi-
gated.
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1 Introduction

In 1918, George Duffing presented the Duffing equation in his publication entitled
“Erzwungene Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Be-
deuting”. Duffing simplified the mathematical model of

x′′(t) + a2x(t)− βx2(t)− γx3(t) = k sinωt (1)
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and calculated the first term H sinωt of the periodic solution. Duffing considered the
simplified version of equation (1) for describing the motion of the symmetrical pendulum
of the form

x′′(t) + α x(t)− γx3(t) = 0 (2)

and the unsymmetrical pendulum of the form

x′′(t) + α x(t)− γx2(t) = 0. (3)

From that time, the differential equation with polynomial type of nonlinearity is called
the Duffing equation. The nonlinear differential equation for the cubic free undamped
Duffing oscillator of the form

x′′(t) + α x(t) + βx3(t) = 0 (4)

is subject to

x(0) = A, x′(0) = 0. (5)

Many researchers discussed this problem numerically. He [3] used the homotopy
perturbation method to solve the Duffing equation, while Belendez et al. [1] used the
modified homotopy perturbation method. Ramos, Syam, Chhetri, Wazwaz used the
variational iteration method to solve this problem [7, 9–13], while Ghosh et al. [2] used
the Adomian decomposition method. In addition, Ramos [8] and Sabeg [14] used the
artificial parameter decomposition and He’s parameter expanding method, respectively.

Several analytical solutions for the Duffing problem were developed. For the small
non-linearity, many analytical approaches were used to solve this problem, namely, the
monotone method, the Krylov-Bogolubov method, the straightforward expansion, and
the generalized Taylor power series method. For the case of strong cubic non-linearity,
see [4, 5].

In this paper, we study the generalization of the problem (4)-(5) of the form

D2αx(t) + βx(t) + γx3(t) = 0,
1

2
< α ≤ 1, 0 < t < T (6)

subject to
x(0) = A,Dαx(0) = 0. (7)

The derivative in Eq. (6) is in the Caputo derivative sense. We write the definition
and some preliminary results of the Caputo fractional derivatives, as well as the definition
of the fractional power series and one of its properties.

Definition 1.1 A real function f(t), t > 0,is said to be in the space Cµ, µ ∈ R if
there exists a real number p > µ such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞), and it
is said to be in the space Cmµ if f (m) ∈ Cµ, m ∈ N.

Definition 1.2 For δ > 0, m − 1 < δ < m, m ∈ N, t > 0, and f ∈ Cm−1 , the left
Caputo fractional derivative is defined by

Dδf(t) =

{
1

Γ(m−δ)
∫ t

0
(t− s)m−1−δf (m)(s)ds, δ > 0,

f ′(t), δ = 0,
(8)

where Γ is the well-known Gamma function.
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The Caputo fractional derivative satisfies the following properties for α > 0, see [15].

1. Dαc = 0, where c is constant,

2. Dαtγ =

{
0, γ < α, γ ∈ {0, 1, 2, ...}

Γ(γ+1)
Γ(γ−α+1) t

γ−α, otherwise

}
.

Next, we write the definition and one of the properties of the fractional power series
which are used in this paper. More details can be found in [16].

Definition 1.3 A power series expansion of the form

∞∑
m=0

cm(t− t0)mα = c0 + c1(t− t0)α + c2(t− t0)2α + ...

is called a fractional power series FPS about t = t0 .

Suppose that f has a fractional FPS representation at t = t0 of the form

g(t) =

∞∑
m=0

cm(t− t0)mα, t0 ≤ t < t0 + β.

If Dmαg(t), m = 0, 1, 2, .. are continuous on R, then cm = Dmαg(t0)
Γ(1+mα) .

We organize this paper as follows. In Section 2, we present a numerical technique for
solving the second order nonlinear fractional boundary value problem using the MFPS
method. Convergence of the presented method is given in this section. Some numerical
results are presented in Section 3 to illustrate the efficiency of the presented method.
Finally, we conclude with some comments and conclusions in Section 4.

2 MFPS Method for Solving Fractional Undamped Duffing Equation with
Cubic Nonlinearity

In this section, we discuss how to solve the following class of second-order fractional
undamped Duffing equations with cubic nonlinearity using the MFPS method:

D2αx(t) + βx(t) + γx3(t) = 0,
1

2
< α ≤ 1, 0 < t < T (9)

subject to
x(0) = A,Dαx(0) = 0. (10)

The MFPS method proposes the solution of the problem in the form of fractional power
series as

x(t) =

∞∑
n=0

fn
tnα

Γ(1 + nα)
. (11)

To obtain the approximate values of the above series (11), we consider its k-th truncated
series xk(t) which has the form

xk(t) =

k∑
n=0

fn
tnα

Γ(1 + nα)
. (12)
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Since x(0) = f0 = A and Dαx(0) = f1 = 0, we rewrite Eq. (12) as

xk(t) = A+

k∑
n=2

fn
tnα

Γ(1 + nα)
, k = 2, 3, ..., (13)

where x1(t) = f0 +f1
tα

Γ(1+α) = A is considered to be the 1st RPS approximate solution of

x(t). To find the values of the RPS-coefficients fn, n = 2, 3, 4, ..., we solve the fractional
differential equation

