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Abstract: This paper is devoted to the study of the theory of capacity in an
anisotropic Sobolev space W 1,~p(Ω), where Ω is a bounded set of RN (N ≥ 2),
~p = (p0, p1, ..., pN ) with 1 < p0, p1, ..., pN < ∞. We will define the Ck,~p capacity
and prove its main properties, especially, it will be shown that Ck,~p defines a Cho-
quet capacity. To illustrate our results, we will present an application of this capacity.

Keywords: anisotropic Sobolev spaces; capacity; potential.

Mathematics Subject Classification (2010): 31C15.

1 Introduction

The theory of capacity and non-linear potential in the classical Lebesgue space Lp(Ω)
(1 < p < ∞) was studied by Maz’ya and Khavin in [16] and Meyers in [18]. These
authors introduced the concept of capacity and non-linear potential in these spaces and
provided very rich applications in functional analysis, harmonic analysis, theory of partial
differential equations and theory of probabilities.

It has been developed specially by Adams [1], by Hedberg in [13], by Hedberg and
Wolff in [14] and others. The Sobolev capacity for constant exponent spaces has found a
great number of applications (see [12, 15]) and, for example, Boccardo et al. [8] studied
the existence and non existence of solutions of the following problem:

(P)

{
−4u+ u | ∇u |2= µ in Ω,

u = 0 on ∂Ω,

∗ Corresponding author: mailto:rachid.elharch@usmba.ac.ma

c© 2021 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua115
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where Ω is a bounded open set in RN , N ≥ 2 and µ is a radon measure on Ω.
More precisely, the authors proved the existence of a solution u in H1

0 (Ω) for the
problem (P) if and only if the measure µ does not charge the sets of capacity zero in Ω.
Also, Kilpeläinen [17] introduced the weighted Sobolev capacity and discussed the role
of capacity in the pointwise definition of functions in Sobolev spaces involving weights of
Muckenhoupt’s Ap-class. The previous concept was generalized by N. Aissaoui and A.
Benkirane in [2], by replacing Lp with an Orlicz space. Later, this theory was studied by
M. C Hassib, Y. Akdim, A. Benkirane and N. Aissaoui in Musielak-Orlicz spaces (see [3]
and [4]).

The notion of capacity offers a standard way to characterize exceptional sets in various
function spaces. Depending on the starting point of the study, the capacity of a set can be
defined in many appropriate ways. A common property of capacities is that they measure
small sets more precisely than the usual Lebesgue measure. The Choquet theory [10]
provides a standard approach to capacities. Capacity is a necessary tool in both classical
and non-linear potential theory.

The main purpose of this paper is to study the theory of capacity in an anisotropic
Sobolev space W 1,~p(Ω). Our results generalize those in [18] obtained in Lebesgue spaces,
in order to apply them to some problems of partial differential equations and harmonic
analysis.

The present paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge on the anisotropic Sobolev space and we recall main properties of
capacities. In Section 3, we define the Ck,~p -capacity in the anisotropic Sobolev space and
we show some of its properties. As an application of our results, we consider a variational
problem, where X is a subset of RN . We give a sufficient condition on the Ck,~p capacity
of X to ensure the existence and uniqueness of a Ck,~p -capacitary distribution of X such
that the Ck,~p -capacitary potential of X is greater than or equal to one.

2 Preliminaries

2.1 Anisotropic Sobolev spaces

Let Ω be an open bounded domain in RN (N ≥ 2) with boundary ∂Ω.
Let 1 < p0, p1, ..., pN <∞, we denote

~p = (p0, p1, ..., pN ), D0u = u and Diu = ∂u
∂xi

for i = 1, ...., N.

The anisotropic Sobolev space W 1,~p(Ω) is defined as follows:

W 1,~p(Ω) = {u ∈ Lp0(Ω) and Diu ∈ Lpi(Ω), i = 1, ..., N}.

We recall that the W 1,~p(Ω) is a separable and reflexive Banach space (see [19] )with
respect to the norm

‖u‖W 1,~p(Ω)=

N∑
i=0

‖Diu‖Lpi (Ω).

We denoted
W 1,~p

+ (Ω) = {u ∈W 1,~p(Ω)\u ≥ 0}.

The space W 1,~p
0 (Ω) is the closure of C∞0 (Ω) with respect to this norm. The theory of

such anisotropic spaces was developed in [20–23]. It was proved that C∞0 (Ω) is dense in

W 1,~p
0 (Ω), and W 1,~p

0 (Ω) is a reflexive Banach space.
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For any ~p = (p0, p1, ....., pN ), with 1 < pi <∞, i = 0, 1, ......, N , the dual space of the

anisotropic Sobolev space W 1,~p
0 (Ω) is equivalent to W−1,~p′(Ω), where ~p′ = (p′0, p

′
1, ..., p

′
N )

and p′i =
pi

pi − 1
for all i = 0, 1, ..., , N .

Proposition 2.1 Let p ∈ [1,+∞[ and (fn)n be a sequence in (Lp(µ), ‖.‖p) whose
series of norms

∑
n
‖fn‖p converges. Then the series of functions

∑
n
fn converges for the

norm ‖.‖p and we have ‖
∑
n
fn‖p≤

∑
n
‖fn‖p.

Proof. For n ∈ N∗ fixed, according to the inequality of Minkowski, we have∥∥∥∥∥
n∑
k=0

|fk|

∥∥∥∥∥
p

≤
n∑
k=0

‖fk‖p≤
+∞∑
k=0

‖fk‖p.

It follows from the monotone convergence theorem that(∫
Ω

(
+∞∑
k=0

|fk|

)p
dµ

) 1
p

≤
+∞∑
k=0

‖fk‖p.

Thus, ∥∥∥∥∥
+∞∑
k=0

fk

∥∥∥∥∥
p

≤
+∞∑
k=0

‖fk‖p.

Lemma 2.1 [see [9]] Let E be a Banach space. If (fn)n converges weakly to f in E,
then the sequence ‖fn‖ is bounded and ‖f‖≤ lim inf‖fn‖.

2.2 Capacity

Definition 2.1 Let E be a topological space and T be the class of Borel sets in E,
and a function C : T → [ 0,+∞ ].
1) The function C is called a capacity if the following axioms are satisfied:
i) C(∅) = 0.
ii) X ⊂ Y ⇒ C(X) ≤ C(Y ) for all X and Y in T .
iii) For all sequences (Xn) ⊂ T,

C(
⋃
n

Xn) ≤
∑
n

C(Xn).

2) The function C is called an outer capacity if, for all X ∈ T,

C(X) = inf{C(O) : O ⊃ X,O is open }.

3) The function C is called an interior capacity if, for all X ∈ T,

C(X) = sup{C(K) : K ⊂ X,K is compact}.

4) A property, that holds true except perhaps on a set of capacity zero, is said to be true
C-quasi everywhere (abbreviated C - q.e.).
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5) Let f and (fn) be real-valued finite functions C-q.e. We say that (fn) converges to f
in C -capacity if

∀ε > 0, lim
n→+∞

C({x : |fn(x)− f(x)| > ε}) = 0.

6) Let f and (fn) be real-valued finite functions C-q.e. We say that (fn) converges to
f C -quasi-uniformly (abbreviated C -q.u) if (∀ε > 0), (∃X ∈ T ) : C(X) < ε and (fn)
converges to f uniformly on Xc.

3 Capacity in Anisotropic Sobolev Spaces

3.1 Ck,~p- capacity

Let k be a positive integrable function on RN and X ⊂ RN (N ≥ 2). We denote

S~p(X) = {f ∈W 1,~p(Ω) : k ∗ f ≥ 1 on X},

where k ∗ f is the convolution of k and f .
The anisotropic Sobolev ~p-capacity of X is defined by

Ck,~p(X) = inf
f∈S~p(X)

{‖f‖W 1,~p(Ω)}.

In the case where S~p(X) = ∅, we set Ck,~p(X) =∞.
Functions f ∈ S~p(X) are said to be ~p- admissible for the X.

The anisotropic ~p-capacity enjoys all relevant properties of general capacities, specifically,
it will be shown that Ck,~p(X) defines a Choquet capacity.

Theorem 3.1 The anisotropic Sobolev ~p-capacity Ck,~p is an outer capacity.

Remark 3.1 Let Bk,~p(X) = inf{‖f‖W 1,~p(Ω): f ∈W
1,~p
+ (Ω) and k ∗f ≥ 1 on X}, then

Ck,~p(X) = Bk,~p(X).
Indeed, it is obvious that Ck,~p(X) ≤ Bk,~p(X).

On the other hand, let f ∈W 1,~p(Ω), then |f | ∈W 1,~p
+ (Ω), and if k ∗ f ≥ 1 on X, then

k ∗ |f | ≥ 1 on X, thus
Bk,~p(X) ≤ ‖f‖W 1,~p(Ω).

Therefore,

Bk,~p(X) ≤ Ck,~p(X).

A direct application of Proposition 2.1 is the following result.

Lemma 3.1 Let (fn)n be a sequence in W 1,~p(Ω) whose series of norms∑
n
‖fn‖W 1,~p(Ω) converges. Then we have

‖
∑
n

fn‖W 1,~p(Ω)≤
∑
n

‖fn‖W 1,~p(Ω).

Proof. (Theorem 3.1) It is obvious that Ck,~p(∅) = 0 and Ck,~p(X) ≤ Ck,~p(Y ) if

X ⊂ Y . Let (Xi) be a subset of RN . If
∞∑
i=0

Ck,~p(Xi) = +∞, there is nothing to show.

We may assume that
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∞∑
i=0

Ck,~p(Xi) < +∞, then (∀i ∈ N) Ck,~p(Xi) < +∞,

thus,

(∀i ∈ N) (∀ε > 0) (∃fi ∈W 1,~p
+ (Ω)) so that k ∗ fi ≥ 1 on Xi,

and we have

‖fi‖W 1,~p(Ω)≤ Ck,~p(Xi) +
ε

2i+1
.

Let f = supfi, we show that f ∈W 1,~p
+ (Ω). For all i ≥ 0, we have by Lemma 3.1

‖sup fi‖W 1,~p(Ω)≤ ‖
∞∑
i=0

fi‖W 1,~p(Ω)≤
∞∑
i=0

‖fi‖W 1,~p(Ω).

Thus,

‖f‖W 1,~p(Ω)≤
∞∑
i=0

‖fi‖W 1,~p(Ω) ≤
∞∑
i=0

Ck,~p(Xi) + ε.

This implies that f ∈W 1,~p
+ (Ω). Since k ∗ f ≥ 1 on

⋃
i≥0

Xi, we deduce that

Ck,~p(

∞⋃
i=0

Xi) ≤ ‖f‖W 1,~p(Ω) ≤
∞∑
i=0

Ck,~p(Xi) + ε, forall ε > 0.

The claim follows by letting ε→ 0.
Now, it remains only to verify that Ck,~p(X) is an outer capacity. LetX ⊂ RN , we have

Ck,~p(X) ≤ inf{Ck,~p(O), O ⊃ X, O is open}.

For the reverse inequality, if Ck,~p(X) = +∞, there is nothing to show.

Assume that Ck,~p(X) < +∞ and 0 < ε < 1, then there exists g ∈ W 1,~p
+ (Ω) so that

k ∗ g ≥ 1 on X and
‖g‖W 1,~p(Ω)≤ Ck,~p(X) + ε.

We put gε = g
1−ε and let the set Oε = {x : (k ∗ gε)(x) > 1}.

Thus Oε is open, and

∀x ∈ X; (k ∗ gε)(x) ≥ 1

1− ε
> 1.

Hence X ⊂ Oε. On the other hand, we have Ck,~p(Oε) ≤ ‖gε‖W 1,~p(Ω), and we deduce
that

Ck,~p(Oε) ≤
1

1− ε
‖g‖W 1,~p(Ω)≤

1

1− ε
(Ck,~p(X) + ε),∀ε > 0.

Thus,
inf{Ck,~p(O), O ⊃ X,O open} ≤ Ck,~p(X).
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Proposition 3.1 The anisotropic Sobolev ~p-capacity Ck,~p verifies the following prop-
erties:
1) If there exists f ∈W 1,~p(Ω) such that |k ∗ f | = +∞ on X, then Ck,~p(X) = 0.

2) If Ck,~p(X) = 0, then there exists f ∈W 1,~p
+ (Ω) such that k ∗ f = +∞.

Proof.

1) Let f ∈ W 1,~p(Ω) be such that |k ∗ f | = +∞ on X, then for all α > 0, |k ∗ f | > α
on X, thus,

Ck,~p(X) ≤
‖f‖

W1,~p(Ω)

α , ∀α > 0.

This means that

Ck,~p(X) = 0.

2) If Ck,~p(X) = 0, then (∀i ∈ N) (∃fi ∈W 1,~p
+ (Ω)) with k ∗ fi ≥ 1 on X

and
‖fi‖W 1,~p(Ω)≤ 2−i.

Let f =
∑
i

fi. By Lemma 3.1 we have

‖f‖W 1,~p(Ω)≤
∑
i

‖fi‖W 1,~p(Ω)≤
∑
i

2−i.

Then
‖f‖W 1,~p(Ω)< +∞.

We conclude that f ∈W 1,~p
+ (Ω) such that k ∗ f = +∞ on X.

Theorem 3.2 Let f and (fn)n be in W 1,~p(Ω) and consider the following propositions:
i) fn → f strongly in W 1,~p(Ω).
ii) k ∗ fn → k ∗ f Ck,~p-capacity.
iii) There is a subsequence (fnj

) such that k ∗ fnj
→ k ∗ f Ck,~p - q.u.

iv) k ∗ (fnj )→ k ∗ f in Ck,~p.- q.e.
Then we have

i)⇒ ii)⇒ iii)⇒ iv).

Proof.

• We show i)⇒ ii).

By Proposition 3.1, we have k ∗ f and k ∗ fn are finite Ck,~p -q.e, for all n.
Let ε > 0, then

Ck,~p({x : |k ∗ fn − k ∗ f |(x) > ε}) ≤ ‖fn − f‖W 1,~p(Ω)

ε
.

• We show ii)⇒ iii).
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Let ε > 0, there exists fnj
such that

Ck,~p({x : |k ∗ fnj − k ∗ f |(x) > 2−j}) ≤ ε · 2−j .

We put

Ej = {x : |k ∗ fnj
− k ∗ f |(x)} > 2−j} and Gm =

⋃
j≥m

Ej .

Then we have
Ck,~p(Gm) ≤

∑
j≥m

ε · 2−j < ε.

On the other hand,
∀x ∈ (Gm)c,∀j ≥ m |k ∗ fnj − k ∗ f |(x) ≤ 2−j , thus k ∗ fnj → k ∗ f Ck,~p - q.u.

• We show iii)⇒ iv).

We have ∀j ∈ N,∃Xj : Ck,~p(Xj) ≤ 1
j and k ∗ fnj

→ k ∗ f converges uniformly on

(Xj)
c. We put X =

⋂
j

Xj , then Ck,~p(X) = 0 and k ∗ fnj
→ k ∗ f on XC .

Theorem 3.3 Let (Kn)n be a decreasing sequence of compacts and K =
⋂
n
Kn. Then

lim
n→+∞

Ck,~p(Kn) = Ck,~p(K).

Proof. First, we observe that Ck,~p(K) ≤ lim
n→+∞

Ck,~p(Kn).

On the other hand, let O be an open set that satisfies K ⊂ O; then

K ∩Oc = ∅.

The sequence defined, for all n, K
′

n = Kn∩Oc is a decreasing sequence of compacts and

satisfies
⋂
n

K
′

n = ∅. Then there exists n0 such that K
′

n0
= ∅.

Hence ∀n ≥ n0 , K
′

n = ∅, then ∀n ≥ n0, Kn ⊂ O. Therefore,

lim
n→+∞

Ck,~p(Kn) ≤ Ck,~p(O).

Since Ck,~p is an outer capacity, we have

lim
n→+∞

Ck,~p(Kn) ≤ Ck,~p(K).

Proposition 3.2 Let (fn)n, f ∈ W 1,~p(Ω) be such that fn → f weakly in W 1,~p(Ω),
then lim inf(k ∗ fn) ≤ k ∗ f ≤ lim sup(k ∗ fn) Ck,~p-q.e.

Proof. Since W 1,~p(Ω) is a reflexive space, fn → f weakly in W 1,~p(Ω), then by
the Banach-Saks theorem, there is a subsequence denoted again by (fn) such that the

sequence gn = 1
n

n∑
i=1

fi converges to f strongly in W 1,~p(Ω).

By Theorem 3.2, there is a subsequence of (gn), denoted again (gn), such that

lim
n→+∞

(k ∗ gn) = (k ∗ f) Ck,~p − q.e.
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On the other hand,
lim inf(k ∗ fn) ≤ lim

n→+∞
(k ∗ gn).

Therefore,

lim inf(k ∗ fn) ≤ (k ∗ f) Ck,~p − q.e.

For the second inequality, it suffices to replace fn by (−fn) in the first inequality.

Theorem 3.4 If (Xn)n is an increasing sequence of sets and X =
⋃
n
Xn, then

lim
n→+∞

Ck,~p(Xn) = Ck,~p(X).

Proof. First, we have lim
n→+∞

Ck,~p(Xn) ≤ Ck,~p(X) .

For the reverse inequality, if lim
n→+∞

Ck,~p(Xn) = +∞, there is nothing to show.

We assume that the sequence Ck,~p(Xn) converges to the finite `. Let fn be ~p- admis-
sible for (Xn) such that

‖fn‖W 1,~p(Ω)≤ Ck,~p(Xn) +
1

n
. (1)

Since (fn) forms a bounded sequence in W 1,~p
+ (Ω), there exists a subsequence denoted

again (fn) which converges weakly to a function f ∈W 1,~p
+ (Ω).

We have by Proposition 3.2

∀i ∈ N, k ∗ f ≥ 1 on Xn, Ck,~p − q.e.

Therefore,
k ∗ f ≥ 1 on X,Ck,~p − q.e. (2)

Let B be a subset of X where k ∗ f ≥ 1, then from (1) and by Lemma 2.1 we have

Ck,~p(X) = Ck,~p(B) ≤ ‖f‖1,~p ≤ `, (3)

the desired result is now a simple consequence of (3).

Corollary 3.1 Let (En)n be a sequence of subsets of RN , then

Ck,~p(lim inf En) ≤ lim inf Ck,~p(En).

Proof. Let E = lim inf En, we have E =
⋃
n

( ⋂
i≥n

Ei

)
.

We put Gn =
⋂
i≥n

Ei, thus a sequence is increasing and by Theorem 3.4, we have

Ck,~p(E) = lim
n→+∞

Ck,~p(Gn).

Hence,

Ck,~p(Gn) ≤ Ck,~p(En).

Therefore,

Ck,~p(E) ≤ lim inf Ck,~p(En).
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Definition 3.1 In the terminology of Choquet, C is called a capacity if it satisfies
the following four properties:

i) C(∅) = 0,

ii) C is increasing,

iii) If (En) is an increasing sequence of sets, then sup
n
C(Xn) = C(

⋃
n

Xn),

iv) If (Kn) is a decreasing sequence of compacts, then inf
n
C(Kn) = C(

⋂
n

Kn).

