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Abstract: In this paper, we have investigated the problem of reduced order mul-
tiswitching synchronization using the active control method. Reduced order multi-
switching synchronization can be considered as a combination of multi-switching with
reduced order synchronization. Apt controllers have been constructed to establish
the asymptotically stable synchronized state by using different laws of switching and
Lyapunov stability theory. To analyze the proposed methodology, a six-dimensional
Lorenz model and four-dimensional hyper-chaotic coupled dynamos system have been
considered as a drive and response system, respectively. Theoretical results are vali-
dated by numerical simulations performed in MATLAB.
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1 Introduction

Nonlinear dynamical systems manifest extreme sensitive dependence on initial conditions
[1]. Different aspects of nonlinear dynamical systems such as chaos, stability, bifurcation,
Poincare surface and synchronization have many useful applications in the modelling of
brain activity [8], secure communication [11], information processing [10], medicine[8, 9],
signal processing [10] and chemical networks. This has led to the discovery of various
kinds of synchronization such as projective synchronization [6], reduced order synchro-
nization [3], generalized synchronization, lag synchronization [5], phase synchronization
[4], complete synchronization [7], anticipated synchronization and increased order syn-
chronization [2].
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Ucar et al. [12] first introduced the concept of multiswitching synchronization. It is an
important and interesting extension of the existing synchronization schemes because in
this scheme, a greater number of synchronization directions exist as the different states of
the drive system are synchronized with the desired states of the response system. Various
synchronization schemes have been investigated to achieve multiswitching synchroniza-
tion such as multiswitching combination synchronization (MSCS), multiswitching com-
bination combination synchronization (MSCCS) and a dual combination multiswitching
scheme. Most of the work in multiswitching synchronization, till now, has been restricted
to the multiswitching synchronization between the drive system and the response system
of same order, here the order means the number of state variables. The multiswitching
synchronization problem between chaotic systems of different order is still a relatively
unexplored area of research. In recent years, problems related to the reduced-order syn-
chronization of chaotic systems have fascinated researchers because of its occcurence in
biological and social sciences. The main feature of the reduced-order synchronization
is the synchronization of state variables of the response system with the projections of
state variables of the drive system where the order of the response system is less than the
order of the drive system. Here all states of the response system will be synchronized dur-
ing synchronization. This kind of synchronization is required between heart and lungs or
between neurons and in ecological systems as these dynamical systems are of different or-
ders thus it makes them a very relevant topic to be investigated. Motivated by the above
discussion, in this paper, we have made an effort to study the multiswitching reduced or-
der synchronization between chaotic systems. We have designed appropriate controllers
to achieve the reduced-order multi-switching synchronization between a six-dimensional
Lorenz model and a four-dimensional hyper-chaotic coupled dynamos system.

2 Problem Formulation

In this section, we explain the reduced order multiswitching synchronization between
chaotic systems via the active control method. Consider the hyperchaotic system (the
drive system) described as

ξ̇(t) = f(ξ(t)), (1)

where ξ = (ξ1, ξ2, .....ξm) ∈ <m denotes the state variable of the master system and
f(ξ(t)) ∈ <m represents the nonlinear functional vector. Now we consider the following
chaotic system as our response system:

ζ̇(t) = g(ζ(t)) + U(t), (2)

where ζ = (ζ1, ζ2, .....ζn) ∈ <n denotes the state variable of the slave system and g(ζ(t)) ∈
<n represents the nonlinear functional vector and U(t) = (u1, u2, .....un) ∈ <n is the
control input to be evaluated which will synchronize the state of the drive and the
response system.

Since the order of response system is less than the order of drive system, we have
n < m, and thus we may select any n variables out of m variables of drive system for the
projection because the reduced order synchronization is the problem of synchronizing a
response system with the projection of the drive system. Thus, we can divide the drive
system into two parts, the projection part and the remaining part, given by

ξ̇p(t) = fp(ξ(t)), (3)
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where ξp = (ξp1, ξp2, ....., ξpn) ∈ <n and fp : <m → <n, and

ξ̇r(t) = fr(ξ(t)), (4)

where ξr = (ξp(n+1),ξp(n+2),....,ξpm) ∈ <m−n and fr : <m → <m−n. Clearly, ξpi’s are the
rearrangement of ξi’s.