D(n−2)αResn(0) = 0, n = 2, 3, 4, ...,

where Resk(t) is the k-th residual function and is defined by

Resk(t) = D2αxk(t) + βxk(t) + γx3
k(t). (14)

To determine the coefficient f2 in the expansion (12), we substitute the 2nd RPS approx-
imate solution

x2(t) = A+ f2
t2α

Γ(1 + 2α)

into Eq.(14) to get

Res2(t) = D2αx2(t) + βx2(t) + γx3
2(t)

= f2+β

(
A+ f2

t2α

Γ(1 + 2α)

)
+ γ

(
A+ f2

t2α

Γ(1 + 2α)

)3

. (15)

Then, we solve Res2(0) = 0 to get

f2+βA+ γA3 = 0 (16)

or
f2 = −

(
βA+ γA3

)
. (17)

To find f3, we substitute the 3rd RPS approximate solution

x3(t) = A+ f2
t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)

into the 3rd residual function Res3(t) such that

Res3(t) = D2αx3(t) + βx3(t) + γx3
3(t)

= f2 + f3
tα

Γ(1 + α)
+ β

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)

)
(18)

+γ

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)

)3

. (19)

Then, we solve DαRes3(0) = 0 to get

f3 = 0. (20)

To find f4, we substitute the 4th RPS approximate solution

x4(t) = A+ f2
t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)
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into the 4th residual function Res4(t) such that

Res4(t) = D2αx4(t) + βx4(t) + γx3
4(t)

= f3
tα

Γ(1 + α)
+ f4

t2α

Γ(1 + 2α)

+β

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)

)
+γ

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)

)3

.

Then, we solve D2αRes4(0) = 0 to get

f4 + βf2 + 3A2γf2 = 0 (21)

or

f4 =
(
β + 3A2γ

) (
βA+ γA3

)
(22)

= β2A+γβA3 + 3A3γβ + 3A5γ2. (23)

To find f5, we substitute the 5th RPS approximate solution

x5(t) = A+ f2
t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)
+ f5

t5α

Γ(1 + 5α)

into the 5th residual function Res5(t) such that

Res5(t) = D2αx4(t) + βx5(t) + γx3
5(t)

= f3
tα

Γ(1 + α)
+ f4

t2α

Γ(1 + 2α)
+ f5

t3α

Γ(1 + 3α)

+β

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)
+ f5

t5α

Γ(1 + 5α)

)
+γ

(
A+ f2

t2α

Γ(1 + 2α)
+ f3

t3α

Γ(1 + 3α)
+ f4

t4α

Γ(1 + 4α)
+ f5

t5α

Γ(1 + 5α)

)3

.

Then, we solve D3αRes5(0) = 0 to get

f5 = 0. (24)

To find f6 , we substitute the 6th RPS approximate solution

x6(t) = A+

6∑
n=2

fn
tnα

Γ(1 + nα)

into the 6th residual function Res6(t) such that

Res6(t) = D2αx6(t) + βx6(t) + γx3
6(t)

= f3
tα

Γ(1 + α)
+ f4

t2α

Γ(1 + 2α)
+ f5

t3α

Γ(1 + 3α)
+ f6

t4α

Γ(1 + 4α)

+β

(
A+

6∑
n=2

fn
tnα

Γ(1 + nα)

)
+ γ

(
A+

6∑
n=2

fn
tnα

Γ(1 + nα)

)3

.
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Then, we solve D4αRes6(0) = 0 to get

f6 + βf4 + γ

(
3Af2

2

Γ(1 + 4α)

(Γ(1 + 2α))
3 + 3A2f4

)
= 0 (25)

or

f6 = −
(
β + 3A2

)
f4 − 3A

Γ(1 + 4α)

(Γ(1 + 2α))
3 f

2
2 (26)

= −
(
β + 3A2

) (
β2A+γβA3 + 3A3γβ + 3A5γ2

)
(27)

−3A
Γ(1 + 4α)

(Γ(1 + 2α))
3

(
βA+ γA3

)2
. (28)

Using similar argument, we generate f7, f8, f9, .... Thus, the approximate solution is given
by

xk(t) = A+

k∑
n=2

fn
tnα

Γ(1 + nα)
, k = 2, 3, .... (29)

In the next theorem, we study the convergence of the series (2) to the solution of
problem (9)-(10).

Theorem 2.1. Let x(t) =
∞∑
n=0

fn
tnα

Γ(1 + nα)
and 0 < α ≤ 1. Then, the sequence

{xk(t)} converges to the solution of problem (9)–(10).

Proof: First, we want to prove that
∞∑
n=2

fn
t(n−2)α

Γ(1 + (n− 2)α)
converges to D2αx(t)

when t > 0. For any t > 0,

D2αx(t) =
1

Γ(2− 2α)

∫ t

0

(t− s)1−2αx′′(s)ds

=
1

Γ(2− 2α)

∫ t

0

(t− s)1−2α

( ∞∑
n=0

fn
snα

Γ(1 + nα)

)′′
ds

=

∞∑
n=0

fn
Γ(1 + nα)

1

Γ(2− 2α)

∫ t

0

(t− s)1−2α (snα)
′′
ds

=

∞∑
n=0

fn
Γ(1 + nα)

D2α(tnα) =

∞∑
n=2

fn
Γ(1 + (n− 2)α)

t(n−2)α.