Remark 3.2 By Theorems 3.1, 3.3 and 3.4, Ck,~p is a capacity in the sense of Cho-
quet.

Definition 3.2 Let C be a capacity in the sense of Choquet. A subset X ⊂ RN is
called capacitable if

C(X) = sup{C(K) : K ⊂ X,K − compact}.

Theorem 3.5 All analytic sets are Ck,~p- capacitable.

Proof. It is an immediate consequence of the Choquet theorem in [11].

3.2 Application of a Ck,~p - capacity

In this subsection, we propose to study an application of Ck,~p capacities, more precisely,
we treat the following variational problem.

Let X be a subset of RN such that Ck,~p(X) < ∞. There exists f0 ∈ W 1,~p
+ (Ω) such

that k ∗ f0 ≥ 1 Ck,~p- q.e on X, and

‖f0‖W 1,~p(Ω)= inf{‖f‖W 1,~p(Ω): f ∈W
1,~p
+ (Ω) and k ∗ f ≥ 1 on X}. (4)

Definition 3.3 We call a solution, f0, of problem (4) a Ck,~p -capacitary distribution
of X and we call k ∗ f0 a Ck,~p -capacitary potential of X.

Theorem 3.6 Let X be a subset of RN such that Ck,~p(X) < ∞ and denote by ΩX
the set ΩX = {f ∈W 1,~p

+ (Ω) : k ∗ f ≥ 1 Ck,~p(X) − q.e on X}.
Then there exists a unique f0 ∈W 1,~p

+ (Ω) such that:

i) ‖f0‖W 1,~p(Ω)= inf{‖f‖W 1,~p(Ω): f ∈ ΩX}.

ii) k ∗ f0 ≥ 1 on X and ‖f0‖W 1,~p(Ω)= Ck,~p(X).

Proof. i) Let the function θ : W 1,~p(Ω) −→ R+ be defined by θ(f) = ‖f‖W 1,~p(Ω);

∀f ∈ W 1,~p(Ω). θ is lower semi-continuous on W 1,~p(Ω) and coercive. By Theorem 3.2,
ΩX is strongly closed in W 1,~p(Ω). On the other hand, ΩX is convex. Since W 1,~p(Ω) is

reflexive, there exists a unique f0 ∈W 1,~p
+ (Ω) such that

‖f0‖W 1,~p(Ω)= inf{‖f‖W 1,~p(Ω): f ∈ ΩX}.

ii) Let Y be a subset of X where k ∗ f0 < 1, then Ck,~p(X) = Ck,~p(X − Y ).
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Since k ∗ f0 ≥ 1 on X − Y , Ck,~p(X − Y ) ≤ ‖f0‖W 1,~p(Ω), on the other hand, we have

{f ∈W 1,~p
+ (Ω) : k ∗ f ≥ 1 on X} ⊂ ΩX .

Then

‖f0‖W 1,~p(Ω)≤ Ck,~p(X).

4 Concluding Remarks

In this paper we defined the notion of Ck,~p -capacity in the anisotropic Sobolev space
W 1,~p(Ω) for ~p = (p0, p1, ....., pN ), with 1 < p0, p1, ....., pN < ∞. We showed that this
capacity is an outer capacity and proved some convergence properties related to it. More-
over, we proved that Ck,~p is a Choquet capacity. Finally, we gave an application of this
capacity in anisotropic Sobolev spaces.

Note that the results obtained previously, especially, the properties of the
anisotropic Sobolev ~p -capacity Ck,~p will be useful in the study of some differential equa-
tions problems. Namely, for problems, studied previously in [5–7], we can treat solutions
in anisotropic Sobolev spaces and we can assume that the right hand side is a measure
data.

A perspective of this work will focus on the application of our results to a unilateral
problem that was addressed in a previous study [4] in Musielak–Orlicz–Sobolev spaces.
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Abstract: In this paper the restricted three body problem in the context of
Schwarszchild-de Sitter’s space-time is studied. The equations of motion that govern
the bodies are derived using the Schwarszchild-de Sitter metric, by introducing a set
known as the parameter domain, the existence of equilibrium points for any element
of this set is shown. The stability conditions for the orbital motion of the system are
established by the analysis of the eigenvalues of the linearized system.
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1 Introduction

A de Sitter universe is an exact solution to the Einstein field equations of general relativ-
ity, named after Willem de Sitter. Setting the foundations of a particular cosmological
universe, which is characterized as spatially flat and neglects ordinary matter, thus, the
dynamics of the universe is dominated by a positive cosmological constant [7], or equiv-
alent, de Sitter solution corresponds to a metric of a space-time of constant curvature.
When the curvature is negative, the cosmological constant is too, and the corresponding
universe is called anti-de Sitter space. In both cases, the metric corresponds to a general
symmetry of Einsteins field equations, see Brinkmann’s theorem [6]. The current obser-
vations indicate that the universe is expanding in an accelerated rate, and may approach
de Sitter space asymptotically, that is, the concordance models of physical cosmology
are converging on a consistent model that is best described as a de Sitter universe. See
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Carroll [3] and Zwicky [14] for a preliminary introduction, and [8] for a more detailed
description and a consistent mathematical deduction.

Under the assumptions of this universe, we present a study of the Lagrangian tri-
angular equilibria in the planar restricted three body problem, where the primaries are
homogeneous spheroids rotating around their axis of symmetry and whose equatorial
planes coincide throughout their motion. We follow closely the work of Arredondo et
al. [1] for the Schwarszchild potential and the reference found there [9], but with the new
ingredient of a potential associated to a more general metric, that is, in terms of rela-
tivistics effects, a new physical universe endowed with other qualities [4]. On the other
hand, we introduce a new algebraic idea to give an analytical proof of the existence and
uniqueness of a Lagrangian equilibrium, while as usual, linear stability of this equlibria
is studied numerically.

2 Schwarszchild-de Sitter Potential

The Schwarzschild metric is the simplest solution of Einstein’s equation with zero cos-
mological constant, while a de Sitter space is the simplest solution when a positive
cosmological constant is considered [2], but both are obtained from considering a spher-
ical symmetry [8]. As described in [10], a de Sitter-Schwarzschild space-time is just a
combination of the two, and we can imagine it as the horizon of a black hole that is
centered in a universe with de Sitter properties, which from the mathematical point of
view, is properly described as a Riemannian space with one independent component of
its curvature tensor. All the discussion behind this object and its beautiful developments
can be found in Theorems 8.10 to 8.15 of [12]. For the purpose of this paper we just have
to establish that the Schwarszchild-de Sitter metric is given by

ds2 = c2
(

1− 2GM

c2r
− Λ

3
r2
)
dt2 −

(
1− 2GM

c2r
−−Λ

3
r2
)−1

dr2 − r2(dθ2 + sin2 θdφ2),

(1)
where G is the universal gravitational constant, M is the mass of the filed source, c is
the speed of light and Λ is the cosmological constant. It is known that the associated
potential to this metric is given by the time-time component of the metric

U(r) =
−(c2 + g00)

2
=
k

r
+
B

r3
+ Cr2, (2)

where k = GM , C =
Λc2

6
and B =

GML2

c2
(see [3] and [10] for details).

3 Approach to the Restricted Problem

Let us consider two bodies, m1 and m2, that interact mutually under the Schwarszchild-
de Sitter potential, describing a circular orbit, and m3 be the mass of a body with
spherical symmetry such that m1,m2 >> m3. Also, we assume that the center of mass
of m1,m2 is fixed at the origin. As we consider m1 and m2 source of the potential of
type (2), that we rewrite as

U(r) = G
m1m2

r

(
1 +

B1 +B2

r2
+ (C1 + C2)r3

)
, (3)
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the interaction among masses m1 and m2 is given by the equation(
m1m2

m1 +m2

)
R̈ = −dU(R)

dR
= − d

dR

(
Gm1m2

R

(
1 +

B1 +B2

R2
+ (C1 + C2)R3

))
,

i.e., (
m1m2

m1 +m2

)
R̈ = −Gm1m2

R

(
1 +

3(B1 +B2)

R3
− 2R2(C1 + C2)

)
.

As it is supposed that m1,m2 are in an orbit with uniform circular movement, we have
(R0, ω). This is equivalent to finding the equilibrium points of the increased potential
or effective potential [5]. Doing a rescaling, we consider Gm1m2 = 1; then the increased
potential will be defined by

Uaug(R) = −1

r

(
1 +

B1 +B2

r2
+ (C1 + C2)r3

)
+
r2ω2

2
(4)

and the effective potential as

Ueff (r) = −1

r

(
1 +

B1 +B2

r
+ (C1 + C2)r3

)
+
L2

2r2
. (5)

Remember that equilibrium points are critical ones in the effective potential. So,
operating and making R = 1, we have

ω =
√

1 + 3(B1 +B2)− 2(C1 + C2). (6)

Now, to guarantee orbit’s stability, we use the fact that a critical point is further a
minimal potential, namely, U ′′eff (R)|R=1 > 0.

U ′′eff (R)|R=1 =
[
− 2

R3
− 12

B1 +B2

R4
− 2(C1 + C2) +

3L2

R4

]
R=1

> 0, (7)

and replacing (6) in (7) we get

−2− 12(B1 +B2)− 2(C1 + C2) + 3(1 + 3(B1 +B2)− 2(C1 + C2)) > 0.

1 > 3(B1 +B2) + 8(C1 + C2). (8)

In the other way, the expression inside the root of (6) must be positive. So, another
constraint for the coefficients is

1 + 3(B1 +B2) ≥ 2(C1 + C2). (9)

With (8) and (9), it is possible to uncouple one pair of the coefficients:

1

5
> C1 + C2. (10)

Also, in (8), since C1 and C2 are always non-negative, the other pair of coefficients is
uncoupled:

1

3
> B1 +B2. (11)
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Figure 1: Representation of the restricted three body problem in the non-inertial system.

A particle’s Hamiltonian in a central field is given by H(r, ṙ) =
1

2
mṙ2 − U(r), then the

Hamiltonian of m3 in the inertial reference system is

H(r, ṙ) =
1

2
mṙ2 − (1− µ)

l1

(
1 +

B1

l21
+ C1l

3
1

)
− µ

l2

(
1 +

B2

l22
+ C2l

3
2

)
, (12)

where
l1 =

√
(ξ + µ)2 + η2 (13)

and
l2 =

√
(ξ + µ− 1)2 + η2 (14)

are the distances from the masses m1, m2 to the mass m3, respectively.
Now, we name m1 = µ, located on ξ1; and m2 = 1− µ, located on ξ2. In this order,

µ ≤ 1
2 , ξ1 − ξ2 = 1 and µξ2 + (1− µ)ξ1 = 0. So, ξ1 = −µ and ξ2 = 1− µ. Also,

m1 =

{
x = −µ cos(ωt),
y = −µ sin(ωt),

(15)

and

m2 =

{
x = (1− µ) cos(ωt),
y = (1− µ) sin(ωt),

(16)

as in Figure 1.
Consider (ξ, η) as the coordinates of m3 in the non-inertial system; therefore, the

interaction between the mases m1 and m2 with m3 is given by the following potential:

Um3
(ξ, η) =

(1− µ)

l1

(
1 +

B1

l21
+ C1l

3
1

)
+
µ

l2

(
1 +

B2

l22
+ C2l

3
2

)
, (17)

and the Hamiltonian for m3 in the non-inertial system is

H(ξ, η, Pξ, Pη) =
1

2
(P 2
ξ + P 2

η ) + ω(Pξη − Pηξ)− Um3
(ξ, η). (18)

Apply Hamilton’s motion equations

∂H

∂Pξ
= Pξ + ωη = ωξ̇, (19)
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∂H

∂Pη
= Pη − ωξ = ωη̇. (20)

Multiply the equation (19) by ω and derive it with respect to time, knowing that
ω̇ = 0, since the circular movement is uniform:

ωṖξ = ω2(ξ̈ − η̇),

Ṗξ = ω(ξ̈ − η̇). (21)

In an analogous way, multiply the equation (20) by ω and derive it with respect to time:

Ṗη = ω(η̈ + ξ̇). (22)

Before continuing, the partial derivatives of Um3 are going to be calculated, in order to
facilitate the calculus of the other two Hamilton’s motion equations:

∂Um3
(ξ, η)

∂ξ
= (1− µ)

∂l1
∂ξ

(
− 1

l21
− 3B1

l41
+ 2C1l1

)
+ µ

∂l2
∂ξ

(
− 1

l22
− 3B2

l42
+ 2C2l2

)
,

= − (1− µ)(ξ + µ)

l31

(
1 +

3B1

l21
− 2C1l

3
1

)
− µ(ξ + µ− 1)

l32

(
1 +

3B2

l22
− 2C2l

3
2

)
,

(23)

on the other hand,

∂Um3
(ξ, η)

∂η
= −η

[ (1− µ)

l31

(
1 +

3B1

l21
− 2C1l

3
1

)
+
µ

l32

(
1 +

3B2

l22
− 2C2l

3
2

)]
. (24)

By the last two Hamilton’s motion equations we have

∂H

∂ξ
= −ωṖξ, (25)

∂H

∂η
= −ωṖη. (26)

Replacing (18) in these equations we get

− ωPη −
∂Um3

∂ξ
= −ωṖξ.ωPξ −

∂Um3

∂η
= −ωṖη. (27)

Therefore, using (21) and (22) in the last couple of equations, it is obtained that

ω2(ξ̈ − η̇) = ωPη +
∂Um3

∂ξ
, (28)

ω2(η̈ + ξ̇) = −ωPξ +
∂Um3

∂η
. (29)

Now, with the centrifuge potential

Ω(ξ, η) =
ω2

2
(ξ2 + η2) + Um3

(ξ, η), (30)
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one can find the critical points of m3 by deriving it with respect to ξ and µ and making
it equal to zero. Before doing that, one should consider the following equations:

∂Ω

∂ξ
= ω2(ξ̈ − 2η̇), (31)

∂Ω

∂η
= ω2(η̈ + 2ξ̇). (32)

Obtain summing (28)−ω·(20) and ω·(19)+(29), respectively. With this pair of equa-
tions, it is possible to deduce that the components (ξ, η) are orthogonal between them,
but this is already known because of the nature of the problem and the coordinate axis.
Consequently, the relation that is going to be used to find the critical points is

∂Ω

∂ξ
=
∂Ω

∂η
= 0.

3.1 Collinear stability points

In order to obtain the collinear stability points, the partial derivative of Ω with respect
to ξ is done, and all the η are replaced by zero. This gives the stability points that are
in the ξ axis. After some algebra, one obtains that

−µx4[3B2 + (x− 1)2]− (x− 1)4[3B1(µ− 1) + 2C1x
5(µ− 1)− 2C2µx

4(x− 1)

+ω2x4(µ− x)− x2(µ− 1)] = 0,
(33)

where x = ξ + µ. Since (33) is a ninth grade polynom, it has at least a real solution.

3.2 Non-collinear stability points (η 6= 0)

In this case, both partial derivatives of Ω are zero, but η 6= 0, so one has two equations,
the derivative with respect to ξ and η of (30). These two equations can be written as

0 =
(1− µ)(ξ + µ)

l31

(
1+

3B1

l21
−2C1l

3
1−ω2l31

)
+
µ(ξ + µ− 1)

l32

(
1+

3B2

l22
−2C2l

3
2−ω2l32

)
(34)

and

0 = η
[ (1− µ)

l31

(
1 +

3B1

l21
− 2C1l

3
1 − ω2l31

)
+
µ

l32

(
1 +

3B2

l22
− 2C2l

3
2 − ω2l32

)]
, (35)

respectively, due to the fact that (1− µ)(ξ + µ) + µ(ξ + µ− 1) = ξ. Consider l1, l2 as an
independent system of variables, last two equations hold if and only if

(ω2 + 2Ci)l
5
i − l2i − 3Bi = 0, (36)

for i = 1, 2. Since (36) has a single change of sign, by Descartes’s rule of signs, each
equation has exactly one positive root. The next proposition shows that these roots
satisfy the triangle inequalities.

Definition 3.1 [Parameter domain] The set of all possible combinations of the non-
negative parameters (B1, B2, C1, C2) that satisfy the constraints (8) – (11) will be called
D .
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Theorem 3.1 For every combination in D, there exists a unique non-collinear ro-
tating equilibrium.

Proof. It will be shown that every possible combination of D gives positive solutions
in (36) that satisfy the triangle inequalities. It can be seen that l1 and l2 depend on the
values of the constants in D , and moreover,

l1 = l1(B1, B2, C1, C2) = l2(B2, B1, C2, C1) = l2 (37)

taking advantage of the symmetry in (36). Define D̄ as the set D with its frontier, i.e.,

D̄ = D ∪ δD .
It is known that a differentiable real-valued function whose domain is closed and bounded
attains its extreme values either at a critical point or on the boundary. In this context,
the functions

li : D̄ → R,
(B1, B2, C1, C2) → li = li(B1, B2, C1, C2),

despite of being implicitly defined, are differentiable. A direct calculation proves that
li does not accept critical points inside D̄ , so the extreme values of it must be in the
frontier. All cases are shown below [11].

1. For B1 = 0,

l1 =
1

3
√

1 + 3B2 − 2C2

.

Given the constraints for the sum of two constants, it follows that lmin
1 = 3

√
1
2 ≈

0.79.

2. For B2 = 0, the equation (36) becomes

l51 −
1

(1 + 3B1 − 2C2)
l21 −

3B1

(1 + 3B1 − 2C2)
= 0.

To find a minimum bound, notice that the last polynomial can be rearranged as

l21

(
l31 −

1

1 + 3B1 − 2C2

)
=

3B1

1 + 3B1 − 2C2
,

from where it is deduced that

l1 ≥
1

3
√

1 + 3B1 − 2C2

≥ 3

√
1

2
= lmin

1 .

3. For C1 = 0, the minimum value for l1 is given by the same arguments shown in the
last case, so

lmin
1 =

3

√
1

2
.

4. For C2 = 0, by similar reasons as in the previous cases, it follows that

lmin
1 =

3

√
1

2
.
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5. For C1 + C2 = 1
5 , equation (36) can be written as

0 = (1 + 3(B1 +B2)− 2(C1 + C2) + 2C1)l51 − l21 − 3B1

= (
3

5
+ 3(B1 +B2) + 2C1)l51 − l21 − 3B1.

Calculating the derivative of the last polynomial expression with respect to C1 and
clearing dl1/dC1 yield to

dl1
dC1

=
−6l51

5(3/5 + 3(B1 +B2) + 2C1)l41 − 2l1
=

−6l61
3l21 + 15B1

< 0,

since 5(3/5+3(B1+B2)+2C1)l51 = 5l22+15B1. This implies that the function l1(C1)
with its other variables fixed is decreasing on C1 +C2 = 1/5. Then its minimum is
reached when C1 is maximum. Therefore, if C1 = 1/5, notice that the polynomial
equation can be rearranged as

l21

(
l31 −

1

1 + 3(B1 +B2)

)
=

3B1

1 + 3(B1 +B2)
,

from where it is deduced that

l1 ≥
1

3
√

1 + 3(B1 +B2)
≥ 1

3
√

2
= lmin

1 .