To obtain the multiswitching reduced order synchronization between the projection
of master system (2) and slave system (3) we need to calculate the controller U =
(u1, u2, ....., un) such that

lim
t→∞

eij = lim
t→∞

||ζj − ξpi|| = 0. (5)

3 System Description

Recently, Carolini C. Felicio and Paulo C. Rech [14] generalized the Lorentz model of 3rd
order to 6th order by adding three more state variables to it. The 6th order hyperchaotic
Lorentz model (the drive system) is given by

ξ̇1 = a1(ξ2 − ξ1),

ξ̇2 = a2ξ1 − ξ2 − ξ1ξ3 + ξ3ξ4 − 2ξ4ξ6,

ξ̇3 = ξ1ξ2 − a3ξ3 − ξ1ξ5 − ξ2ξ6,

ξ̇4 = −(1 + 2a3)a1ξ4 +
a1

(1 + 2a3)
ξ5,

ξ̇5 = ξ1ξ3 − 2ξ1ξ6 + a2ξ4 − (1 + 2a3)ξ5,

ξ̇6 = 2ξ1ξ5 + 2ξ2ξ4 − 4a3ξ6,



, (6)

where a1, a2 and a3 are constant parameters.

Figures below show the chaotic attractor of drive system for particular values of
parameters given by a1 = 10, a2 = 100 and a3 = 8

3 .
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Fig.1: Chaotic behavior of system
(6) in ξ1, ξ2, ξ3 plane.

Fig.2: Chaotic behavior of system
(6)in ξ3, ξ4, ξ5 plane.

Fig.3: Chaotic behavior of system
(6) in ξ4, ξ5, ξ6 plane.

Fig.4: Chaotic behavior of system
(6)in ξ1, ξ3, ξ5 plane.

Yanyun Xie and Wenliang Cai[15], in 2017, modified 3rd order coupled dynamos
system to a new 4th order hyperchaotic coupled dynamos (response) system given by
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ζ̇1 = −2ζ1 + ζ2(ζ3 + 3) + ζ4 + u1,

ζ̇2 = −2ζ2 + ζ1(ζ3 − 3) + u2,

ζ̇3 = ζ3 − ζ1ζ2 + u3,

ζ̇4 = −mζ2 + u4,


, (7)

where m is a constant parameter. Figures below show the chaotic attractor of response
system for m = 100

Fig.5: Chaotic behavior of system
(7) in ζ1, ζ2, ζ3 plane.

Fig.6: Chaotic behavior of system
(7)in ζ2, ζ3, ζ4 plane.

Fig.7: Chaotic behavior of system
(8) in ζ1, ζ3, ζ4 plane.

Fig.8: Chaotic behavior of system
(9)in ζ1, ζ2, ζ4 plane.
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4 Illustration

In this section, we present all the possible ways of projection of state variables in the
drive system with respect to the order of the response system that is

(
6
4

)
ways. Thus,

we have 15 cases for the reduced order multiswitching synchronization and 24 ways
of multiswitching for each case. Likewise, we can take a projection to the hyperplane
occupied by ξ1− ξ2− ξ3− ξ4, ξ2− ξ3− ξ4− ξ5, ξ3− ξ4− ξ5− ξ6 and so on, which implies
we can synchronize these two systems of different order in 360 ways.

First we arbitrarily considered the case of projection of system variables to the hy-
perplane occupied by ξ1 − ξ3 − ξ4 − ξ6. Again, for this projection we have 24 possible
switches given by Switching 1.

The errors are given by

e11 = ζ1(t)− ξ1(t),

e12 = ζ2(t)− ξ3(t),

e13 = ζ3(t)− ξ4(t),

e14 = ζ4(t)− ξ6(t),


(8)

Switching 2

e21 = ζ1(t)− ξ1(t),

e22 = ζ2(t)− ξ3(t),

e23 = ζ3(t)− ξ6(t),

e24 = ζ4(t)− ξ4(t),


(9)

Switching 3

e31 = ζ1(t)− ξ1(t),

e32 = ζ2(t)− ξ4(t),

e33 = ζ3(t)− ξ3(t),

e34 = ζ4(t)− ξ6(t),


(10)

and so on. We now calculate suitable controllers for Switching 1 to achieve the reduced
order multiswitching synchronization. Let us define the error dynamics between the drive
system (6) and the response system (7) as

ė11 = −(1 + a1)e11 + a1ζ3 + 2ζ3 − ζ1ζ2 + a1ξ2 + u3,

ė12 = −(2 + a3)e12 + ζ2ζ3 + 3ζ2 + ζ4 − ξ1ξ2 + ξ1ξ5
+ξ2ξ4 − 2ξ3 + a3ζ1 + u1,

ė13 = −(
a1

1 + 2a3
+ a2)e13 −mζ2 − (

a1
1 + 2a3

)ξ5 + a2ζ4

−a2ξ4 + ( a1
1+2a3

)ζ4 + u4,

ė14 = −(2 + a2)e14 + ζ1ζ3 − 3ζ1 − 2ξ1ξ5 − 2ξ2ξ4 + 4a3ξ6
−2ξ6 + a2ζ2 − a2ξ6 + u2.


