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Abstract: In this paper, global stability of recurrent neural networks with time-
varying delays is considered. The uncertainity is considered in all the parameters
of the concerned neural networks. A novel LMI-based stability criterion is obtained
by using the Lyapunov functional theory to guarantee the asymptotic stability of
recurrent neural networks with time-varying delays. Finally, a numerical example is
given to demonstrate the correctness of the theoretical results.
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1 Introduction

A recurrent neural network naturally involves dynamic elements in the form of feedback
connections used as internal memories. Unlike the feedforward neural network whose
output is a function of its current inputs only and is limited to static mapping, the
recurrent neural network performs dynamic mapping. Recurrent networks are needed
for the problems where there exists at least one system state variable which cannot be
observed. Most of the existing recurrent neural networks are obtained by adding trainable
temporal elements to the feedforward neural networks (such as multilayer perceptron
networks [5] and radial basis function networks [2]) to make the output history sensitive.
Like feedforward neural networks, this network function as block boxes and the meaning
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of each weight in these nodes is not known. They play an important role in applications
such as classification of patterns, associate memories and optimization etc. ( see [2], [5]
and the references therein). Thus, research on the properties of an especial stability
problem and relaxed stability problem of recurrent neural networks, has become a very
active area in the past few years ( see for example [3], [8], [9]).

It is well known that time delays are inevitably encountered in neural networks which
are usually a main source of oscillation and instability, which brings to the neural net-
work divergence and instability and needs much attention to be payed. According to
the finite switching speed of amplifiers in electronic networks, time delay is either con-
stant or time-varying. The stability criteria of neural networks with time-varying delays
are classified into two categories, i.e., delay-independent [11] and delay-dependent [14].
The delay-independent stability conditions are usually more conservative than delay-
dependent conditions due to the fact that they include less information concerning the
time delays, especially for the time delays which are relatively small. Recently, many
important results on the delay-dependent stability analysis have been reported for neural
networks with time-varying delays [10], [12], [13].

In this paper, we study stability of recurrent neural networks with time-varying delays.
By using the Lyapunov functional technique, global robust stability conditions for the
recurrent neural networks are given in terms of LMIs, which can be easily calculated by
MATLAB LMI toolbox [4]. The main advantage of the LMI based approaches is that
the LMI stability conditions can be solved numerically using the effective interior-point
algorithms [1]. Numerical examples are provided to demonstrate the effectiveness and
applicability of the proposed stability results.

Notations: Throughout the manuscript we will use the notation A > 0 (or A < 0)
to denote that the matrix A is a symmetric and positive definite (or negative definite)
matrix. The shorthand diag {· · · } denotes the block diagonal matrix. ‖ · ‖ stands for
the Euclidean norm. Moreover, the notation * always denotes the symmetric block in
one symmetric matrix. Let r(t), t ≥ 0 be a right-continuous Markov chain on a complete
probability space (Υ,F,P) taking values in a finite space S = 1, 2, ...N with operator

Λ = Πij(n× n) given by P{r(t+ ∆(t)) = j|r(t) = i} =

{
Πij∆(t) + o(∆(t)), i 6= j,
1 + Πij∆(t) + o(∆(t)), i = j,

where ∆(t) > 0 and lim∆(t)→0
o(∆(t))

∆(t) = 0, Πij ≥ 0 is the transition rate from i to j if

i 6= j, while Πii=−
∑N
j=1,j 6=1 Πij ., i, j ∈ S.

2 System Description and Preliminaries

Consider the following uncertain recurrent neural network with time-varying delays de-
scribed by

v̇i(t) = −ai(r(t))vi(t) +

n∑
j=1

bij(r(t)) +Gj(vj(t)) +

n∑
j=1

cij(r(t))Gj(vj(t− τj(t))) + Ii, (1)

in which vi(t) is the activation of the ith neuron. Positive constant ai denotes the
rates with which the cell i resets their potential to the resting state when isolated
from the other cells and inputs. bij and cij are the connection weights at the
time t, Ii denotes the external input and Gj(·) is the neuron activation function
of jth neuron. τj(t) is the bounded time varying delay in the state and satisfies
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0 ≤ τj(t) ≤ τ̄ , 0 ≤ τ̇j(t) ≤ d < 1, i, j = 1, 2, .., n.

The following assumption is made on the activation function.
(A) The neuron activation function Gj(·) in (1) is bounded and satisfies the following

Lipschitz condition:

|Gj(x)−Gj(y)| ≤ |Lj(x− y)|

for all x, y ∈ R, i, j = 1, 2, ..., n, where Lj ∈ Rn×n are known constant matrices.