6. For B1 +B2 = 1
3 , equation (36) becomes

(2− 2C2)l51 − l21 − 3B1 = 0.

Differentiating it with respect to B1 and clearing dl1/dB1 lead to

dl1
dB1

=
3

5(2− 2C2)l41 − 2l1
=

3l1
5(2− 2C2)l51 − 2l21

=
3l1

3l21 + 15B1
> 0

since 5(2−2C2)l51 = 5l21 +15B1. This implies that the function l1(B1) with its other
variables fixed is increasing on B1 +B2 = 1/3. Then its minimum value is reached
when B1 is minimum. Therefore, when B1 = 0,

lmin
1 =

3

√
1

2
.

7. For 1 = 3(B1 +B2) + 8(C1 + C2), one writes equation (36) as

l31

(
l31 −

1

2− 8C1 − 10C2

)
=

3B1

2− 8C1 − 10C2
,

replacing 3(B1 + B2) with 1 − 8(C1 + C2). Using the same argument as in the
previous cases,

l1 >
3

√
1

2− 8C1 − 10C2
≥ 3

√
1

2
= lmin

1 .
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Testing the triangular inequalities with lmin
1 = 3

√
1
2 , one gets that if lmax

1 is in the vicinity

1− 3

√
1

2
≤ lmax

1 ≤ 1 +
3

√
1

2
,

lmax
1 and lmin

1 satisfy the triangular inequalities. Therefore, a candidate to be an upper

bound is lmax
1 = 1 + 3

√
1
2 . To show that it is, in fact, a valid bound, notice that replacing

l1 = lmax
1 in (36) yields

(ω2 + 2C1)(lmax
1 )5 − (lmax

1 )2 − 3B1 ≥
3

5

(
1 +

3

√
1

2

)5
−
(

1 +
3

√
1

2

)2
− 1 > 0.

Since the result is positive, independently of the constant value, lmax
1 is effectively an

upper bound for the real root of (36), because the polynomial is positive only after the
root.

By (37), l1 and l2 share the same minimum and maximum values, so every combina-
tion of constants

(B1, B2, C1, C2) ∈ D

raises solutions of (36) for l1 and l2 that satisfy the triangular inequalities since their
bounds satisfy them.

3.2.1 Isosceles cases

The distances between the primaries were normalized to be one. Thus, a possible isosceles
solution is when li = 1, and for that (36) raises the following condition:

3Bi = 2Ci, (38)

and with this, equation (36) for j 6= i becomes

(ω2 + 2Cj)l
5
j − l2j − 2Cj = 0.

Therefore, if (38) holds, li = 1 and lj is given by the last polynomial equation that can
be numerically solved in terms of ω2 and Cj (see Figure 2). Another possible case is
when l1 = l2, and a sufficient condition for this to happen is the trivial case when the
bodies m1 and m2 have the same constants and the same mass.

4 Stability

To study the movement near the equilibrium points in this problem, the Hamiltonian
(18) is expanded through the Taylor series around these points, the linear terms in this
are omitted because the equilibrium points are zeroes in the potential and the constant
term does not affect the form of the motion equation, so it is not taken into account.
The Hamiltonian function rises the Hamiltonian matrix

0 ω 1 0

−ω 0 0 1

∂2Um3

∂ξ2
∂2Um3

∂ξ∂η
0 ω

∂2Um3

∂ξ∂η

∂2Um3

∂η2
−ω 0


, (39)
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Figure 2: lj in function as Cj and ω2 when li = 1.

whose eigenvalues determine the behavior of the linearized system. The characteristic
equation reads

λ4 +
(

2ω2 − ∂2Um3

∂ξ2
− ∂2Um3

∂η2

)
λ2 +

(∂2Um3

∂ξ2
+
∂2Um3

∂η2

)
ω2 + ω4

−
(∂2Um3

∂ξη

)2
+
∂2Um3

∂ξ2
∂2Um3

∂η2
= 0.

(40)

The conditions that insure linear stability are given by the root of the quadratic formula

G1(B1, B2, C1, C2, µ) ≡
(

2ω2 − ∂2Um3

∂ξ2
− ∂2Um3

∂η2

)2
− 4
((∂2Um3

∂ξ2
+
∂2Um3

∂η2

)
ω2 + ω4

−
(∂2Um3

∂ξη

)2
+
∂2Um3

∂ξ2
∂2Um3

∂η2

)
> 0

(41)
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Figure 3: µcrit as a function of B1 and C1 when B2 = C2 = 0.1.

and by the sign of the part outside the root

G1(B1, B2, C1, C2, µ) ≡ 2ω2 − ∂2Um3

∂ξ2
− ∂2Um3

∂η2
> 0. (42)

Both conditions must be fulfilled in order to have spectral stability. Five dimentions are
needed to visualize the regions of the parameter domain and the values of µ for which
the spectral stability exists. One way to display the data in three dimentions is to make
projections: fix B1 and B2 and graph µcrit (the maximum value of µ that satisfies both
conditions) as a function of B2 and C2 (see Figures 3 and 4).

Figure 4: µcrit as a function of B2 and C2 when B1 = C1 = 0.1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (2) (2021) 126–137 137

5 Conclusion

We have shown that always the primaries are in a rotational equilibrium (a.k.a, when
the coefficients belong to the parameter domain), there is a collinear and a non-collinear
relative equilibrium in the restricted three body problem induced by this configuration.
Knowing the exact numerical value of these coefficients allows a direct calculation of the
position of these equilibrium points.

Also, we discussed the particular case when the non-collinear relative equilibrium is
in an isosceles configuration with the primaries, plotting its value given ω2, Cj and li = 1.
Finally, we provided two conditions necessary to have spectral stability for a given non-
collinear equilibrium point. With these conditions, we plotted µcrit for some values of
the parameter domain.
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1 Introduction

Let us consider the nonlinear steady-state problem of the viscous incompressible fluid
flow past a body of revolution in a spherical coordinate system [11,16]:

νE2ψ =
1

r2 sin θ

(
∂ψ

∂θ

∂Eψ

∂r
− ∂ψ

∂r

∂Eψ

∂θ

)
+

1

r2 sin θ

(
2ctgθ

∂ψ

∂r
− 2

r

∂ψ

∂θ

)
Eψ in Ω, (1)

ψ|∂Ω = 0,
∂ψ

∂n

∣∣∣∣
∂Ω

= 0, (2)

lim
r→+∞

ψ · r−2 =
1

2
U∞ sin2 θ, (3)

where ν = Re−1 is the coefficient of viscosity, Re is the Reynolds number, ψ = ψ(r, θ) is

the stream function, Eψ =
∂2ψ

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
, E2ψ = E (Eψ) , n is the outer

normal to ∂Ω, U∞ is the unperturbed fluid velocity at infinity.
The methods of solving problem (1) – (3) have not been sufficiently developed. This

is due to the fourth order and nonlinearity of equation (1), as well as the unboundedness
of the region in which equation (1) is considered.

Mathematical modeling is becoming an increasingly effective tool for researchers in
the study of viscous fluid dynamics. The need to model such flows arises, for example,
in hydrodynamics, thermal energy, chemical kinetics, biomedicine, radio electronics, etc.
[2,11,14–16]. Due to using a computer, one can obtain an overall picture of the entire fluid
flow and graphically visualize the velocity, pressure, or temperature fields throughout the
flow region.

The purpose of the paper is to develop a new method of mathematical modeling for
the nonlinear stationary problem of the flow of viscous incompressible fluid around a body
of revolution on the basis of the R-functions method and nonlinear Galerkin method.

The use of the R-functions method [17,18] to construct the boundary value problem
solution structure will allow us to accurately take into account the geometric and analyt-
ical information included into the statement of the problem. Using further the nonlinear
Galerkin method [6, 13] to approximate the uncertain components of the structure will
allow us to obtain an approximate solution in an analytical form.

2 R-Functions Method

The R-functions method applied to hydrodynamics problems of viscous fluid (steady
and unsteady flows) in bounded domains or in the presence of helical symmetry was used
in [1, 3, 12]. The problems of the steady flow of viscous fluid past bodies of revolution
were solved using the R-functions method in [4,5,7–10], but there the authors considered
the slow flow of viscous incompressible fluid past bodies (the Stokes linearization) or the
application of the R-functions method, successive approximations and Galerkin-Petrov
method for calculating the axisymmetric steady flows of viscous incompressible fluid.

To apply the R-functions method to the problems of hydrodynamics it is necessary:

1) To construct such a function that is equal to zero at the boundary points, positive
inside the region and whose normal derivative (in the direction of the outer normal)
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on the boundary is equal to −1. It will allow to accurately describe analytically the
geometry of the computational domain and to continue the functions and operators,
defined on the boundary, at the interior points of the area.

2) To construct the general structure of the solution, i.e., such a formula that depends
on some indeterminate functions and exactly satisfies all the boundary conditions
of the problem for any choice of these functions.

3) To construct an approximate solution by approximating the undefined functions
included in the structure by the chosen numerical method.

Let us consider the general principles of the R-functions method theory [9, 17,18].

Definition 2.1 A function whose sign is completely determined by the signs of
its arguments is called an R-function (V.L. Rvachev’s function) corresponding to the
partition of the numerical axis into intervals (−∞, 0) and [0, + ∞), i.e., a function
z = f(x, y) is called the R-function if there exists a Boolean function F such that

S[z(x, y)] = F [S(x), S(y)], where S(x) =

{
0, x < 0,
1, x ≥ 0

is a two-valued predicate. In

this case, the Boolean function F is called a companion function.

Each R-function is associated with a Boolean function. It allows us to use logic
algebra methods to describe complex geometric objects.

The following system <α is the most commonly used system of the R-functions:

x̄ ≡ −x,

x ∧α y ≡
1

1 + α

(
x+ y −

√
x2 + y2 − 2αxy

)
,

x ∨α y ≡
1

1 + α

(
x+ y +

√
x2 + y2 − 2αxy

)
,

where −1 < α(x, y) ≤ 1, α(x, y) ≡ α(y, x) ≡ α(−x, y) ≡ α(x,−y). Their companion
Boolean functions are, respectively, negation, conjunction and disjunction.

Suppose that a geometric object Ω with a piecewise-smooth boundary ∂Ω is given
in R2. Let us assume that Ω can be constructed from auxiliary (supporting) loci
Σ1 = {ω1(x, y) ≥ 0} , ...,Σm = {ωm(x, y) ≥ 0} according to the logical rules defined by
the Boolean function F , by means of the operations of union, intersection, and comple-
ment:

Ω = F (Σ1,Σ2, . . . ,Σm),

and all functions ωi(x, y) (i = 1, 2, ...,m) are elementary. Replacing Ω by ω(x, y), Σi
by ωi(x, y) (i = 1, 2, ...,m), and the symbols {∩,∪,¬} by the R-operations symbols
{∧α,∨α,− }, we obtain an analytic expression that defines in the elementary functions
the equation of the boundary ω(x, y) = 0. In this case, ω(x, y) > 0 for the interior points
of the region, and ω(x, y) < 0 for the external points.

Thus, the equation ω(x, y) = 0 in an implicit form determines the locus of points
representing the boundary ∂Ω of the domain Ω, and the function ω(x, y) = 0 has the
form of a single analytic expression.
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Definition 2.2 The equation ω(x, y) = 0 is called normalized to the n-th order if

ω|∂Ω = 0,
∂ω

∂n

∣∣∣∣
∂Ω

= −1,
∂lω

∂nl

∣∣∣∣
∂Ω

= 0 (l = 2, 3, ..., n),

where n is a vector of the outer normal to ∂Ω.

The equation ω(x, y) = 0, normalized to the first order, can be obtained from the
equation ω1(x, y) = 0 as follows.

Theorem 2.1 If ω1(x, y) ∈ Cm(R2) satisfies the conditions ω1|∂Ω = 0 and
∂ω1

∂n

∣∣∣∣
∂Ω

> 0, then the function ω ≡ ω1√
ω2

1 + |∇ω1|2
∈ Cm−1(R2) satisfies the conditions

ω|∂Ω = 0,
∂ω

∂n

∣∣∣∣
∂Ω

= −1 at all regular points of the boundary ∂Ω.

To construct the equation normalized to the first order, one can also use the formula

ω ≡ ω1

|∇ω1|

if |∇ω1| 6= 0 in Ω = Ω ∪ ∂Ω.

Let us construct the normalized equation ω(x, y) = 0 of the boundary of the closed

area Ω̄ =
{

0 ≤ x ≤ 3, 3−
√

9− x2 ≤ y ≤ 3
}

with the help of the system <0 (Figure 1).

Figure 1: The area Ω̄.

The area Ω̄ can be constructed from the following primitive regions:

− the interior of a circle of radius 3 centered at the point (0, 3):

Σ1 =

(
1

6

(
9− x2 − (y − 3)

2
)
≥ 0

)
,

− the half-plane below the line y = 3: Σ2 = (3− y ≥ 0),

− the half-plane to the right of the line x = 0: Σ3 = (x ≥ 0).
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Then Ω̄ = Σ1∧Σ2∧Σ3 and the equation of the boundary of the area Ω is determined
by the equation ω(x, y) = 0, where

ω(x, y) =

[
1

6

(
9− x2 − (y − 3)

2
)]
∧0 [3− y] ∧0 x =

=

[
1

6

(
9− x2 − (y − 3)

2
)]
∧0

[
3− y + x−

√
(3− y)

2
+ x2

]
=

=
1

6

(
9− x2 − (y − 3)

2
)

+ 3− y + x−
√

(3− y)
2

+ x2−

−

√[
1

6

(
9− x2 − (y − 3)

2
)]2

+

[
3− y + x−

√
(3− y)

2
+ x2

]2

.

(4)

The contour lines of the obtained normalized boundary equation (4) are shown in
Figure 2.

Figure 2: The area Ω̄.

The constructed function (4) is positive inside the area Ω and negative outside Ω. If
it is necessary to obtain a function that is positive in the exterior of the finite area Ω,
then it is required to use the function −ω(x, y).

Let us consider the problem

Au = f, (5)

Liu|∂Ωi
= ϕi, i = 1,m, (6)

where A and Li are some differential operators; f and ϕi are functions defined inside the
region Ω and on its boundary regions ∂Ωi.

Definition 2.3 The expression u = B(Φ, ω, {ωi}mi=1, {ϕj}mj=1) is called the general
structure of the solution of the boundary value problem (5) – (6) if it exactly satisfies
the boundary conditions (6) for any choice of the indeterminate component Φ. Here, B
is an operator that depends on the geometry of the area Ω and parts ∂Ωi of its border,
as well as the operators of the boundary conditions, but does not depend on the type of
the operator A and the function f .

The solution structure extends the boundary conditions inside the region.
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The undefined component Φ of the solution structure in the R-functions method is
represented as a sum

Φ(x, y) ≈ Φn(x, y) =

n∑
k=1

ckϕk(x, y),

where ϕk(x, y) are known elements of the complete functional sequence, and ck (k =
1, 2, ..., n) are unknown coefficients of the expansion. To determine unknown coefficients
one can use, for example, variational methods (Ritz, least squares, etc.), projection
methods (Galerkin, collocations, etc.), grid methods and others.

3 The Method for Solving Problem (1) – (3)

For an exact analytical description of the geometry of computational domain, let us
introduce a function ω(r, θ) satisfying the conditions:

a) ω(r, θ) > 0 in Ω, b) ω(r, θ)|∂Ω = 0, c)
∂ω

∂n

∣∣∣∣
∂Ω

= −1,

where n is the outer normal to ∂Ω.
Let us introduce the function [3]

ωM = fM (ω) =

{
1− exp

Mω

ω −M
, 0 ≤ ω < M ;

1, ω ≥M (M = const > 0),
(7)

that satisfies the conditions:

1) ωM > 0 in Ω, 2) ωM |∂Ω = 0, 3)
∂ωM
∂n

∣∣∣∣
∂Ω

= −1, 4) ωM ≡ 1 if ωM ≥M.

The introduction of the function (7) allows us to carry out calculations in the fi-
nite region since function (7) differs from unity only in some finite ring-shaped region
{0 ≤ ω(r, θ) < M} adjacent to the contour ∂Ω.

Let us construct the general structure of the solution. In [7, 9, 10] it was proved that
for any choice of sufficiently smooth functions Φ1 and Φ2 (Φ1 · r−2 → 0 as r → +∞)
the boundary conditions (2) and the condition at infinity (3) are exactly satisfied by a
function of the form

ψ = ω2
M (ψ0 + Φ1) + ω2

M (1− ωM )Φ2, (8)

where ψ0 =
1

4
U∞(r − R)2

(
2 +

R

r

)
sin2 θ is the Stokes solution for the problem of the

flow past a sphere of radius R ( the sphere of radius R lies entirely inside the streamlined
body). Thus, the function (8) is the structure of the solution of the boundary value
problem (1) – (3).

Let us construct an approximate solution by approximating the undefined components
Φ1 and Φ2 of structure (8) by the nonlinear Galerkin method [6, 13]. The functions Φ1

and Φ2 will be presented in the form

Φ1 ≈ Φm 1
1 =

m 1∑
k=1

αk · ϕk, Φ2 ≈ Φm 2
2 =

m 2∑
j=1

βj · τj ,
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where

{ϕk(r, θ)} =
{
r1−k Jk(cos θ), k = 2, 3, ...; r3−k Jk(cos θ), k = 4, 5, ...

}
is a complete system of particular solutions of the equation E2ψ = 0 with respect to the
exterior of a sphere of finite radius;

{τj(r, θ)} =
{
rJ2(cos θ), J3(cos θ), rj Jj(cos θ, rj+2 Jj(cos θ), j = 2, 3, ...

}
is a complete system of particular solutions of the equation E2ψ = 0 relative to the
domain {ω(r, θ) < M}, Jk(cos θ) are the Gegenbauer functions of the first kind.

Thus, the approximate solution of the problem (1) – (3) is sought in the form

ψN = ω2
M

(
1

4
U∞(r −R)2

(
2 +

R

r

)
sin2 θ +

m1∑
k=1

αk · ϕk

)
+ ω2

M (1− ωM ) ·
m2∑
j=1

βj · τj .

The complete with respect to the whole plane sequence of functions has the form

{φi(r, θ)} =
{
ω2
M (r, θ)ϕk(r, θ), ω2

M (r, θ)(1− ωM (r, θ))τj(r, θ)
}
. (9)

The values of the coefficients αk (k = 1, 2, ...,m1) and βj (j = 1, 2, ...,m2) in accor-
dance with the nonlinear Galerkin method [6,13] will be found from the condition of the
residual orthogonality to the first N (N = m1 +m2) elements of the sequence (9):(

νE2ψN −
1

r2 sin θ

(
∂ψN
∂θ

∂EψN
∂r

− ∂ψN
∂r

∂EψN
∂θ

)
−

− 1

r2 sin θ

(
2ctgθ

∂ψN
∂r
− 2

r

∂ψN
∂θ

)
EψN , φi

)
= 0, i = 1, N.