(11)
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Next, we give the following proposition for the control parameters based on the error
dynamic system (11)

Proposition 4.1 Considering the error dynamics (8) the reduced order multiswitch-
ing synchronization between the drive system (6) and the response system (7) will be
achieved if the control functions u11, u12, u13 and u14 are chosen as

u11 = ξ1ξ2 + 2ξ3 − ξ1ξ5 − ξ2ξ4 − a3ζ1 − ζ2ζ3 − 3ζ2 − ζ4 +A1,

u12 = 2ξ1ξ5 + 3ζ1 + 2ξ2ξ4 + 2ξ6 + a2ξ6 − ζ1ζ3 − 4a3ξ6 − a2ζ2 +A2,

u13 = −a1ζ3 − 2ζ3 + ζ1ζ2 − a1ξ2 +A3,
u14 = ( a1

1+2a3
)ξ5 +mζ2 + a2ξ4 − ( a1

1+2a3
)ζ4 − a2ζ4 +A4,

 (12)

where A1, A2, A3 and A4 are the functions of e11, e12, e13 and e14.

Proof: The error dynamics (11), after using the controllers given by (12), can be written
as

ė11 = −e11(1 + a1) +A3,

ė12 = −e12(2 + a3) +A1,

ė13 = −e13(
a1

1 + 2a3
+ a2) +A4,

ė14 = −e14(2 + a2) +A2.


(13)

We select A1, A2, A3 and A4 in such a way that the error dynamical system given
by (13) gets stabilized, that means the errors will asymptotically tend to zero. Let us
consider 

A1

A2

A3

A4

 = P


e11
e12
e13
e14

 , (14)

where P is a 4× 4 matrix whose enteries are selected such that the values of A1, A2, A3

and A4 will make (13) stable. Let us consider

P =


0 a3 0 0
0 0 0 a2
a1 0 0 0
0 0 a1

1+2a3
0

 . (15)

Therefore, 
A1

A2

A3

A4

 =


a3e12
a2e14
a1e11
a1

1+2a3
e13

 . (16)
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The error dynamical system (13), after using the values of A1, A2, A3 and A4, reduced
to

ė11 = −e11,

ė12 = −2e12,

ė13 = −a2e13,

ė14 = −2e14.


(17)

Now, we choose the following Lyapunov function:

V1 = e211 + e212 + e213 + e214. (18)

Clearly, V1 is positive definite in R4. After differentiating V1 with respect to time, we get

dV1
dt

= 2e11ė11 + 2e12ė12 + 2e13ė13 + 2e14ė14. (19)

Using (17), we get
dV1
dt

= −2e211 − 4e212 − 2a2e
2
13 − 4e214. (20)

Since V1 is a positive definite function and dV1

dt is a negative definite function, the Lya-
punov stability theory proves that the state of the drive and response systems synchronize
asymptotically. Hence the result.
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Fig.9: Multiswitching
synchronization state between ξ1, ζ1.
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Fig.10: Multiswitching
synchronization state between ξ3, ζ2.
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Fig.11: Multiswitching
synchronization state between ξ4, ζ3.
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Fig.12: Multiswitching
synchronization state between ξ6, ζ4.
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5 Numerical Simulations

This section presents the synchronization of numerical simulations of the sixth order hy-
perchaotic Lorentz system and the fourth order hyperchaotic coupled dynamos system.
The reduced order multiswitching synchronization is used as an approach to synchronize
the systems. The simulations are done in MATLAB. We set the initial values and the
parameters as follows: ξ1(0) = −1, ξ2(0) = −5, ξ3(0) = 20, ξ4(0) = 5, ξ5(0) = 3, ξ6(0) =
10, ζ1(0) = −1, ζ2(0) = −5, ζ3(0) = 20, ζ4 = 5, a1 = 10, a2 = 8

3 , a3 = 100 and m = 100.
These figures represent the simulation errors e1, e2, e3, e4 converging to zero asymptoti-
cally, which prove that the hyperchaotic system is synchronized.
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Fig.13: Convergence of error-e1.
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Fig.14: Convergence of error-e2.
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Fig.15: Convergence of error-e3.
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Fig.16: Convergence of error-e4.

6 Conclusion

In this paper, we have studied the reduced order multiswitching synchronization for two
hyperchaotic systems with different order. We have proposed controllers and updating
laws based on active control theories. Thus we achieved the error system asymptotically
stable. Further, the simulation the results demonstrate the effectiveness and feasibility
of results which are performed in MATLAB.
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