Assume that v∗ = (v∗1 , v
∗
2 , ..., v

∗
n)T is the equilibrium point of the system, then we shift

the equilibrium points to the origin by the transformation xi(t) = vi(t)− v∗i , fj(xj(t)) =
Gj(uj(t))−Gj(u∗j ). Then the transformed system is given by

ẋi(t) = −ai(r(t))xi(t) +

n∑
j=1

wij(r(t))fj(xj(t)) +

n∑
j=1

hij(r(t))fj(xj(t− τj(t))). (2)

Conveniently, we can write (2) in the form

ẋ(t) = −A(r(t))x(t) +B(r(t))f(x(t)) + C(r(t))f(x(t− τ(t))),

where x(t) = (x1(t), x2(t), . . . , xn(t))T , A = diag{a1, a2, . . . , an}, B =
[(bij)n×n]T , C = [(cij)n×n]T , f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T and
τ(t) = (τ1(t), τ2(t), . . . , τn(t))T .

Then we have

fT (x(t))f(x(t)) ≤ xT (t)LTLx(t),

where L = diag{L1, L2, . . . , Ln}. For convinience we denote, r(t) = i.

Lemma 2.1 (Schur complement [1]). Let M,P,Q be given matrices such that Q > 0,
then [

P MT

M −Q

]
< 0 ⇐⇒ P +MTQ−1M < 0.

The following Lemmas will be essential for the proofs in the next section.

Lemma 2.2 Let x ∈ Rn, y ∈ Rn and ε > 0. Then we have xT y + yTx ≤ εxTx +
ε−1yT y .

Proof. The proof follows immediately from the inequality (ε1/2x− ε−1/2y)T (ε1/2x−
ε−1/2y) ≥ 0.

Lemma 2.3 [6] For any constant matrix M ∈ Rn×n,M = MT > 0, scalar η > 0,
vector function Γ : [0, η] → Rn such that the integrations are well defined, the following
inequality holds: [∫ η

0

Γ(s)ds

]T
M

[∫ η

0

Γ(s)ds

]
≤ η

∫ η

0

ΓT (s)MΓ(s)ds.
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3 Stability Results

In this section, some sufficient conditions of stability for system (2) are obtained.

Theorem 3.1 Under the assumption (A) the system (2) is robustly asymptotically
stable in the mean square if there exist symmetric positive definite matrices Pi > 0, Q >
0, R > 0, S > 0, positive scalars γj , (j = 0, 1, 2, 3, 4) and positive diagonal matrix
M = diag{m1,m2, . . . ,mn} > 0 such that feasible solutions exist for

Ψ =



Σ 0 γ2PiBi γ4PiCi LTCi γ3L
TM γ4L

TM γ5L
TM

∗ LTCi 0 0 0 0 0 0
∗ ∗ −γ5I 0 0 0 0 0
∗ ∗ ∗ −γ1I 0 0 0 0
∗ ∗ ∗ ∗ −γ4I 0 0 0
∗ ∗ ∗ ∗ ∗ −γ3I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ4I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ5I

 < 0, (3)

where

Σ =

 Σ1 0 0

∗ Σ2 0

∗ ∗ −τ̄−1S

 ,
Σ1 = −ATi Pi − PTi Ai + LTRL+ τ̄LTSL+ γ−1

1 LTL+Q+ γ−1
3 ATi Ai +

∑N
j=1 ΠijPj ,

Σ2 = −(1− d)Q− (1− d)LTRL+ γ−1
2 LTL.

Proof: We consider the following Lyapunov functional to derive the stability result:

V (t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) + V4(t, x(t)),

where

V1(t, x(t)) = xT (t) Pi x(t),

V2(t, x(t)) = 2

n∑
i=1

mi

∫ xi

0

fi(s)ds,

V3(t, x(t)) =

∫ t

t−τ(t)

[xT (s)Qx(s)ds+ fT (x(s))Rf(x(s))]ds,

V4(t, x(t)) =

∫ t

t−τ̄
(s− t+ τ̄)fT (x(θ))Sf(x(θ))dθds.

We can calculate the derivative of V along the trajectories of the system (2), then we
have

V̇ (t, x(t)) = V̇1(t, x(t)) + V̇2(t, x(t)) + V̇3(t, x(t)) + V̇4(t, x(t)),

where

V̇1(t, x(t)) = 2xT (t)Pẋ(t) = 2xT (t)Pi[−Aix(t) +Bif(x(t)) + Cif(x(t− τ(t)))]

+
∑N
j=1 Πijx

T (t)Pjx(t),

V̇2(t, x(t)) = 2
∑n
i=1mifi(xi(t))ẋi(t)
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= fT (x(t))[−2MAix(t) + 2fT (x(t))MBif(x(t)) + 2fT (x(t))MCif(x(t− τ(t))),

V̇3(t, x(t)) = xT (t)Qx(t)− (1− d)xT (t− τ(t))Qx(t− τ(t)) + fT (x(t))Rf(x(t))

− (1− d)fT (x(t− τ(t)))Rf(x(t− τ(t))),

and using Lemma 2.3, we have

V̇4(t, x(t)) = τ̄ fT (x(t))Sf(x(t))−
∫ t
t−τ̄ f(x(s))Sf(x(s))ds

≤ τ̄ fT (x(t))Sf(x(t))−
( ∫ t

t−τ̄ f(x(s))ds
)T

τ̄−1S
( ∫ t

t−τ̄ f(x(s))ds
)
.