As a result, a system of nonlinear equations is obtained, where each equation is a
quadratic function with respect to αk and βj . This system can be solved by the Newton
method. As an initial approximation, a set of αk and βj is chosen corresponding to the
solution of the Stokes problem, or, for large Reynolds numbers, to the solution obtained
for smaller Reynolds numbers.

4 Computational Experiment

A computational experiment was carried out for the problems of the flow around a
sphere, two touching, and two jointed spheres. The double integrals in the systems for
determining αk and βj were taken approximately by the Gauss formula with 50 nodes
for each variable.

4.1 First problem

The problem of the flow past a sphere x2 + y2 + z2 = 1 at U∞ = 1, M = 10, m1 = 10,
m2 = 14, Re = 10; 20; 25, is solved.

The normalized equation of the boundary (in the plane ϕ = 0) has the form

ω(x, z) =
1

2
(1− x2 − z2) = 0.
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The streamlined contours of the obtained approximate solution are shown in Figure
3. Figure 4 shows detailed pictures of the streamlined contours and vector fields of
velocities behind the sphere. For small Reynolds numbers, the flow around a sphere
is symmetrical, without the formation of a detachment zone in the aft region of the
body. With an increase in the Reynolds number to approximately 20−25, the secondary
vortices appear behind the body and then their size and intensity increase.

Figure 3: The streamlined contours for the problem of the flow past a sphere: (a) Re = 10,
(b) Re = 20, (c) Re = 25.

Figure 4: Detailed pictures of streamlined contours and vector fields of velocities behind the
sphere: (a) Re = 10, (b) Re = 20, (c) Re = 25.

The results obtained are in good agreement with the results obtained by the method of
successive approximations [8] (for Re ≤ 10), known results of physical experiments [20]
and results obtained by other authors [2, 19], which indicates the effectiveness of the
developed numerical method.
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4.2 Second problem

The problem of the flow past two touching spheres, bounded by surfaces
(x− 1)2 + y2 + z2 = 1, (x+ 1)2 + y2 + z2 = 1, at U∞ = 1, M = 10, m1 = 10, m2 = 14,
Re = 30; 60; 70, is solved.

The normalized equation of the boundary (in the plane ϕ = 0) has the form

ω (x, z) =

[
1

2

(
1− (x− 1)

2 − z2
)]
∧0

[
1

2

(
1− (x+ 1)

2 − z2
)]

= 0.

The streamlined contours of the obtained approximate solution are shown in Figure 5.
Figure 6 shows detailed pictures of the streamlined contours and vector fields of velocities
behind the spheres and in the hollow between them. The computational experiment
showed that as the Reynolds number increases to approximately 60, vortices appear
behind the body.

Figure 5: The streamlined contours for the problem of the flow past two touching spheres: (a)
Re = 30, (b) Re = 60, (c) Re = 70.

4.3 Third problem

The problem of the flow past two jointed spheres, bounded by surfaces(
x− 1

2

)2

+ y2 + z2 = 1,

(
x+

1

2

)2

+ y2 + z2 = 1, at U∞ = 1, M = 10, m1 = 10,

m2 = 14, Re = 5; 10; 30, is solved.
The normalized equation of the boundary (in the plane ϕ = 0) has the form

ω (x, z) =

[
1

2

(
1−

(
x− 1

2

)2

− z2

)]
∧0

[
1

2

(
1−

(
x+

1

2

)2

− z2

)]
= 0.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (2) (2021) 138–149 147

Figure 6: Detailed pictures of streamlined contours and vector fields of velocities behind the
spheres in the hollow between them: (a) Re = 30, (b) Re = 60, (c) Re = 70.

The streamlined contours of the obtained approximate solution are shown in Figure 7.
Figure 8 shows detailed pictures of the streamlined contours and vector fields of velocities
behind the spheres. The computational experiment showed that as the Reynolds number
increases to approximately 10, vortices appear behind the body.

Figure 7: The streamlined contours for the problem of the flow past two jointed sphere: (a)
Re = 5, (b) Re = 10, (c) Re = 30.
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Figure 8: Detailed pictures of streamlined contours and vector fields of velocities behind the
spheres: (a) Re = 5, (b) Re = 10, (c) Re = 30.

5 Conclusions

A new numerical method for solving the problem of the flow of viscous incompressible
fluid past a body of revolution is proposed based on the joint application of the R-
function method and the nonlinear Galerkin method. The advantage of the proposed
method is that the method algorithm does not change when the domain geometry is
changed, and the solution structure accurately takes into account both the boundary
conditions on the boundary of the streamlined body and the condition at infinity. For
various Reynolds numbers, the stationary problem of the flow past a body of revolution
in a spherical coordinate system for a sphere, two touching, and two jointed spheres is
solved numerically. The Reynolds numbers, at which secondary vortices appear behind
the body, are experimentally determined for each body.
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1 Introduction

Due to their intrinsic coupling between mechanical and electrical properties, the piezo-
electric materials remain an active area of research and engineering applications. In fact,
these materials can serve as sensors, actuators or transducers, and their ability is used in
various industrial devices such as medical equipment, fuel injection pistons or piezoelec-
tric composites. Motivated by their importance in various engineering devices, the study
of frictional contact phenomena involving piezoelectric materials is still relevant, both in
modeling and in analysis, and the literature on this topic is still growing. General mod-
els using materials with piezoelectric effects can be found, for example, in [7, 21,23] and
the references therein. The static frictional contact problem for electro-elastic materials
was considered in [12,16–18] under the assumption that the foundation is insulated, and
in [19,20] under the assumption that the foundation is electrically conductive. For quasi-
static and dynamic models dealing with electro-elastic or electro-viscoelastic materials,
we can see [3, 4, 24] and the references therein.

The present paper is devoted to the variational analysis of a dynamic frictional piezo-
electric contact problem under small deformations hypothesis. The material’s behavior
is described by a nonlinear visco-electro-elastic constitutive law and the contact is mod-
eled with a normal compliance condition that depends on both the interpenetrations and
the electrical potential difference between the body and the foundation, coupled with
an electrical contact condition in which the electrical conductivity coefficient depends
on the normal velocity. The friction is described by a version of Coulomb’s law of dry
friction in which the slip is supposed to depend on the friction coefficient and the non-
local regularized normal contact stress. To the best of our knowledge, such piezoelectric
model, coupling the electrical potential dependent compliance contact condition and the
velocity dependent electrical contact condition, has not been studied so far. The varia-
tional formulation of this problem is different from that studied previously, particularly
in [1,13,14], and hence it leads to a new mathematical model, which is a system coupling
a nonlinear variational inequality for the displacement field and a nonlinear variational
equation for the electric potential. Our goal is to prove the unique solvability of this
model and to establish some related dependence and convergence results.

The rest of this paper is structured as follows. In Section 2, we introduce some
notations and we present our frictional contact model for an electro-elastic body and
an electrically conductive foundation. In Section 3, we list assumptions on the data,
we derive the weak formulation of the model and we provide a result on its unique
weak solvability, stated in Theorem 3.1. The proof of this theorem is given in Section 4
and it is based on the arguments of variational inequalities and the Banach fixed point
theorem. Finally, in Section 5, we state and prove our convergence result which states
the continuous dependence of the solution on the data.

2 Problem Statement

We consider a piezoelectric body occupying a bounded domain Ω ⊂ Rd (d = 2, 3) with a
sufficiently regular boundary Γ, partitioned into three disjoint measurable parts Γ1, Γ2

and Γ3 such that Γ1 is of non-zero measure. The body is clamped on Γ1, a volume force f0

and volume electric charges q0 act in Ω and a surface traction f2 acts on Γ2. To describe
the electric constraints, we consider a partition of Γ1 ∪Γ2 into two disjoint parts Γa and
Γb such that Γa is of non-zero measure. We assume the electrical potential vanishes on
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Γa and a surface electrical charge q2 is prescribed on Γb. In the initial configuration, the
body may come in contact over Γ3 with an electrically conductive foundation. Finally,
we suppose that the process is dynamic, and it is studied in a time interval [0, T ], where
T is a positive finite constant.

To simplify the notation, we do not indicate explicitly the dependence of various
functions on the spatial variable x ∈ Ω. The indices i, j, k, l run between 1 and d, the
summation convention over repeated indices is used, the index that follows the comma
indicates the partial derivative with respect to the corresponding component of the inde-
pendent variable, e.g., ui,j = ∂ui

∂xj
, and the dot above the variable represents the derivative

with respect to time, e.g., u̇ = du
dt . Moreover, we denote by Sd the linear space of second

order symmetric tensors on Rd. We recall that the inner products on Rd and Sd are given
by u · v = uivi and σ · τ = σijτij , respectively. Throughout the paper, we adopt the no-
tation: u = (ui) : Ω× (0, T )→ Rd for the displacement field, σ = (σij) : Ω× (0, T )→ Sd

for the stress tensor, D = (Di) : Ω× (0, T )→ Rd for the electric displacement field and
E(ϕ) = (Ei(ϕ)) = −∇ϕ for the electric vector field, where ϕ : Ω × (0, T ) → R is the
electric potential field. In addition, let ν be the unit outward normal vector on Γ, then
the normal and tangential components for a vector field v and stress tensor σ on Γ are
given by vν = v · ν, vτ = v − vνν, σν = (σν) · ν and στ = σν − σνν.

Then the classical formulation of our frictional contact problem is as follows.

Problem (P). Find a displacement field u : Ω × (0, T ) → Rd and an electric potential
field ϕ : Ω× (0, T )→ R such that

σ = Aε(u̇) + Fε(u)− E∗E(ϕ) in Ω× (0, T ), (1)

D = Eε(u) + βE(ϕ) in Ω× (0, T ), (2)

ρü = Div σ + f0 in Ω× (0, T ), (3)

divD = q0 in Ω× (0, T ), (4)

u = 0 on Γ1 × (0, T ), (5)

σν = f2 on Γ2 × (0, T ), (6)

ϕ = 0 on Γa × (0, T ), (7)

D · ν = q2 on Γb × (0, T ), (8)

σν = −hν(ϕ− ϕF ) pν(uν − g) on Γ3 × (0, T ), (9)

‖στ‖ ≤ µ |Rσν(u, ϕ)|
‖στ‖ < µ |Rσν(u, ϕ)| ⇒ u̇τ = 0

‖στ‖ = µ |Rσν(u, ϕ)| ⇒ ∃λ ∈ R+, στ = −λ u̇τ

 on Γ3 × (0, T ), (10)

D · ν = pe(u̇ν)he(ϕ− ϕF ) on Γ3 × [0, T ], (11)

u(0) = 0, u̇(0) = 0 in Ω. (12)

Equations (1)–(2) represent the electro-visco-elastic constitutive law of the material.
Here, ε(u) = (∇u+ (∇u)⊥)/2 stands for the linearized strain tensor, A : Ω× Sd → Sd is
a nonlinear viscosity tensor, F : Ω× Sd → Sd is a nonlinear elasticity tensor, E = (eijk) :
Ω × Sd → Rd is a linear piezoelectric tensor, β = (βij) : Ω × Rd → Rd is a nonlinear
electric permittivity tensor and E∗ denotes the transpose tensor of E defined as follows:

Eσ · v = σ · E∗v, ∀σ ∈ Sd, ∀ v ∈ Rd. (13)
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Equations (3)–(4) are the equilibrium equations where the mass density ρ is chosen to
be normalized ρ = 1. Relations (5)-(8) represent the displacement, the traction and
the electric boundary conditions. Condition (9) represents the normal compliance con-
tact condition in which pν is a prescribed nonnegative function which vanishes when its
argument is negative, hν is a given positive function, g represents the maximum inter-
penetration of body’s and foundation’s asperities and ϕF denotes the electric potential
of the foundation. Relations (10) represent Coulomb’s friction law written in terms of
the tangential components of the velocity u̇τ and the stress στ , the coefficient of friction
µ and the regularized normal stress Rσν . The normal regularization operator R is in-
troduced in (10) for mathematical considerations since σν is only square-integrable on Ω
and hence its trace on a contact surface Γ3 is not a well-defined function, see [9,22]. For
some examples of such operator, we refer to [7,9,22]. Equation (11) is a regularized elec-
trical contact condition where pe represents the electrical conductivity coefficient which
vanishes when its argument is nonnegative and he is a given function, see [15]. Finally,
conditions (12) represents the initial displacement and the initial velocity.

The variational analysis of Problem (P ) will be presented in the next sections, where
we give our main existence and uniqueness result for the weak solution of Problem (P ).

3 Variational Formulation and Main Result

In this section, we state hypotheses and derive a weak formulation of Problem (P ). First,
we introduce the following real Hilbert spaces:

H = L2(Ω)d , H = {σ = (σij) ; σij = σji ∈ L2(Ω)},

H1 = H1(Ω)d , H1 = {σ ∈ H ; Div σ ∈ H},

endowed with the norms ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1 induced by the inner products

(u, v)H =

∫
Ω

uivi dx , (σ, τ)H =

∫
Ω

σijτij dx,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H , (σ, τ)H1

= (σ, τ)H + (Div σ,Div τ)H .

Let γ : H1 → HΓ = H
1
2 (Γ)d be the trace operator. For every element v ∈ H1, we also

use the notation v to denote the trace γv of v on Γ. Recalling the boundary condition
(5), we introduce the following closed subspace of H1 given by

V = {v ∈ H1; v = 0 on Γ1}.

Since Γ1 is of non-zero measure, it follows from Korn’s inequality that there exists ck > 0
depending only on Ω and Γ1 such that

‖v‖H1 ≤ ck ‖ε(v)‖H for all v ∈ V. (14)

We consider over the space V , the following inner product and associated norm:

(u, v)V = (ε(u), ε(v))H, ‖u‖V = ‖ε(v)‖H = (u, u)
1
2

V . (15)

It follows from inequality (14) that the norms ‖ · ‖H1
and ‖ · ‖V are equivalent on V .

Therefore, (V, ‖ · ‖V ) is a Hilbert space. Moreover, by the Sobolev trace theorem, (14)
and (15), there exists a constant c0 > 0 depending only on Ω, Γ3 and Γ1 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V for all v ∈ V. (16)
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For the real Hilbert space V previously defined, we recall the dense continuous and
compact embeddings V ⊂ H ⊂ V ′, where V ′ denotes the dual space of V , see [5,25]. For
the electric unknowns, we introduce the following spaces:

W = {ξ ∈ H1(Ω) ; ξ = 0 on Γa} , W = {D ∈ H1(Ω) ; divD ∈ L2(Ω)},

which are real Hilbert spaces for the norms ‖·‖W and ‖·‖W induced by the inner products

(ϕ, ξ)W = (∇ϕ,∇ξ)H , (D,E)W = (D,E)L2(Ω)d + (divD,divE)L2(Ω).

Since meas(Γa) > 0, the following Friedrichs-Poincaré inequality holds:

‖ξ‖W ≤ cF ‖∇ξ‖W for all ξ ∈W, (17)

for a constant cF > 0 which depends only on Ω and Γa. Moreover, by the Sobolev trace
theorem, there exists a constant c1 > 0, depending only on Ω, Γa and Γ3, such that

‖ξ‖L2(Γ3) ≤ c1‖ξ‖W for all ξ ∈W. (18)

Since Ω ⊂ Rd is bounded, it follows from the Korn and Friedrichs-Poincaré inequalities
that

‖v‖L2(Ω)d ≤ cp ‖v‖V for all v ∈ V, (19)

‖ξ‖L2(Ω) ≤ c′p ‖ξ‖W for all ξ ∈W, (20)

for some nonnegative constants cp and c′p. Finally, for any Hilbert space X, let X ′ denote
the dual space of X, 〈·, ·〉X′×X denote the duality pairing between X ′ and X and the
notations C(0, T ;X) and C1(0, T ;X) stand for the space of continuous and continuously
differentiable functions from [0, T ] to X, respectively, equipped with the following norms:

‖f‖C(0,T ;X) = max
t∈[0,T ]

‖f(t)‖X , ‖f‖C1(0,T ;X) = max
t∈[0,T ]

‖f(t)‖X + max
t∈[0,T ]

‖ḟ(t)‖X .

In the study of Problem (P ), we need the following assumptions on the data of the
problem.

(h1) The viscosity and elasticity tensors A, F : Ω×Sd → Sd and the electric permittivity
tensor β : Ω×Rd → Rd satisfy, for a.e. x ∈ Ω, the following usual properties:

(a) : ∃MA > 0, ∀ε1, ε2 ∈ Sd; ‖A(x, ε1)−A(x, ε2)‖ ≤MA‖ε1 − ε2‖,

(b) : ∃mA > 0, ∀ε1, ε2 ∈ Sd;
(
A(x, ε1)−A(x, ε2)

)
·
(
ε1 − ε2

)
≥ mA‖ε1 − ε2‖2,

(c) : the mapping x 7→ A(x, ε) is Lebesgue-measurable on Ω for all ε ∈ Sd,

(e) : the mapping x 7→ A(x, ε) belongs to H, for all ε ∈ Sd,

(21)


(a) : ∃MF > 0, ∀ε1, ε2 ∈ Sd; ‖F(x, ε1)− F(x, ε2)‖ ≤MF‖ε1 − ε2‖,

(b) : ∃mF > 0, ∀ε1, ε2 ∈ Sd;
(
F(x, ε1)− F(x, ε2)

)
·
(
ε1 − ε2

)
≥ mF‖ε1 − ε2‖2,

(c) : the mapping x 7→ F(x, ε) is Lebesgue-measurable on Ω for all ε ∈ Sd,

(e) : the mapping x 7→ F(x, ε) belongs to H, for all ε ∈ Sd,

(22)


(a) : ∃Mβ > 0, ∀ξ1, ξ2 ∈ Rd; ‖β(x, ξ1)− β(x, ξ2)‖ ≤Mβ‖ξ1 − ξ2‖,

(b) : ∃mβ > 0, ∀ξ1, ξ2 ∈ Rd;
(
β(x, ξ1)− β(x, ξ2)

)
·
(
ξ1 − ξ2

)
≥ mβ‖ξ1 − ξ2‖2,

(c) : the mapping x 7→ β(x, ξ) is Lebesgue-measurable on Ω for all ξ ∈ Rd,

(e) : the mapping x 7→ β(x, ξ) belongs to W, for all ξ ∈ Rd.

(23)
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(h2) The piezoelectric tensor E = (eijk) : Ω × Sd → Rd satisfies eijk = eikj ∈ L∞(Ω).
We note here that under hypotheses (h2), ME = sup

i,j,k
‖eijk‖L∞(Ω) is well-defined.

(h3) The function pr : Γ3 ×R→ R+ with r = e, ν satisfies the following conditions:

(a) : ∃Mpr > 0, ∀s ∈ R; 0 < pr(x, s) ≤Mpr a.e. x ∈ Γ3,

(b) : x 7→ pr(x, s) is measurable on Γ3 for any s ∈ R and is zero for s ≤ 0.