Thus,
∑∞
n=2 fn

t(n−2)α

Γ(1+(n−2)α) converges to D2αx(t) when t > 0.

Next, we want to prove the sequence {xk(t)} converges to the solution of problem
(9)-(10). Let

D2α

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)
+ β

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)

+γ

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)
=

∞∑
n=0

ξnt
nα
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or
∞∑
n=2

fn
Γ(1 + (n− 2)α)

t(n−2)α + β

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)

+γ

(
A+

∞∑
n=2

fn
tnα

Γ(1 + nα)

)
=

∞∑
n=0

ξnt
nα.

Since D2αx(t) =
∑∞
n=2 fn

t(n−2)α

Γ(1+(n−2)α) and x(t) =
∑∞
n=0 fn

tnα

Γ(1+nα) , we have

∞∑
n=2

ξnt
nα = 0.

Let

Sk =

∞∑
n=k

ξnt
nα.

Then, the sequence {Sk} converges to zero. From Eq. (14), we see that

Resk(t) = Sk.

Thus,
lim
k→∞

Resk(t) = lim
k→∞

Sk = 0.

Hence, the sequence {xk(t)} converges to the solution of problem (10)-(11)

3 Results and Discussion

First, we study problem (10)-(11) when α = 1. The exact solution of problem (10)-
(11) is not known. Therefore, the numerical solutions have been determined by built-
in file of MATHEMATICA based on the fully explicit Runge-Kutta method and this
solution is used as the standard or reference for comparison. In Tables 1 and 2, we
compare our results with the HPM, MHPM, SHPM [6], and the numerical solution for
A = 1, α = 1, β = 1, and γ = 1 and for A = 0.75, α = 1, β = 1.5, and γ = 1.5,
respectively.

t HPM MHPM SHPM Present results Numerical results
0.5 0.762476 0.768902 0.768766 0.768802 0.768802
1.0 0.176929 0.233741 0.233680 0.233692 0.233692
2.0 −1.055110 −0.891260 −0.859323 −0.859349 −0.859349
3.5 −0.461650 −0.079433 −0.093034 −0.093013 −0.093013
5.0 2.049041 0.996472 0.947107 0.947130 0.947130
Table 1: The approximate solution for A = 1, α = 1, β = 1, and γ = 1.

t HPM MHPM SHPM Present results Numerical results
1 0.056288 0.080176 0.080519 0.0805269 0.080527
2 −0.808192 −0.739174 −0.729000 −0.729018 −0.729018
3 −0.339208 −0.239413 −0.238620 −0.2386259 −0.238626
4 0.891267 0.706827 0.667953 0.6680221 0.668022
5 0.893003 0.395315 0.387550 0.3875509 0.387551
Table 2: The approximate solution for A = 0.75, α = 1, β = 1.5, and γ = 1.5.
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Figure 1 shows the comparison between the current method and numerical solutions
for A = 1, α = 1, β = 0.5, and γ = 2 while Figure 2 shows the comparison between the
current method and numerical solutions for A = 1.5, α = 1, β = 1, and γ = 0.5.

0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

t

F
Ht
L

Figure 1. The proposed solution and the numerical solution for A = 1, α = 1, β = 0.5,
and γ = 2.

4 Conclusion

In this paper, the nonlinear differential equation of the cubic free undamped Duffing
oscillator of the form

D2αx(t) + β x(t) + γx3(t) = 0,
1

2
< α ≤ 1, 0 < t < T, (30)

subject to

x(0) = A,Dαx(0) = 0 (31)

is presented. We compare our results with the HPM, MHPM, SHPM [6], and the nu-
merical solution for A = 1, α = 1, and β = γ = 1 in Table 1. In Table 2, we compare our
results with the HPM, MHPM, SHPM [6], and the numerical solution for A = 0.75, α = 1,
and β = γ = 1.5. Figure 1 shows the comparison between the current method and numer-
ical solutions for A = 1, α = 1, β = 0.5 and γ = 2 while Figure 2 shows the comparison
between the current method and numerical solutions for A = 1.5, α = 1, β = 1, and
γ = 0.5. From the previous section, we can conclude the following:

• From Tables 1 and 2, we see that our results agree exceptionally well with the
numerical results and are more accurate than those by the HPM, MHPM, SHPM [6].
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Figure 2. The proposed solution and the numerical solution for A = 1.5, α = 1,
β = 1, and γ = 0.5.

• Figure 2 shows the comparison between the current method and numerical solutions
for A = 1, α = 0.5, and β = 2.We see that there is agreement between the numerical
results and our results.

• The MFPS method is an excellent tool due to the rapid convergent.

• The results in this paper confirm that the MFPS method is a powerful and efficient
method for solving nonlinear differential equations in different fields of sciences and
engineering.
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