It follows from Lemma 2.2 that

2xT (t)PiBf(x(t)) ≤ γ1x
T (t)PiBiB

T
i Pix(t) + γ−1

1 xT (t)LTLx(t),

2xT (t)PiCif(x(t− τ(t))) ≤ γ2x
T (t)PiCiC

T
i Pix(t) + γ−1

2 xT (t− τ(t))LTLx(t− τ(t)),

−2fT (x(t))MAix(t) ≤ γ3x
T (t)LTMMTLx(t) + γ−1

3 xT (t)ATi Aix(t),

2fT (x(t))MWif(x(t)) ≤ γ4x
T (t)LTMMTLx(t) + γ−1

4 xT (t)LTBiB
T
i Lx(t),

2fT(x(t))MCif(x(t−τ(t))) ≤ γ5x
T (t)LTMMTLx(t)+γ−1

5 xT (t−τ(t))LTCiC
T
i Lx(t−τ(t)).

We obtain

V̇ ≤ xT (t)
[
−ATi Pi − PiAi + γ1PiBiB

T
i Pi + γ−1

1 LTL+ γ−1
3 ATi Ai + γ−1

4 LTBiB
T
i L (4)

+ γ4PiCiC
T
i Pi + (γ3 + γ4 + γ5)LTMMTL+Q+ LTRL+ τ̄LTSL

]
x(t)

−
( ∫ t

t−τ̄
f(x(s))ds

)T
τ̄−1S

( ∫ t

t−τ̄
f(x(s))ds

)
+ xT (t− τ(t))[γ−1

2 LTL

+ γ−1
5 LTCiC

T
i L− (1− d)Q− (1− d)LTRL]x(t− τ(t))

}
≤ ξT (t)Γξ(t), (5)

Γ =

 Γ11 0 0
∗ Γ22 0
∗ ∗ −τ̄−1S

 , Γ11 = −ATi Pi − PiAi + γ1PiBiB
T
i Pi

+γ−1
1 LTL+γ−1

3 ATi Ai+γ
−1
4 LTBiB

T
i L+γ2PiCiC

T
i Pi+(γ3+γ4+γ5)LTMMTL+Q+LTRL

+ τ̄LTSL+
∑N
j=1 ΠijPj ,Γ22 = γ−1

2 LTLL− (1− d)Q− (1− d)LTRL+ γ−1
5 LTCiC

T
i L,

ξT (t) = [xT (t) xT (t− τ(t))
( ∫ t

t−τ̄
f(x(s))ds

)T
]T .

By using the Schur complement (Lemma 2.1), Σ can be written as Ω < 0. We get

V̇ (t, x(t)) ≤ [ξT (t)Ψξ(t)],

which indicates, from the Lyapunov stability theory [7], that the dynamics of the neural
network (2) is asymptotically stable, which completes the proof.

4 Numerical Example

Consider the recurrent neural network (2) with (s=2) of the following form:

ẋ(t) = −Ai x(t) +Bif(x(t)) + Ci f(x(t− τ(t))),
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where f(x) = tanh(x) = ex−e−x

ex+e−x . Obviously, tanh(·) satisfies tanh(x) < 1 for every
x ∈ R, further

|tanh(x)− tanh(y)| =
∣∣∣d(tanh(z))

dt

∣∣∣
z=ζ
|x− y| =

∣∣∣ 4

(eζ + e−ζ)2

∣∣∣|x− y| ≤ |x− y|,
for every x, y ∈ R, and ζ ∈ (x, y) or ζ ∈ (y, x). Thus, L = diag(1, 1). The membership
functions for Rule 1 and Rule 2 are η1 = 1

e−2u1(t) , η
2 = 1− η1,

A1 =

[
3.5 0

0 3.2

]
, A2 =

[
3.5 0

0 3.2

]
, B1 =

[
0.01 −0.02

−0.10 0.01

]
,

B2 =

[
0.01 −0.02

−0.10 0.01

]
, C1 =

[
0.2 0.1

0.4 0.02

]
, C2 =

[
0.2 0.1

0.4 0.02

]
.

By using the Matlab LMI toolbox [4], we solve the LMI (3) for γi > 0, (i = 1, 2, ..., 11),
τ̄ = 0.5 and d = 0.5, the feasible solutions are

P1 =

[
3.8210 −0.3112

−0.1312 0.6531

]
, P2 =

[
3.8210 −0.3112

−0.1312 0.6531

]
,

Q = R = 103

[
1.7364 0.0024

0.0024 1.7364

]
,

M = 103

[
1.3264 0

0 3.3264

]
, S = 103

[
2.0110 −0.0002

−0.0002 2.0110

]
.

Therefore, the concerned neural network with time-varying delays is asymptotically
stable.

5 Conclusion

In this paper, we have performed the robust stability analysis for a class of uncertain
recurrent neural networks with time varying delays and uncertainties. Some new stability
criteria have been presented to guarantee the recurrent neural network to be robustly
asymptotically stable. The linear matrix inequality (LMI) approach has been used to
solve the underlying problem. The applicability of the derived results has been demon-
strated through the numerical examples for the effectiveness of less conservative numerical
solutions.
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