(h4) The function hr : Γ3 ×R→ R with r = e, ν satisfies the following conditions:

(a) : ∃Mhe > 0, ∀ϕ ∈ R; |he(x, ϕ)| ≤Mhe a.e. x ∈ Γ3,

(b) : ∃Mhν > 0, ∀ϕ ∈ R; 0 ≤ hν(x, ϕ) ≤Mhν a.e. x ∈ Γ3,

(c) : ∀ϕ1, ϕ2 ∈ R;
(
he(x, ϕ1)− he(x, ϕ2)

)(
ϕ1 − ϕ2

)
≥ 0, a.e. x ∈ Γ3,

(d) : x 7→ hr(x, ϕ) is measurable on Γ3 for all ϕ ∈ R.

(h6) The mappings s 7→ pr(x, s) and ϕ 7→ hr(x, ϕ) are Lipschitz continuous, i.e.,

(a) : ∃Lpr > 0,∀ s1, s2 ∈ R; |pr(x, s1)− pr(x, s2)| ≤ Lpr |s1 − s2| a.e. x ∈ Γ3,

(b) : ∃Lhr > 0,∀ϕ1, ϕ2 ∈ R; |hr(x, ϕ1)− hr(x, ϕ2)| ≤ Lhr |ϕ1 − ϕ2| a.e. x ∈ Γ3.

(h7) The mapping R : H−
1
2 (Γ3)→ L∞(Γ3) is linear continuous. We denote ‖R‖ = MR.

(h8) The forces, the traction, the volume and surface charge densities satisfy

f0 ∈ C(0, T ;L2(Ω)d) , f2 ∈ C(0, T ;L2(Γ2)d),

q0 ∈ C(0, T ;L2(Ω)) , q2 ∈ C(0, T ;L2(Γb)).

(h9) The friction coefficient, the contact surface potential and the gap function satisfy

µ ∈ L∞(Γ3), µ ≥ 0 a.e. on Γ3 ; ϕF ∈ L2(Γ3) ; g ∈ L2(Γ3), g ≥ 0 a.e. on Γ3.

Let t ∈ (0, T ), we use Riesz’s representation to define f(t) ∈ V and qe(t) ∈W by

(f(t), v)V =

∫
Ω

f0(t) · v dx+

∫
Γ2

f2(t) · v da for all v ∈ V, (24)

(qe(t), ξ)W =

∫
Ω

q0(t)ξ dx−
∫

Γb

q2(t)ξ da for all ξ ∈W. (25)

We consider the functionals j1, j2 and j3 defined, respectively, as follows:

j1(u, ϕ, v) =

∫
Γ3

hν(ϕ− ϕF )pν(uν − g) vν da, for all (u, ϕ, v) ∈ V ×W × V, (26)

j2(σ, v) =

∫
Γ3

µ |Rσν | ‖vτ‖ da, for all (σ, v) ∈ H × V, (27)

j3(u, ϕ, ξ) =

∫
Γ3

pe(uν)he(ϕ− ϕF ) ξ da, for all (u, ϕ, ξ) ∈ V ×W ×W. (28)

Recalling (h3)-(h5) and (h8)-(h9), we find that the integrals in (24)-(28) are well-defined.
Under these notations, the Green formula implies that if (u, σ, φ,D) are regular functions
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satisfying (3)-(11), we obtain the following weak formulation of Problem (P ).

Problem (PV ). Find a displacement u : (0, T )→ V , an electric potential ϕ : (0, T )→W
such that

〈ü(t), v − u̇(t)〉V ′×V + (Aε(u̇)(t), ε(v)− ε(u̇)(t))H + (Fε(u)(t), ε(v)− ε(u̇)(t))H

+(E∗∇ϕ(t), ε(v)− ε(u̇)(t))L2(Ω)d + j1(u(t), ϕ(t), v)− j1(u(t), ϕ(t), u̇(t))

+j2(σ(t), v)− j2(σ(t), u̇(t)) ≥ (f(t), v − u̇(t))V for all v ∈ V a.e. t ∈ (0, T ),

(29)

(β∇ϕ(t),∇ξ)L2(Ω)d − (Eε(u)(t),∇ξ)L2(Ω)d + j3(u̇(t), ϕ(t), ξ)

= (qe(t), ξ)W for all ξ ∈W a.e. t ∈ (0, T ).
(30)

We are now able to state our main result that we will prove in the next section.

Theorem 3.1 Assume assumptions (h1)–(h9) hold. Then there exists a unique so-
lution (u, ϕ

)
of Problem (PV ), which satisfies the following regularities:

ü ∈ L2(0, T ;V ′) , u ∈ C1(0, T ;V ) , ϕ ∈ C(0, T ;W ).

4 Proof of Theorem 3.1

We assume that (h1)-(h9) hold. The proof will be carried out in several steps. First, let
η = (η1, η2, η3) ∈ L2(0, T ;H×L2(Γ3)×H) be given, we define the following functionals:

jη1 (v) =

∫
Γ3

µ |Rη3ν | ‖vτ‖ da for all v ∈ V, (31)

jη2 (v) =

∫
Γ3

η2 vν da for all v ∈ V. (32)

For η ∈ L2(0, T ;H×L2(Γ3)×H) known, we construct the following intermediate problem.

Problem (PV η1 ). Find uη : (0, T )→ V such that for all v ∈ V, a.e. t ∈ (0, T ), we have

〈üη(t), v − u̇η(t)〉V ′×V + (Aε(u̇η)(t), ε(v)− ε(u̇η)(t))H + (η1, ε(v)− ε(u̇η)(t))H

+jη1 (v)− jη1 (u̇η(t)) + jη2 (v)− jη2 (u̇η(t)) ≥ (f(t), v − u̇η(t))V ,
(33)

u̇(0) = 0 , u(0) = 0. (34)

The unique solvability of Problem (PV η1 ) follows from the following lemma.

Lemma 4.1 For a given η = (η1, η2, η3) ∈ C(0, T ;H×L2(Γ3)×H), Problem (PV η1 )
has a unique solution uη, which satisfies ü ∈ L2(0, T ;V ′) and u ∈ C1(0, T ;V ).

Proof. We consider the operator A : V → V ′ and the function fη : (0, T ) → V ′

defined, for all u, v ∈ V and t ∈ (0, T ), by

〈Au, v〉V ′×V = (Aε(u), ε(v))H, (35)

〈fη(t), v〉V ′×V = (f(t), v)V − (η1(t), ε(v))H − jη2 (v). (36)
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Hence, the inequality (33) can be rewritten, for all v ∈ V and t ∈ (0, T ), as follows:

〈üη(t), v − u̇η(t)〉V ′×V + 〈Au̇η(t), v − u̇η(t)〉V ′×V

+ jη1 (v)− jη1 (u̇η(t)) ≥ 〈fη(t), v − u̇η(t)〉V ′×V .
(37)

By assumption (h1)(21), the operator A is strongly monotone and Lipschitz continuous.
Moreover, it follows from (31) that jη1 is convex and Lipschitz continuous and then it
is lower semi-continuous. From (36) it is easy to see that fη ∈ C(0, T ;V ′). Then, by
standard arguments on the first order nonlinear evolutionary inequalities (see [10]), there
exists a unique solution uη for Problem (PV η1 ), which satisfies

üη ∈ L2(0, T ;V ′) , uη ∈ C1(0, T ;V ).

We use the solution uη of Problem (PV η1 ) to consider the following auxiliary problem.

Problem (PV η2 ). Let η ∈ C(0, T ;H× L2(Γ3)×H) be given, find ϕη : (0, T )→W such
that

(β∇ϕη(t),∇ξ)L2(Ω)d − (Eε(uη)(t),∇ξ)L2(Ω)d

+ j3(u̇η(t), ϕη(t), ξ) = (qe(t), ξ)W for all ξ ∈W, a.e. t ∈ (0, T ).
(38)

The unique solvability of Problem (PV η2 ) follows from the following lemma.

Lemma 4.2 Let η = (η1, η2, η3) ∈ L2(0, T ;H×L2(Γ3)×H) be known, then Problem
(PV η2 ) has a unique solution ϕη which satisfies ϕη ∈ C(0, T ;W ).

Proof. Let t ∈ (0, T ), we use the Riesz representation theorem to introduce the
element qη(t) ∈W and the operator Aη(t) : W →W , defined as follows:

(qη(t), ξ)W = (qe(t), ξ)W + (Eε(uη)(t),∇ξ)L2(Ω)d for all ξ ∈W, (39)

(Aη(t)ϕ, ξ)W = (β∇ϕη(t),∇ξ)L2(Ω)d + j3(u̇η(t), ϕ, ξ) for all ξ ∈W. (40)

From hypotheses (h1)(23), (h3)(a), (h4)(d) and (h6)(b), it follows that Aη(t) is a strongly
monotone, Lipschitz continuous operator on W, and therefore, there exists a unique
element ϕη(t) ∈W such that

(Aη(t)ϕη(t), ξ)W = (qη(t), ξ)W for all ξ ∈W, t ∈ (0, T ). (41)

We combine (39) and (41) to find that ϕη(t) ∈W is the unique solution of the nonlinear
variational Problem (PV η2 ), and by using Lemma 4.3 in [15], we deduce ϕη ∈ C(0, T ;W ).

In the sequel, we will need the following result.

Lemma 4.3 Let uη and u′η (resp. ϕη and ϕ′η) be solutions of Problem (PV η1 ) (resp.
Problem (PV η2 )) for η = (η1, η2, η3) and η′ = (η′1, η

′
2, η
′
3) of C(0, T ;H × L2(Γ3) × H).

Then there exist two constants c > 0 and c̃ > 0 such that for all t ∈ (0, T ), we have

‖u̇η(t)− u̇′η(t)‖2V +

∫ t

0

‖u̇η(s)− u̇′η(s)‖2V ds

≤ c
∫ t

0

‖η1(s)− η′1(s)‖2H + ‖η2(s)− η′2(s)‖2L2(Γ3) + ‖η3(s)− η′3(s)‖2H ds,
(42)

‖ϕη(t)− ϕ′η(t)‖V ≤ c̃
(
‖u̇η(t)− u̇′η(t)‖V + ‖uη(t)− u′η(t)‖V

)
. (43)
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Proof. It follows from (33) that for all v ∈ V and t ∈ (0, T ), we have

〈üη(t), v − u̇η(t)〉V ′×V + (Aε(u̇η)(t), ε(v)− ε(u̇η)(t))H + (η1(t), ε(v)− ε(u̇η)(t))H

+ jη1 (v)− jη1 (u̇η(t)) + jη2 (v)− jη2 (u̇η(t)) ≥ (f, v − u̇η(t))V ,
(44)

〈ü′η(t), ε(v)− ε(u̇′η)(t)〉V ′×V + (Aε(u̇′η)(t), ε(v)− ε(u̇′η)(t))H

+ (η′1(t), ε(v)− ε(u̇′η)(t))H + jη
′

1 (v)− jη
′

1 (u̇′η(t)) + jη
′

2 (v)− jη
′

2 (u̇′η(t))

≥ (f, v − u̇′η(t))V .

(45)

Taking v = u̇′η(t) in (44), v = u̇η(t) in (45) and adding the obtained inequalities, we get

∫ t

0

〈üη(s)− ü′η(s), u̇η(s)− u̇′η(s)〉V ′×V ds

+

∫ t

0

(Aε(u̇η)(s)−Aε(u̇′η)(s), ε(u̇η)(s)− ε(u̇′η)(s))H ds

≤ −
∫ t

0

(η1(s)− η′1(s), ε(u̇η)(s)− ε(u̇′η)(s))L2(Ω)d ds

+

∫ t

0

jη1 (u̇′η(s))− jη1 (u̇η(s)) + jη2 (u̇′η(s))− jη2 (u̇η(s)) ds

+

∫ t

0

jη
′

1 (u̇η(s))− jη
′

1 (u̇η(s)′) + jη
′

2 (u̇η(s))− jη
′

2 (u̇′η(s)) ds.

(46)

Using the definition of the functional jη1 , we deduce

|jη1 (u̇′η(s))− jη1 (u̇η(s)) + jη
′

1 (u̇η(s))− jη
′

1 (u̇′η(s))|

≤
∫

Γ3

µ |Rη3ν |
(
‖u̇′ητ (s)‖ − ‖u̇ητ (s)‖

)
da

−
∫

Γ3

µ |Rη′3ν |
(
‖u̇′ητ (s)‖ − ‖u̇ητ (s)‖

)
da,

≤
∫

Γ3

µ
(
|Rη3ν | − |Rη′3ν |

) (
‖u̇ητ (s)‖ − ‖u̇′ητ (s)‖

)
da,

≤ c0 ‖µ‖L∞(Γ3)MR ‖η3 − η′3‖H ‖u̇η(s)− u̇′η(s)‖V .

(47)

Moreover, we use the definition of the functional jη2 to obtain

|jη2 (u̇′η(s))− jη2 (u̇η(s)) + jη
′

2 (u̇η(s))− jη
′

2 (u̇′η(s))|

≤
∫

Γ3

η2

(
u̇′ην(s)− u̇ην(s)

)
da−

∫
Γ3

η2

(
u̇′ην(s)− u̇ην(s)

)
da,

≤
∫

Γ3

(
η2 − η′2

) (
u̇ην(s)− u̇′ην(s)

)
da,

≤ c0 ‖η2 − η′2‖L2(Γ3) ‖u̇ητ (s)− u̇′η(s)‖V .

(48)
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We combine the inequalities (46)-(48) and we use the assumption (h1) to get

1

2
‖u̇η(t)− u̇′η(t)‖2V +mA

∫ t

0

‖u̇η(s)− u̇′η(s)‖2V ds

≤ cp
∫ t

0

‖η1(s)− η′1(s)‖L2(Ω)d ‖u̇η(s)− u̇′η(s)‖V ds

+ c0 ‖µ‖L∞(Γ3)MR

∫ t

0

‖η3 − η′3‖H‖u̇η(s)− u̇η(s)′‖V ds

+ c0

∫ t

0

‖η2(s)− η′2(s)‖L2(Γ3)‖u̇η(s)− u̇η(s)′‖V ds.

(49)

Finally, we apply Young’s inequality ab ≤ εa2 + b2

4ε to get, after some simplifications, that

‖u̇η(t)− u̇′η(t)‖2V +

∫ t

0

‖u̇η(s)− u̇′η(s)‖2V ds

≤ c
∫ t

0

‖η1(s)− η′1(s)‖2L2(Ω)d + ‖η2(s)− η′2(s)‖2L2(Γ3) + ‖η3 − η′3‖2H ds.
(50)

Next, let ϕη and ϕ′η be the corresponding solutions of (PV η2 ) for η = (η1, η2, η3) and
η′ = (η′1, η

′
2, η
′
3), respectively. From (39), we get, for all t ∈ (0, T ) and ξ ∈W , that

(β∇ϕη(t),∇ξ)L2(Ω)d − (Eε(uη)(t),∇ξ)L2(Ω)d + j3(u̇η, ϕη(t), ξ) = (qe(t), ξ)W , (51)

(β∇ϕ′η(t),∇ξ)L2(Ω)d − (Eε(u′η)(t),∇ξ)L2(Ω)d + j3(u̇′η, ϕ
′
η(t), ξ) = (qe(t), ξ)W . (52)

Replacing ξ by ϕη(t)−ϕ′η(t) in (51) and (52), we subtract the obtained equations to find

(β∇ϕη(t)− β∇ϕ′η(t),∇ϕη(t)−∇ϕ′η(t))L2(Ω)d

− (Eε(uη)(t)− Eε(u′η)(t),∇ϕη(t)−∇ϕ′η(t))L2(Ω)d

+ j3(u̇η, ϕη(t), ϕη(t)− ϕ′η(t))− j3(u̇′η, ϕ
′
η(t), ϕη(t)− ϕ′η(t)) = 0.

(53)

Using the assumptions (h3)-(h5) and the definition of the functional j3, we obtain

|j3(u̇η, ϕη(t), ϕη(t)− ϕ′η(t))− j3(u̇′η, ϕ
′
η(t), ϕη(t)− ϕ′η(t))|

=

∫
Γ3

(
pe(u̇η(t))he(ϕη(t)− ϕF )− pe(u̇′η(t))he(ϕ

′
η(t)− ϕF )

)(
ϕη(t)− ϕ′η(t)

)
da,

=

∫
Γ3

pe(u̇η(t))
(
he(ϕη(t)− ϕF )− he(ϕ′η(t)− ϕF )

)(
ϕη(t)− ϕ′η(t)

)
da

+

∫
Γ3

he(ϕ
′
η(t)− ϕF )

(
pe(u̇η(t))− pe(u̇′η(t))

)(
ϕη(t)− ϕ′η(t)

)
da,

≤ c0 c1Mhe‖u̇η(t)− u̇′η(t)‖V ‖ϕη(t)− ϕ′η(t)‖W .

(54)

By virtue of hypotheses (h1)(23) and (h2), it follows from (53) and (54) that

‖ϕη(t)− ϕ′η(t)‖V ≤ c̃
(
‖u̇η(s)− u̇′η(s)‖V + ‖uη(s)− u′η(s)‖V

)
. (55)

Hence, inequalities (42) and (43) of Lemma 4.3 are obtained.
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In the next step, we consider the following operator:

Λ : C(0, T ;H× L2(Γ3)×H)→ C(0, T ;H× L2(Γ3)×H),

defined for t ∈ (0, T ) by Λη(t) =
(
Λ1η(t),Λ2η(t),Λ3η(t)

)
, where

Λ1η(t) = Fε(uη)(t) + E∗∇ϕη(t), (56)

Λ2η(t) = hν(ϕη(t)− ϕf (t)) pν(uην(t)− g), (57)

Λ3η(t) = Aε(u̇η(t)) + Fε(uη(t))− E∗E(ϕη(t)). (58)

We have the following fixed point result.

Lemma 4.4 There exists a unique η∗ ∈ C(0, T ;H× L2(Γ3)×H) such that

Λη∗ = η∗.

Proof. Let η = (η1, η2, η3), η′ = (η′1, η
′
2, η
′
3) ∈ C(0, T ;H×L2(Γ3)×H). The definition

of Λ1 and Λ3, and the assumptions (h1) and (h2) imply, after some algebras, that

‖Λ1η(t)− Λ1η
′(t)‖H ≤MF‖uη(t)− u′η(t)‖V +ME‖ϕη(t)− ϕ′η(t)‖W , (59)

‖Λ3η(t)− Λ3η
′(t)‖H ≤ MA‖u̇η(t) + u̇′η(t)‖V +MF‖uη(t)− u′η(t)‖V

+ME‖ϕη(t)− ϕ′η(t)‖W .
(60)

Using the definition of Λ2 and the properties of hν and pν , it is easy to verify that

‖Λ2η(t)−Λ2η
′(t)‖H ≤MhνLpν c0 ‖uη(t) + uη(t)‖V +MpνLhν c1 ‖ϕη(t)− ϕ′η(t)‖W . (61)

Then, from the inequalities (59)-(61), (42) and (43), there exists c > 0 such that

‖Λη(t)− Λη′(t)‖2H×L2(Γ3)×H ≤ c
∫ t

0

‖η(s)− η′(s)‖2H×L2(Γ3)×H ds. (62)

Reiterating the previous inequality n times, we get

‖Λnη − Λnη′‖C([0,T ];H×L2(Γ3)×H) ≤
√
cnTn

n!
‖η(s)− η′(s)‖C([0,T ];H×L2(Γ3)×H). (63)

Since lim
n+∞

cnTn

n! = 0, the inequality (63) shows that for n sufficiently large, the operator

Λn is a contraction on the Banach space C(0, T ;H × L2(Γ3) × H). Thus, according to
the Banach fixed point theorem, there exists a unique η∗ ∈ C(0, T ;H × L2(Γ3) × H)
such that Λnη∗ = η∗. Moreover, since Λn(Λη∗) = Λ(Λnη∗) = Λη∗, we deduce that Λη∗

is also a fixed point of Λn, and by the uniqueness of the fixed point, we obtain Λη∗ = η∗.
Therefore, η∗ is a unique fixed point of Λ too.

Now, we have all the ingredients needed to prove Theorem 3.1. Indeed, let η∗ be
the unique fixed point of the operator Λ and let u = uη∗ and ϕ = ϕη∗ be the unique

solutions of the Problems (PV η
∗

1 ) and (PV η
∗

2 ), respectively. Therefore, (u, ϕ) is a solution
of Problem (PV ) and then the existence part is proved. The uniqueness part results from
the uniqueness of the fixed point of the operator Λ. Then Theorem 3.1 is established.
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5 Convergence Result

We are interested here in the dependence of the solution of Problem (PV ) on the pertur-
bations of the data. In the sequel, we assume that the assumptions (h1)-(h7) hold and
let (u, ϕ) be the solution of Problem (PV ) obtained in Theorem 3.1. For each ε > 0, let
f ε0 , qε0, f ε2 , qε2 and ϕεF denote the perturbations of f0, q0, f2, q2 and ϕF , respectively. We
consider the operators f ε : (0, T )→ V and qεe : (0, T )→W defined as follows:

(f ε(t), v)V =

∫
Ω

f ε0(t) · v dx+

∫
Γ2

f ε2(t) · v da for all v ∈ V, a.e. t ∈ (0, T ), (64)

(qεe(t), ξ)W =

∫
Ω

qε0(t)ξ dx−
∫

Γb

qε2(t)ξ da for all ξ ∈W, a.e. t ∈ (0, T ). (65)

We consider the functionals jε1 : V ×W × V → R and jε3 : V ×W ×W → R given by

jε1(u, ϕ, v) =

∫
Γ3

hν(ϕ− ϕεF )pν(uν − g) vν da, (66)

jε3(u, ϕ, ξ) =

∫
Γ3

pe(uν)he(ϕ− ϕεF ) ξ da. (67)

Next, we introduce the following perturbation of the variational Problem (PV ).

Problem (PV ε). Find a displacement uε : (0, T ) → V and an electric potential ϕε :
(0, T )→W such that for all ξ ∈W , v ∈ V and a.e. t ∈ (0, T ), we have

〈üε(t), ε(v)− ε(u̇ε)(t)〉V ′×V + (Aε(u̇ε)(t), ε(v)− ε(u̇ε)(t))H
+ (Fε(uε)(t), ε(v)− ε(u̇ε)(t))H + (E∗∇ϕε(t), ε(v)− ε(u̇ε)(t))L2(Ω)d

+ jε1(uε(t), ϕε(t), v)− jε1(uε(t), ϕε(t), u̇ε(t))

+ j2(σε, v)− j2(σε, u̇ε(t)) ≥ (f ε(t), v − u̇(t))V ,

(68)

(β∇ϕε(t),∇ξ)L2(Ω)d − (Eε(uε)(t),∇ξ)L2(Ω)d + j3(u̇ε(t), ϕε(t), ξ) = (qεe(t), ξ)W . (69)

For each ε > 0, Theorem 3.1 implies that Problem (PV ε) has a unique solution
(uε, ϕε). On the other hand, we state the following convergence assumptions:

f ε0 → f0 in C(0, T ;L2(Ω)d) as ε→ 0, (70)

qε0 → q0 in C(0, T ;L2(Ω)) as ε→ 0, (71)

f ε2 → f2 in C(0, T ;L2(Γ2)d) as ε→ 0, (72)

qε2 → q2 in C(0, T ;L2(Γb)) as ε→ 0, (73)

ϕεF → ϕF in C(0, T ;L2(Γ3)) as ε→ 0. (74)

Let c > 0 be a generic constant which may depend on data, but does not depend on ε,
and whose value may vary from place to place. We have the following convergence result.

Theorem 5.1 Under assumptions (70)-(74), the solution (uε, ϕε) of Problem (PV ε)
converges strongly to the solution (u, ϕ) of Problem (PV ), i.e.,

(uε, ϕε)→ (u, ϕ) as ε→ 0. (75)
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Proof. Using inequalities (29) and (68), we obtain

〈ü(t)− üε(t), u̇(t)− u̇ε(t)〉V ′×V + (Aε(u̇)(t)−Aε(u̇ε)(t), ε(u̇)(t)− ε(u̇ε)(t))H
≤ −(Fε(u)(t)− Fε(uε)(t), ε(u̇)(t)− ε(u̇ε)(t))H
− (E∗∇ϕ(t)− E∗∇ϕε(t), ε(u̇)(t)− ε(u̇ε)(t))L2(Ω)d

+ jε1(uε(t), ϕε(t), u̇(t))− jε1(uε(t), ϕε(t), u̇ε(t))︸ ︷︷ ︸
=Jε1

+ j2(σε, (u̇)(t))− j2(σε, u̇ε(t))︸ ︷︷ ︸
=Jε2

+ j1(u(t), ϕ(t), u̇(t))− j1(u(t), ϕ(t), u̇ε(t))︸ ︷︷ ︸
=J1

+ j2(σ, u̇(t))− j2(σ, u̇ε(t))︸ ︷︷ ︸
=J2

+ (f(t)− f ε(t), u̇(t)− u̇ε(t))V .

(76)

From the definition of the functionals j1 and jε1, we have

|Jε1 + J1|

≤
∫

Γ3

∣∣(pν(uεν(t)− g)hν(ϕε(t)− ϕεF (t))− pν(uν(t)− g)hν(ϕ(t)− ϕF (t))
)

(u̇ν(t)− u̇εν(t))
∣∣da.

Taking in mind the hypotheses (h3) and (h4), we find

|Jε1 + J1| ≤MpνLhν c1c0 ‖ϕ(t)− ϕε(t)‖W ‖u̇(t)− u̇ε(t)‖V
+MpνLhν c0 ‖ϕF (t)− ϕεF (t)‖L2(Γ3) ‖u̇(t)− u̇ε(t)‖V

+MhνLpν c
2
0 ‖u(t)− uε(t)‖V ‖u̇(t)− u̇ε(t)‖V .

(77)

Moreover, it follows from the definition of the functionals j2 and jε2 that

|Jε2 + J2| =
∫

Γ3

µ
(
|Rσν | − |Rσεν |

) (
‖u̇τ‖ − ‖u̇ετ‖

)
da,

≤ c0 ‖µ‖L∞(Γ3)MR‖σ − σε‖H ‖u̇(t)− u̇ε(t)‖V ,

≤ c0 ‖µ‖L∞(Γ3)MRMA ‖u̇(t)− u̇ε(t)‖2V
+ c0 ‖µ‖L∞(Γ3)MRMF ‖u(t)− uε(t)‖V ‖u̇(t)− u̇ε(t)‖V
+ c0 ‖µ‖L∞(Γ3)MRME ‖ϕ(t)− ϕε(t)‖W ‖u̇(t)− u̇ε(t)‖V .

(78)

We integrate (76) and use the assumptions (h1)-(h2) and the inequalities (77)-(78) to get

1

2
‖u̇(t)− u̇ε(t)‖2V +

1

2
mF ‖u(t)− uε(t)‖2V +mA

∫ t

0

‖u̇(s)− u̇ε(s)‖2V ds

≤ (ME + c0‖µ‖L∞(Γ3)MRME +MpνLhν c1c0)

∫ t

0

‖ϕ(s)− ϕε(s)‖W ‖u̇(s)− u̇ε(s)‖V ds

+MpνLhν c0

∫ t

0

‖ϕF (s)− ϕεF (s)‖L2(Γ3) ‖u̇(s)− u̇ε(s)‖V ds

+ (MhνLpν c
2
0 + c0 ‖µ‖L∞(Γ3)MRMF)

∫ t

0

‖u(s)− uε(s)‖V ‖u̇(s)− u̇ε(s)‖V ds

+ c0‖µ‖L∞(Γ3)MRMA

∫ t

0

‖u̇(s)− u̇ε(s)‖2V ds+

∫ t

0

‖f(s)− f ε(s)‖V ‖u̇(s)− u̇ε(s)‖V ds.
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Then we apply the α-inequality ab < α2a2 + b2

α2 and the Gronwall inequality to find

‖u̇(t)− u̇ε(t)‖2V + ‖u(t)− uε(t)‖2V +

∫ t

0

‖u̇(s)− u̇ε(s)‖2V ds

≤ c
∫ t

0

(
‖ϕ(s)− ϕε(s)‖2W + ‖ϕF (s)− ϕεF (s)‖2L2(Γ3) + ‖f(s)− f ε(s)‖2V

)
ds.

(79)

Furthermore, it follows from equations (30) and (69) that

(β∇ϕ(t)− β∇ϕε(t),∇ϕ(t)−∇ϕε(t))L2(Ω)d

− (Eε(u)(t)− Eε(uε)(t),∇ϕ(t)−∇ϕε(t))L2(Ω)d + j3(u̇(t), ϕ(t), ϕ(t)− ϕε(t))

− jε3(u̇ε(t), ϕε(t), ϕ(t)− ϕε(t)) = (qe(t)− qεe(t), ϕ(t)− ϕε(t))W .

(80)

Using the definitions of jε3 and j3 and the assumptions (h3) and (h4), we have

|j3(u̇(t), ϕ(t), ϕ(t)− ϕε(t))− jε3(u̇ε(t), ϕε(t), ϕ(t)− ϕε(t))|

≤MheLpec0 c1 ‖u̇(t)− u̇ε(t)‖V ‖ϕ(t)− ϕε(t)‖W
+MheLpec1 ‖ϕF (t)− ϕεF (t)‖L2(Γ3)‖ϕ(t)− ϕε(t)‖W .

(81)

Keeping in mind (80) and (81) and hypotheses (h1) and (h2), we deduce

‖ϕ(t)− ϕε(t)‖W ≤c {‖u(t)− uε(t)‖V + ‖u̇(t)− u̇ε(t)‖V + ‖qe(t)− qεe(t)‖2W
+ ‖ϕF (t)− ϕεF (t)‖L2(Γ3)} for all t ∈ (0, T ).

(82)

Next, we combine (79) and (82) and we apply the Gronwall inequality to find

‖u̇(t)− u̇ε(t)‖2V + ‖u(t)− uε(t)‖2V +

∫ t

0

‖u̇(s)− u̇ε(s)‖2V ds

≤ c
∫ t

0

(
‖qe(t)− qεe(t)‖2W + ‖ϕF (s)− ϕεF (s)‖2L2(Γ3) + ‖f(s)− f ε(s)‖2V

)
ds.

(83)

Remembering the definitions (24), (25), (64) and (65) of f , qe, f
ε and qεe, we obtain

‖f(t)− f ε(t)‖V ≤ cp ‖f0(t)− f ε0(t)‖L2(Ω) + c0 ‖f2(t)− f ε2(t)‖L2(Γ2), ∀ t ∈ (0, T ), (84)

‖qe(t)− qεe(t)‖W ≤ c′p ‖q0(t)− qε0(t)‖L2(Ω) + c1 ‖q2(t)− qε2(t)‖L2(Γb), ∀ t ∈ (0, T ). (85)

Finally, we use the assumptions (70)-(74) together with (83)-(85) to establish (75).

6 Conclusion

Real applications in contact mechanics, where the dynamic behavior is linear, are rare.
Usually, the contact phenomena involve largely nonlinearities due to the nature of the
material (with a coupling constitutive law; here, an electro-elastic materials), and the
friction and electrical conduction effects accompanying the mechanical contact process.
Hence, the previous parameters can change the dynamic behavior of the whole mechanical
system, and the modeling of this type of problem is therefore important to predict, for



164 O. BAIZ AND H. BENAISSA

instance, the effects of friction and the electrical conduction on the material’s body,
and then to predict the evolution of the material state, particularly in the contact zone
(wear and adhesion ..). Also, it is essential to correct prediction of the critical cases (for
example, introduce lubrification effects to control friction wear and adhesion before the
damage of the body).

In this paper, we presented a mathematical model for the dynamic contact problem of
a nonlinear electro-elastic body and a conductive foundation. The unique weak solvability
of this problem was established using arguments of evolutionary variational inequalities
and a fixed point theorem. The obtained results represent an improvement of those
existing in literature and will facilitate future research of other open problems arising
from mathematical modeling in industrial engineering when it is necessary to take into
account both the mechanical and the electrical properties. An interesting continuation of
the current results would be their natural extensions to complicated piezoelectric contact
problems with nontrivial electrical contact conditions. Moreover, such models lead to new
evolutionary variational and hemi-variational inequalities.
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1 Introduction

Over the years, many robot manipulators have been invented to satisfy industrial needs,
for example, the Stewart platform [1] and the Delta robot [2]. The conventional con-
trol methods like PD/PID are often used to achieve the required tasks of these robots.
However, robot manipulators are subject to external disturbances and their dynamics
are characterised by strong coupling between the joints, which has an important effect at
high dynamic movements. Therefore, PD/PID controllers are not satisfactory for appli-
cations that require high tracking accuracy at high cadence. This is due to the fact that
the controller gains are selected without considering the coupling effects and external
disturbances. To overcome these problems, many advanced controllers have been suc-
cessfully implemented. One of the interesting techniques is the model-based controller [3].
This centralized strategy integrates the nonlinear robot dynamics in the control design
to stabilise and to compensate a large part of the coupled dynamics. However, the lack of
very accurate knowledge of the system may decrease the tracking performance, especially
for robot manipulators that move at high speed. Other advanced controllers have been
developed by considering in their objective the disturbances and coupling effects, for
instance, the nonlinear PD plus sliding mode control [4], robust H-infinity control [5, 6],
and neural network controllers [7, 8].

Robot manipulators are usually used for repetitive tasks such as laser cutting [9] and
pick and place operations [10], where the desired trajectory is repeated over a finite time
interval. Unfortunately, the most well-known controllers are not able to benefit from the
task repeatability which yields the same performance without improvement. In order
to exploit these repetitions, the idea of iterative learning control approach has emerged.
The ILC controller takes into account the information of the previous cycles in order to
improve the tracking performances of the current cycle.

In the early 1990s, Arimoto proposed a series of learning laws such as the PD-type
and PID-type ILC [11]. After that, the ILC has been extensively studied, where several
ILC schemes for robot manipulators have been proposed [12,13]. Others strategies, based
on adaptive and robust learning have been developed to overcome parametric and non-
parametric uncertainties effects, they are: the adaptive ILC [14], adaptive switching PD
control strategy [15], and robust ILC [16]. For a comprehensive review on the ILC, the
readers may refer to the survey given in [17] and [18]. It is noted that the ILC has been
successfully applied in many areas such as robotics [19,20] and biological systems [21].

The main contribution of this work is to develop a model-based ILC for the tra-
jectory tracking problem of perturbed robot manipulators performing repetitive tasks.
In contrary to the traditional ILC [11], the proposed controller allows to compensate
the unknown uncertainties of robot manipulators as well as the external disturbances.
Moreover, the model-based ILC is more practical than the adaptive ILC [22], [15] that
assumes the dynamic model can be expressed by a pre-multiplication of two separate
knowing matrices and unknowing vector, which can not be the case for a complex robot
like our application of the "Delta robot". Thus, the proposed control law consists of two
terms. The first item is a model-based controller represented by the pre-multiplication
between the PD controller and the inertia matrix. The second item is a learning control
scheme that consists of a PD-type ILC with an additional robust term. Compared to the
existing works related to the application of ILC, the proposed controller can be applied
to uncertain nonlinear dynamic, unlike [16, 23, 24], where the controller is designed to
discrete-time linear systems. Unlike [13, 15, 25], where the ILC schemes are specifically
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developed for repetitive disturbances, the controller in this work can deal with nonrepet-
itive disturbances. The stability of the proposed control is proved using the Lyapunov
method. It is shown that the tracking error converges to zero in a finite time interval
when the number of iterations approaches infinity. To demonstrate the feasibility and the
performances of the proposed controller, simulations have been performed on a parallel
Delta robot and followed by a comparative study between the proposed controller, the
conventional PID controller and the traditional PD plus PD-type ILC controller.

Throughout this paper, we use the notation λmin(A) and λmax(A) to indicate the
minimum and the maximum eigenvalue of matrix A, and for any x ∈ Rn, the norm
of vector x is defined as ‖x‖=

√
xTx, while the norm of matrix A is defined as follows:

‖A‖=
√
λmax(ATA).

2 Problem Formulation

Consider the actual dynamic model for a rigid robot with n-degrees of freedom described
by

M(qk)q̈k + C(qk, q̇k)q̇k +G(qk) + wk(t) = τk, (1)

where qk ∈ Rn is the generalized joint vector, M(qk) is the inertia matrix, C(qk, q̇k)q̇k is
a vector resulting from Coriolis and centrifugal forces, G(qk) is the gravity torque vector,
τk is the control input vector containing the torques to be applied at each joint and wk(t)
is the vector containing external disturbances. The index k denotes the iteration number.

The actual robot dynamics (1) can be written using the nominal model as follows:

Mn(qk)q̈k + Cn(qk, q̇k)q̇k +Gn(qk) + dk(t) = τk, (2)

where
dk(t) = ∆M(qk)q̈k + ∆C(qk, q̇k)q̇k + ∆G(qk) + wk(t). (3)

Our objective is to design an iterative control law τk, which allows the robot to track
any given trajectory qd as k tends to infinity, i.e., limk→∞ q̃k(t) = qd(t) − qk(t) = 0,
limk→∞ ˙̃qk(t) = q̇d(t)− q̇k(t) = 0, ∀t ∈ [0, T ].

The dynamic motion equation (2) has the following fundamental properties, which
facilitate the convergence analysis of the proposed control law [22]:

(P1) The inertia matrix Mn(qk) is symmetric, positive and satisfies

0 < α ≤ ‖Mn(qk)‖ ≤ β,

where α, and β are known positive constants.
(P2) There exists a positive constant KM such that the inertia matrix Mn(qk) is

globally Lipschitz continuous in its arguments

‖Mn(qk+1)−Mn(qk)‖ < KMn‖qk+1 − qk‖.

(P3) Gn(qk) is globally Lipschitz continuous in its arguments

‖Gn(qk+1)−Gn(qk)‖ ≤ Kg‖qk+1 − qk‖,

where Kg is a known positive constant.
(P4) The following upper bounds are valid:

‖Cn(qk, q̇k)‖ ≤ Kc1‖q̇k‖, ‖Gn(qk)‖ ≤ KG, ∀qk, q̇k ∈ Rn,
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where Kc1 and KG are known positive constants.
(P5) For robots having exclusively revolute joints, there exist constants Kc1 >

0 and Kc2 > 0 such that
‖Cn(qk+1, q̇k+1)q̇k+1 − Cn(qk, q̇k)q̇k+1‖ ≤Kc1‖q̇k+1 − q̇k‖‖q̇k+1‖+Kc2‖qk+1 − qk‖‖q̇k+1‖2.

The following assumptions are made:
(A1) The reference trajectory and its first and second time-derivatives, namely, qd,

q̇d, and q̈d are bounded ∀t ∈ [0, T ] and ∀k ∈ Z+.
(A2) The resetting condition is satisfied:

qk(0) = qd(0), q̇k(0) = q̇d(0), ∀k ∈ Z+.

(A3) The robot velocity is bounded by a known constant Vm such that

‖q̇k‖ ≤ Vm.

(A4) The external disturbances and the model uncertainty are bounded by a known
constant ld such that

‖dk(t)‖ ≤ ld.
In this paper, the following lemma is used.

Lemma [26]: The inertia matrix Mn(qk) has the following property:

‖Mn(qk+1)−1 −Mn(qk)−1‖ ≤ KMn
α−2‖qk+1 − qk‖.

Proof.

Mn(qk+1)
−1 −Mn(qk)

−1 = −Mn(qk+1)
−1(Mn(qk+1)−Mn(qk))M(qk)

−1.

From (P1) and (P2) we can obtain

‖Mn(qk+1)−1 −Mn(qk)−1‖ ≤ KMn
α−2‖qk+1 − qk‖.

3 Iterative Learning Control

3.1 Controller design

The model-based ILC is given below

τk = Mn(qk)[Kpq̃k +Kd
˙̃qk + uk], (4)

and the ILC expression is given by

uk+1 = uk + Λq̃k + Γ ˙̃qk + µsgn(z̃k), (5)

where the variables z̃k and zk are defined as

z̃k = zk+1 − zk, (6)

zk(t) = ˙̃qk(t) + ζq̃k(t). (7)

Kp,Kd,Γ, and Λ are diagonal matrices, and µ, ζ are positive constants.
The scheme of the proposed controller is illustrated in Fig. 1, where xd represents

the desired trajectory in the task space and the IGM indicates the inverse geometric
model.
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Figure 1: The proposed control scheme.

3.2 Convergence analysis

To simplify the notation, let

Mn(qk) = Mn,k, Cn(qk, q̇k) = Cn,k, Gn(qk) = Gn,k, dk(t) = dk.

In the k-th iteration, equation (2) can be rewritten as

q̈k = kpq̃k + kd ˙̃qk + uk −M−1n,kCn,kq̇k −M−1n,kGn,k −M−1n,kdk. (8)

Similarly, in the (k+1)-th iteration, we have

q̈k+1 = kpq̃k+1 + kd ˙̃qk+1 + uk+1 −M−1n,k+1Cn,k+1q̇k+1

−M−1n,k+1Gn,k+1 −M−1n,k+1dk+1.
(9)

For the purpose of convergence proof, we assume that

Kp = ζKd and Λ = ζΓ. (10)

We also define the variable δqk as

δqk = q̃k+1 − q̃k. (11)

Theorem. Consider the system (2) under assumptions (A1-A4), properties (P1-P5),
and control law (4). Then the position and velocity tracking errors converge to zero as
k approaches infinity over a finite-time interval [0, T ], i.e., limk→∞ qk(t) = qd(t) and
limk→∞ q̇k(t) = q̇d(t), ∀t ∈ [0, T ], if the gains of the controller are selected as:

2λmin(Kd − ζI) ≥ λmax(Γ)− 2ζ +
a1 + a2

ζ
≥ 0, (12)

2λmin(Kd − ζI) ≥ λmax(Γ) + a3 ≥ 0, (13)

4AB ≥ C2, (14)

µ− 2ldα
−1 > γ, (15)

where
A = ζ2λmax(Γ)− 2ζ2λmin(Kd − ζI)− 2ζ3 + ζ(a1 + a2), (16)

B = λmax(Γ)− 2λmin(Kd − ζI) + a3, (17)

C = a1 + a2 + ζa3, (18)
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and
a1 = 2(α−1Kg +KMα

−2KG), (19)

a2 = 2(α−1Kc2V
2
m + α−2KMKc1V

2
m), (20)

a3 = 4α−1Kc1Vm, (21)

γ is a positive constant.
Proof : Consider the following Lyapunov function:

Vk(t) =

∫ t

0

zTk Γzkdσ. (22)

Hence

∆Vk = Vk+1 − Vk =
∫ t

0
zTk+1Γzk+1dσ −

∫ t

0
zTk Γzkdσ =

∫ t

0
z̃Tk Γz̃k + 2z̃Tk Γzkdσ. (23)

We have ¨̃qk+1 − ¨̃qk = q̈d − q̈k+1 − q̈d + q̈k. By subtracting (9) from (8), we obtain

¨̃qk+1 − ¨̃qk = −Kp(q̃k+1 − q̃k)−Kd( ˙̃qk+1 − ˙̃qk)− uk+1 + uk

+M−1n,k+1Gn,k+1 −M−1n,kGk +M−1n,k+1Cn,k+1q̇k+1

−M−1n,kCn,kq̇k +M−1n,k+1dk+1 −M−1n,kdk.

(24)

By combining the equations (5), (6), (7), (10) and (11) we get

˙̃zk + (Kd − ζI)z̃k + ζ2δqk − (M−1n,k+1Gn,k+1 −M−1n,kGn,k)−
(M−1n,k+1Cn,k+1q̇k+1 −M−1n,kCn,kq̇k)− (M−1n,k+1dk+1 −M−1n,kdk) + µsgn(z̃k) = −Γzk.

(25)
Replacing (25) in (23) gives us

∆Vk =
∫ t

0
z̃Tk Γz̃k − 2z̃Tk

˙̃zk − 2z̃Tk (Kd − ζI)z̃k−
2ζ2z̃Tk δqk + 2z̃Tk (M−1n,k+1Gn,k+1 −M−1n,kGn,k)+

2z̃Tk (M−1n,k+1Cn,k+1q̇k+1 −M−1n,kCn,kq̇k)+

2z̃Tk (M−1n,k+1dk+1 −M−1n,kdk − µsgn(z̃k))dσ.

(26)

Therefore

∆Vk =
∫ t

0
z̃Tk Γz̃k − 2z̃Tk

˙̃zk − 2z̃Tk (Kd − ζI)z̃k−
2ζ2z̃Tk δqk + 2z̃Tk [M−1n,k+1(Gn,k+1 −Gn,k)+

(M−1n,k+1−M
−1
n,k)Gn,k]+2z̃Tk [M−1n,k+1((Cn,k+1−Cn,k)q̇k+1

+Cn,k(q̇k+1 − q̇k)) + (M−1n,k+1 −M
−1
n,k)Cn,kq̇k]+

2z̃Tk (M−1n,k+1dk+1 −M−1n,kdk − µsgn(z̃k))dσ.

(27)

With assumption (A4) and property (P1) we can obtain z̃Tk (M−1n,k+1dk+1 −M−1n,kdk) ≤
‖z̃Tk ‖(2ldα−1), thus∫ t

0
z̃Tk (M−1n,k+1dk+1 −M−1n,kdk − µsgn(z̃k))dσ ≤

∫ t

0
‖z̃Tk ‖(2ldα−1 − µ)dσ. (28)
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Properties (P1-P5), (28) and assumption (A3) lead to

∆Vk ≤
∫ t

0
z̃Tk Γz̃k − 2z̃Tk

˙̃zk − 2z̃Tk (Kd − ζI)z̃k−
2ζ2z̃Tk δqk + 2‖z̃Tk ‖(α−1Kg +KMα

−2KG)‖δqk‖+
2‖z̃Tk ‖(α−1Kc2V

2
m + α−2KMKc1V

2
m)‖δqk‖+

2‖z̃Tk ‖(2α−1Kc1Vm)‖δq̇k‖+ 2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(29)

By replacing (7), (19), (20) and (21) in (29) we obtain

∆Vk ≤
∫ t

0
δq̇Tk Γδq̇k + ζ2δqTk Γδqk + 2ζδq̇Tk Γδqk − 2z̃T ˙̃zk−

2ζ2δqTk (Kd − ζI)δqk − 2δq̇Tk (Kd − ζI)δq̇k−
4ζδq̇Tk (Kd − ζI)δqk − 2ζ2δq̇Tk δqk − 2ζ3‖δqk‖2+

ζa1‖δqk‖2 + a1‖δqk‖‖δq̇k‖+ ζa2‖δqk‖2+

a2‖δqk‖‖δq̇k‖+ a3‖δq̇k‖2 + ζa3‖δqk‖‖δq̇k‖+
2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(30)

Using assumption (A2) one can get

∆Vk ≤ −‖z̃k‖2 − ζ2‖δqk‖2 − ζδqTk (2Kd − 2ζI − Γ)δqk+∫ t

0
δq̇Tk Γδq̇k + ζ2δqTk Γδqk − 2ζ3‖δqk‖2−

2ζ2δqTk (Kd − ζI)δqk − 2δq̇k(Kd − ζI)δq̇k+

ζa1‖δqk‖2 + a1‖δqk‖‖δq̇k‖+ ζa2‖δqk‖2+

a2‖δqk‖‖δq̇k‖+ a3‖δq̇k‖2 + ζa3‖δqk‖‖δq̇k‖+
2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(31)

Hence
∆Vk ≤ −‖z̃k‖2 − ζ2‖δqk‖2 − ζλmin(2Kd − 2ζI − Γ)‖δqk‖2

+
∫ t

0
[λmax(Γ)− 2λmin(Kd − ζI) + a3]‖δq̇k‖2+

[ζ2λmax(Γ)− 2ζ3 − 2ζ2λmin(Kd − ζI)

+ζ(a1 + a2)]‖δqk‖2 + [a1 + a2 + ζa3]‖δqk‖‖δq̇k‖+
2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(32)

Using (16), (17), and (18) we obtain

∆Vk ≤ −‖z̃k‖2 − ζ2‖δqk‖2 − ζλmin(2Kd − 2ζI − Γ)‖δqk‖2

+
∫ t

0
A‖δqk‖2 +B‖δq̇k‖2 + C‖δqk‖‖δq̇k‖+ 2‖z̃Tk ‖(2ldα−1 − µ)dσ.

(33)

Hence, from (15) we can get

∆Vk < −‖z̃k‖2 − ζ2‖δqk‖2 − ζλmin(2Kd − 2ζI − Γ)‖δqk‖2

+
∫ t

0
A(‖δqk‖+

C

2A
‖δq̇k‖)2 + (B − C2

4A
)‖δq̇k‖2 − 2γ‖z̃Tk ‖dσ.

(34)

From (12), (13), (14) and (15) we can get

∆Vk < 0, i.e., Vk+1 < Vk. (35)
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From (35) we conclude that when k tends to infinity, Vk tends to zero, which implies
that zk → 0, and from the definition of zk (7), we can obtain

lim
k→∞

q̃k(t) = lim
k→∞

˙̃qk = 0, ∀t ∈ [0, T ]. (36)

Remark: It is worth noting that the sign function used in the proposed control (5)
might lead to the chattering phenomenon in the control input. In order to reduce the ef-
fects of this phenomenon in practical applications, saturation function can be introduced
instead of the sign function. As a consequence, the tracking error converges to a domain
around zero with a smooth control signal.

4 Simulation

In this section, we present the simulation results obtained by applying the model-based
ILC on the parallel Delta robot described by Fig. 2. Delta robot is a very fast robot
designed to achieve high precision for high dynamic pick and place operations, where
the traditional controllers can fail to deal with this dynamic and to reject the external
disturbances.

Figure 2: The Delta robot.
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Figure 3: The trajectory tracking in the task
space.

The matrices of the robot are given as follows:

M(q) = Ib +mntJ
TJ, C(q, q̇) = JTmntJ̇ , G(q) = −τGn − τGb,

where τGn is the torque produced by the inertial force, τGb is the torque produced by
the gravitational force of the arms, J represents the Jacobian matrix and J̇ is its time
derivative, mnt represents the total mass which is the sum of the travelling plate mass,
the mass of the payload and the 3 reported masses contributed each of the 3 forearms.
For the detailed expressions of the Jacobian, τGn, τGb and mnt, please, refer to [27].
The geometrical and dynamic parameters of the Delta robot are described in Table 1.
The constants are given as follows: Kc1 = 0.44 kgm2, Kc2 = 2.675 kgm2, Kg = 0.354
kg.m2/s2, KG = 0.442 kg.m2/s2, Vm = 5 rad/s, α = 0.3 kgm2, KM = 0.09 kgm2.
The modelling errors are set as follows: ∆M(qk) = 0.1 ∗ M(qk), ∆C(qk, q̇k) =
0.1 ∗ C(qk, q̇k), ∆G(qk) = 0.1 ∗ G(qk). Whereas, the disturbances are as-
sumed to be time-varying and also varying from iteration to iteration as follows:
d1(t)=d2(t)=d3(t)=0.2.rand(k)sin(2πt) (in Newton meters), where rand(k) is a random
function taking its values between 0 and 1.
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Table 1: Geometric and dynamic parameters.

Parameter Value
Length of the upper arm 0.380 m
Length of the forearm 0.205 m
Mass of the travelling plate 0.042 kg
Mass of the upper arm 0.098 kg
Masses of the forearms 0.028 kg
Mass of the elbow 0.015 kg

The desired trajectory used along the x-axis and the z-axis is a polynomial of degree
five with an initial and final velocity and acceleration equal to zero. Its expression is
given by

x(t) = xi + (xf − xi)
(

6
t

tf

5

− 15
t

tf

4

+ 10
t

tf

3)
, (37)

where xi and xf are the initial and final positions, and tf is the duration of the movement.
To evaluate the performance of the controllers, the Root Mean Square Error (RMSE)

criteria and the Maximum Absolute Error (MaxAE) criteria are used. Their expressions
are given as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ydi
)2, (38)

MaxAE = Max(|yi − ydi
|), (39)

where yd is the desired trajectory, yi is the actual response, and n is the total number
of samples in one iteration. The controller gains matrices were selected so that the
minimum performance criteria specified by the RMSE and the MaxAE are obtained
after 90 iterations. The proposed controller gains were set to: Kp = diag{600}, Kd =
diag{40}, Λ = diag{18.3}, Γ = diag{1.22}, and ζ = 15, while the PID controller gains
were selected as: Kp(PID) = diag{12}, Kd(PID) = diag{0.18}, KI(PID) = diag{2}, and
the PD plus ILC controller gains were chosen as: Kp(PD−ILC) = diag{8}, Kd(PD−ILC) =
diag{0.08}, ΛPD−ILC = diag{0.5}, ΓPD−ILC = diag{0.02}. We give the simulation
study in two cases.

Case 1: The desired trajectory starts from the initial position (−0.15, 0,−0.37)m to
the final position (0.15, 0,−0.37)m with a height of transit equal to 0.04 m, then returns
to the initial position during 0.4 second.
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Figure 4: The RMSE along the iteration axis.
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Figure 6: Tracking error for iteration k=1,10,30,50,90. (a) joint 1, (b) joint 2.
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Figure 7: Control torque for iteration k=1,10,30,50,90. (a) joint 1, (b) joint 2.

Figure 3 presents the trajectory tracking in the operational space after 90 iterations
under the proposed controller, the PID controller and the PD plus PD-type ILC. Fig. 4
and Fig. 5 indicate the progress of the RMSE and the MaxAE, respectively, through the
iterations. It can be observed that the tracking performance improves from iteration to
iteration, where, for instance, the RMSE decreased from 2.17 mm at the first iteration
along the x-axis to 0.06 mm at the 90th iteration, while the PID and the PD plus PD-
type ILC controller lead to an RMSE along the x-axis equal to 1.48 mm and 0.12 mm,
respectively. Fig. 6 shows the tracking error of joint 1 and joint 2, respectively, (the
tracking error of joint 3 is similar to that of joint 2 due to the nature of the trajectory),
for the 1st, 10th, 30th, 50th and the 90th iteration. It is observed that the desired
trajectory has been obtained successfully with the increase of the iteration number despite
the existence of the model uncertainty and the external disturbances. Fig. 7 represents
the torque control of joint 1 and joint 2, respectively. It is shown that the torque profile
remains nearly the same from the first iteration to the 90th iteration, which provides
an advantage of the proposed controller where the tracking performances are enhanced
through the iteration without requiring more control energy.

Case 2: In order to evaluate the ability to track the desired trajectory in the
presence of payloads, an additional load of 200 g is introduced on the travelling plate of
the Delta robot, from 30 iterations to 90 iterations.
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Table 2: Tracking performance through iterations under additional load of 200 g.

Iteration 1 10 30 50 90
RMSE x-axis (mm) 2.17 1.60 2.76 1.22 0.20
MaxAE x-axis (mm) 3.43 2.21 4.02 1.85 0.33
RMSE z-axis (mm) 1.10 0.85 1.30 0.58 0.16
MaxAE z-axis (mm) 2.40 1.73 2.73 1.16 0.33
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Figure 8: The RMSE along the iteration axis-
Case 2.
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Figure 9: The RMSE along the iteration axis-
Case 2.
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Figure 10: The control torque-Case 2. (a) joint 1, (b) joint 2.

The simulation results are presented in Fig. 8 to Fig. 10. It is observed that the PID
controller lost its performances after the introduction of the additional load, while the
performances of the PD plus PD-type became constant between the 60th and the 70th
iterations, then start diverging after that. Meanwhile, the proposed ILC is still the one
giving us better performances, where, on one hand, the RMSE and the MaxAE decrease
with a rate faster than the traditional ILC and continue to decrease even at the 90th
iteration. On the other hand, the control torque of the proposed controller is smaller
than the PID and the PD plus PD-type ILC, which provides a significant importance to
the proposed approach. Table 2 summarises the tracking performance obtained under
an additional load of 200 g.
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5 Conclusion

In this work, a model-based iterative learning scheme has been proposed for the trajec-
tory tracking of robot manipulators with model uncertainty and subjected to external
disturbances. In order to decrease the coupling effect, a model-based controller has been
introduced and combined with an ILC and a robust control term to benefit from the
repetition of the task and to reject the model uncertainty and external disturbances.
The asymptotic convergence has been demonstrated using the Lyapunov method. It has
been shown that the tracking position and velocity errors decrease through the iterations
regardless of the influence of the model uncertainty and the external disturbances. Simu-
lation results confirm the feasibility and the effectiveness of the proposed control scheme
compared to the PID and the PD plus PD-type ILC. Otherwise, the control energy is
still limited and does not increase with the number of iterations.
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Abstract: We considered an incompressible fluid-saturated porous layer bounded
by two infinite parallel plates. The Boussinesq approximation and Darcy’s law are
applied. The permeability is assumed to be a linear function of the depth z. The
linear stability is investigated. The long wavelength expansion method is applied to
conduct the weakly nonlinear stability analysis. The evolution equation is derived and
analyzed. A uniformly valid periodic solution of the evolution equation is obtained
by the application of the Poincaré-Lindstedt method. Some numerical simulations
are presented.
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1 Introduction

The greenhouse effect of carbon dioxide is one of the most urgent problems that face the
humanity. The greenhouse gas emissions can be reduced through the geological carbon
dioxide sequestration in deep rock formations. Geological carbon dioxide sequestration is
the process of trapping CO2 that is produced by burning fossil fuels or any other chemical
or biological processes and placing it in a deep rock formation (thousands of feet deep) for
a long-term storage so that it will not affect the atmosphere. This process is comprised
of three stages: capturing, transporting, and injecting CO2 into the geological formation
such as gas reservoirs, unmineable coal seams, and basalt formations [1–4]. The capacity
of such formations is estimated worldwide to be between 675-900 Gt of carbon in the
gas reservoirs, between 1000-10000 Gt for saline aquifers, and for unmineable coal it
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is between 3-200 Gt of carbon. Depending on the geothermal gradient and the fluid
properties, CO2 migrates and reacts with the rock formation. Hence, many trapping
mechanisms such as structure trapping, residual-phase trapping, solubility trapping, and
mineral trapping have been contributing to retention of the CO2 sequestration for a very
long period [5].

In the past few decades, the interest in the understanding of the convection in porous
media has been increased. Vast studies have been made in several branches of engineering
and science [6–23]. Natural convection in porous media has been explored in numerous
papers. Horton and Rogers in 1945 and Lapwood in 1948, carried out the stability anal-
ysis of the convection of a fluid in a porous medium for a horizontal fluid layer problem.
The critical Rayleigh number was 4π2 [6, 7]. Foster [8, 9] applied the amplification the-
ory to study time dependent coefficients of a system of partial differential equations.
They determined the onset of instability in terms of critical time. King et. al. use the
amplification method to study the carbon dioxide sequestration problem in anisotropic
porous media [10, 11]. The problem of convection of carbon dioxide storage in saline
aquifers has been investigated by Hassanzadeh et. al. [12–14] and Emami-Meybodi et.
al. [15,16]. A step-function base profile has been considered by Wanstall and Hadji [17].
They conducted the stability analysis by applying the normal modes approach. They
investigated the linear and nonlinear stability to obtain the minimum thickness of the
layer of the saturated brine that is required for the fluid motion.

Neufeld et. al. [18] performed laboratory experiments to study the convective behavior
of CO2 brine. Their numerical simulations depicted the relation between the convective
flux and the Rayleigh number. To study the dissolution of CO2 into brine, Neufeld
et. al. [19] used mixtures of methanol and ethylene-glycol solutions in water in their
laboratory experiments. Batchelor and Nitsche [20] considered the small disturbance of
a stationary stratified fluid. They showed numerically that the growth rate is a function
of the Rayleigh number, the Prandtl number, and the horizontal wavenumber of the
disturbance. A nonlinear stability analysis of a convection in porous layer with finite
conducting boundaries has been conducted by Riahi [21]. Hill and Morad [22] have
studied the convective stability in an anisotropic porous medium. They considered a
water-saturated porous layer bounded by two horizontal parallel plates. The Darcy
equation with variable permeability is used to govern the fluid motion.

Vo and Hadji [23] investigated the linear and weakly nonlinear stability of the con-
vection induced by sequestration of CO2 in a perfectly impervious geological formation.
They considered a horizontal layer of brine saturated porous medium confined between
two horizontal planes that are impermeable to mass flow. They used the classical nor-
mal modes to investigate the linear stability. The weakly nonlinear stability is studied
by applying the long wavelength asymptotic expansion method that is valid for small
Damköhler numbers. They determined that the Rayleigh number and its corresponding
wavenumber are independent of the depth of the formation.

Vo and Hadji [23] described the model that mimics the Rayleigh-Taylor instability
to study the carbon sequestration. They considered the heavy carbon-saturated layer
(Z0 1] on the top of the light free-carbon layer [0 Z0). This situation leads to a very thin
unstable stratified layer at z = Z0 across which buoyancy diffuses. The stratified basic
profile is defined as a step function and the reference carbon concentration in porous
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media is defined by

Cref (z) =

0, 0 < z < Z0,
z − Z0

1− Z0
, Z0 < z < 1.

The basic temperature profile is defined by TB = T1 + (T2−T1)H(z−Z0), where T1 and
T2 are temperature values at the lower region and the upper region, respectively, and H
is the Heaviside function.

In this paper, we considered the same model as that proposed by Hill and Morad [22],
where the instability is quantified in terms of the long time evolution with the Dirichlet
and Neumann boundary conditions at the upper and lower walls, respectively. This
paper is organized as follows: In Section 2, a full description of the problem is presented
and the problem is governed by a mathematical model. Moreover, the basic profile of
the concentration is derived. In Section 3, the steady-state linear stability is studied.
The weakly nonlinear stability is investigated by the application of the long wavelength
exapansion method in Section 4. In Section 5, the Poincaré-Lindstedt method is used
to obtain a uniformly valid periodic solution. Numerical simulations are introduced and
the results are concluded in Section 6.

2 Mathematical Formulation

In this section we considered the mathematical model that has been discussed by Hill
and Morad [22], Wanstall and Hadji [17], and Vo and Hadji [23]. That is, we considered
an incompressible fluid-saturated porous layer bounded by two infinite horizontal parallel
plates. We assumed that the Boussinesq approximation and Darcy’s law are applied and
the fluid motion is governed by the Darcy equation. Therefore, the nondimensionalized
governing system of equations comprised of the Darcy equation, the continuity equation,
the conservation of carbon dioxide equation, and the equation of solute balance is given
by

∇ · u = 0, (1a)

1

F(z)
u = ∇ p− ck, (1b)

∂ c

∂ t̂
+ u · ∇ c+

(
dM(z)

dz

)
w =

ξ

R
∇2
H c+

1

R

(
∂2c

∂z2
−Dac

)
, (1c)

ρ = ρ0 [1 + γc (c− C0)], (1d)

where M(z) is the basic profile of concentration, p is the pressure, k is the vertical

unit vector, ρ0 is the reference density, ξ =
κh
κv

is the ratio of the horizontal and verti-

cal solutal difusion, F(z) is the z-dependent dimensionless permeability, Da =
β H2

ψp κv
is

the Damökhler number, β is the reaction rate and the control parameter, namely, the

Rayleigh-Darcy number R =
γc g H K0 C0

φp ν κν
, where γc is the solutal expansion, g is the

gravitational constant, H is the distance between the two plates, K0 is the reference
permeability value, C0 is the reference concentration of CO2, φp is the porosity, ν is
the kinematic viscosity, and κν is the vertical CO2 diffusion coefficient. The system is
subject to the following boundary conditions:

u = 0, at z = 0, z = 1,
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and
∂c

∂z
= 0, at z = 0, z = 1.

For more details about this model, please, refer to [22], [17] and [23]. Figure 1 describes
the problem with its boundary conditions.

   
Z 

𝝏𝒄

𝝏𝒛
= 𝟎, φ = 0 

 

𝝏𝒄

𝝏𝒛
= 𝟎, φ = 0 

 

 

X 

1 

0 

    𝒁𝟎 

Figure 1: An incompressible fluid-saturated porous layer bounded by two infinite horizontal
parallel plates.

The step function base state is modeled by the partial differential equation

∂CB

∂t̂
=

1

R

(
∂2CB
∂z2

−DaCB
)
, 0 ≤ z ≤ 1, t > 0, (2)

subject to the boundary conditions

∂CB
∂z

= 0 at z = 0, z = 1,

and the initial condition

CB(z, 0) =

{
0, 0 ≤ z < Z0,

1, Z0 ≤ z ≤ 1.

The solution of equation (2) is given by

CB(z, t̂) = 1− Z0 − 2

∞∑
n=1

sin(nπ Z0)

nπ
cos(nπ z) exp(−Da+ n2 π2

R
t̂). (3)

Figure 2 below shows the plot of the concentration basic profile as a function of z for
some values of t.

Following [17], the basic concentration profile consists of a light layer 0 < z < Z0

under a heavier one, Z0 < z < 1, which can be described by the Heaviside function, i.e.,
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Figure 2: The plot of the concentration profile cB(z) as a function of the depth of the fluid
layer z and t = 0.001 (dotted line), t = 0.015 (dashed line) and t = 0.025 (solid line).

M(z) = H(z − Z0). Upon subtracting the basic state profiles, introducing the poloidal
representation for the velocity field u = ∇ × (∇ × φk), and considering the vertical
component of the velocity, we removed the pressure term and the system of equations
(1a)-(1d) reduced to

F(z)∇2φ−F ′(z) dφ
d z

= −F2(z) c, (4a)

ct̂ + (∇Hφz) · (∇H c)−∇2
H φ cz = −∇2

H φ δ(z−Z0) +
ξ

R
∇2
Hc+

1

R

(
∂2c

∂z2
−Dac

)
, (4b)

where φ is the poloidal representation for the divergence velocity field, δ(z − Z0) is the
Dirac delta function, c is the deviation of the concentration in volume fraction from the
diffusive state, R is the Rayleigh-Decay number, and ∇H = (∂/∂x, ∂/∂y). It is subject
to the following boundary conditions:

φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1. (5)

Upon introducing the transformation Φ = Rφ and
∂

∂t
= R

∂

∂t̂
, the equations (4a) and

(4b) reduced to

F(z)∇2Φ−F ′(z) dΦ

d z
= −RF2(z) c, (6a)

ct + (∇HΦz) · (∇H c)−∇2
H Φ cz = −∇2

H Φ δ(z − Z0) + ξ∇2
Hc+

(
∂2c

∂z2
−Dac

)
(6b)

subject to the following boundary conditions:

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1. (7)

To investigate the linear and weakly nonlinear stability, we will assume ξ = 1, the
convection effect dominates over the reaction effect, i.e., Da = 0 and F(z) = 1+λz, |λ| <
1, see [22]. Hence, equations (6a) and (6b) become

(1 + λz)∇2Φ− λ dΦ

d z
= −R (1 + λz)2 c, (8a)
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ct + (∇HΦz) · (∇H c)−∇2
H Φ cz = −∇2

H Φ δ(z − Z0) +∇2
Hc+

∂2c

∂z2
(8b)

subject to the following boundary conditions:

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1. (9)

3 Steady-State Linear Stability Analysis

Following the standard procedure used in [24], we obtained the following linearized system
of equations governing the convective perturbations:

(1 + λz)∇2φ− λdΦ

dz
= −(1 + λz)2Rc, (10a)

∇2c = −∇2
H φ δ(z − Z0) (10b)

subject to the following boundary conditions:

Φ = 0 at z = 0, 1, and
∂c

∂z
= 0 at z = 0, z = 1. (11)

To investigate the linear stability, we will introduce the normal modes

Φ = eiα·xW (z)(z), c = eiα·xS(z), (12)

where x = (x, y) and |α| = α, we obtained

(1 + λz)(D2W (z)− α2W (z)) = −(1 + λz)2RS(z), (13a)

(D2 − α2)S(z) = α2W (z) δ(z − Z0), (13b)

where D = d
d z . The corresponding Dirichlet and Neumann boundary conditions are

W = 0 at z = 0, 1, DS = 0 at z = 0, 1.
Expand W,S and R in terms of the small wave number α and keep λ of order 1.

W = W0 + α2W2 + · · · , S = S0 + α2S2 + · · · and R = R0 + α2R2. The O(1) problem is
given by

D

[
1

1 + λz
DW0

]
= −R0 S0, (14a)

D2S0 = 0 (14b)

subject to the boundary conditions W0(0) = W0(1) = 0 and DS0(0) = DS0(1) = 0. The
solution of the equations (14a) and (14b) is given by

S0 = 1,

W0 = −R0G

6

[
(3z2 + 2λz3)− L1(2z + λz2)

]
,

where L1 = ((3/2) + λ)(1− λ/2).

When proceeding to the next order O(α2), the equation of the concentration becomes

D2S2 − S0 = W0 δ(z − Z0). (15)
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It has a unique solution if and only if the follwing condition is satisfied:∫ 1

0

S∗0 [S0 +W0 δ(z − Z0)] dz = 0,

where S∗0 is the solution of the adjoint problem of equation (14b), namely, D2S∗0 = 0
with the corresponding boundary conditions DS∗0 (0) = DS∗0 (1) = 0 to get S∗0 = 1.
Upon applying the Fredholm alternative at O(α2) we obtain the critical Rayleigh-Darcy
number

R0 =
6

L1(2Z0 + λZ2
0 )− (3Z2

0 + 2λZ3
0 ).

As λ→ 0, the critical Raleigh-Dracy number becomes R0 =
2

Z0 − Z2
0

, which is consistent

with what has been obtained in [17]. Figure 3 depicts that the plot of the critical
Rayleigh-Dracy number R0 is decreased as the values of λ have increased in the right
figure and the left figure shows that the minimum value of the critical Rayleigh-Dracy
number R0 is at Z0 = 0.5 and it goes to infinity as Z0 approaches 0 or 1.
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Figure 3: (Right) Plot of the critical Rayleigh-Dracy number R0 as a function of λ for Z0 = 0.1
(solid line) and Z0 = 0.5 (dashed line). (Left) Plot of the critical Rayleigh-Dracy number R0 as
a function of Z0 for λ = 0 (solid line), λ = −0.5 (dashed line) and λ = 0.5 (dotted line).

4 Weakly Nonlinear Stability

In this section we will investigate the weakly nonlinear stability by deriving the evolution
equation. Following the long wavelength analysis procedure used in [25] and [26] we
introduce the small parameter ε� 1 and we scale X = εx, Z = z, τ = ε4t and keep λ of
O(1) quantity in equations (8a) and (8b). Moreover, we expand

Φ = Φ0 + ε2Φ2 + · · · , c = c0 + ε2c2 + ε4c4 + · · ·

and R = R0 + ε2µ̂2. The solution of the leading order proplem that is described by

(1 + λZ)D2Φ0 − λDΦ0 = −(1 + λZ)2R0 c0, (16a)

D2c0 = 0, (16b)

with boundary conditions Φ0(0) = Φ0(1) = 0 and Dc0(0) = Dc0(1) = 0 is given by

Φ0 = −R0 h

6

[
(3Z2 + 2λZ3)− L1 (2Z + λZ2)

]
,

c0 = h(X, τ),



186 M.H. DARASSI

where L1 = (1.5 + λ)(1− λ/2).
When proceeding to the next order, the O(ε2) problem is described by

D2Φ2 − λDΦ2 + (Φ0)XX = −(1 + λZ)[R0 c2 + µ̂2 c0], (18a)

(DΦ0)X (c0)X = −(Φ0)XX δ(Z − Z0) +D2c2 + (c0)XX . (18b)

Application of the solvability condition to equation (18b) yields

R0 =
6 + 3λ

(3 + 2λ)(Z0 + (λ/2)Z2
0 )− (3Z2

0 + 2λZ3
0 )(1 + λ/2)

. (19)

As λ→ 0, the critical Raleigh-Dracy number becomes R0 =
2

Z0 − Z2
0

, which is consistent

with what has been obtained in [17]. Proceeding to solve O(ε2) problem and because
of the appearance of the δ(Z − Z0) term, we will divide the problem in two cases and
equation (18b) will be divided into two equations:

the light layer when 0 < Z < Z0:D2c−2 = −R0 (c0)2X (Z + λZ2)− (c0)XX , (20a)

the heavy layer when 0 < Z < Z0:D2c+2 = −R0 (c0)2X (Z + λZ2)− (c0)XX , (20b)

with boundary conditions Dc−2 (0) = 0 and Dc+2 (1) = 0. Thus, the solutions of equations
(20a) and (20b) are

c−2 = −R0 (hX)2

36
[6Z3 + 3λZ4 − L1(3Z2 + λZ3)]− hXX

2
Z2 +A−,

c+2 = −R0 (hX)2

36
[6Z3 + 3λZ4 − L1(3Z2 + λZ3)]− hXX

2
(Z2 − 2Z) +A+,

where A− = Z0 hXX +A+ and

A+ =
R0 (hX)2

720
[(30 + 12λ)− 5L1(4 + λ)]− hXX

6
(2 + 3Z2

0 ). Similarly, the solution

of equation (18a) is given by

Φ−2 = −R0 hXX
10080

[
92λ3 Z7 + (182− 35L1)λ2 Z6 − (588λ+ 98λ2 L1)Z5

−(840 + 140λL1)Z4 + L1 − ((1680Z2
0 − 3360Z0 + 1120)λ− 280L1)Z3

−(2520Z2
0 − 5040Z0 + 1680)Z2

]
+
R2

0 (hX)2

30240

[
72λ2 Z7 + (294λ− 35L1)Z6

+(252− 210λL1)Z5 − 210L1 Z
4 − (168λ2) + 420λ− 70L1(4λ+ λ2))Z3

−(252λ+ 630− 105L1 (4 + λ))Z2
]
− µ̂2 h

6
(2λZ3 + 3Z2) +

B−

2
(λZ2 + 2Z),

Φ+
2 = −R0 hXX

10080

[
92λ3 Z7 + (182− 35L1)λ2 Z6 − (588λ+ 98λ2 L1)Z5

+(1260λ− 3360− 70λL1)Z4 − ((1680Z2
0 + 1120)λ− 1680− 280L1)Z3

−(2520Z2
0 + 1680)Z2

]
+
R2

0 (hX)2

30240

[
72λ2 Z7 + (294λ− 35L1)Z6 + (252− 210λL1)Z5
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−210L1 Z
4 − (168λ2) + 420λ− 70L1(4λ+ λ2))Z3 − (252λ+ 630− 105L1 (4 + λ))Z2

]
− µ̂

2 h

6
(2λZ3 + 3Z2) +

B+

2
(λZ2 + 2Z) +A++,

where

B+ =
R0 hXX

15120 (2 + λ)

[
288λ3 − 546λ2 − (1260Z4

0 + 5040Z2
0 + 1344)λ+ 5040Z3

0

+7560Z2
0 + 2520− L1(105λ3 + 294λ2 − 420λ− 840)

]
+

R2
0 (hX)2

15120 (2 + λ)

[
(96λ2 + 378λ− 378− L1 (35λ2 + 175λ+ 210)

]
+
L1 µ̂2 h

3
,

B− =
Z2
0 R0 hXX

2
+B+

A++ =
R0 hXX
10080

[
96λ3 + 182λ2 − (1680Z2

0 + 448)λ+ (840− 1260λ)− 2520Z2
0 − 840

−L1(35λ3 + 98λ2 − 140λ− 280)
]

+
R2

0 (hX)2

30240

[
(96λ2 + 378λ+ 378

−L1 (35λ2 + 175λ+ 210)
]

+
µ̂2 h

6
(2λ+ 3)− B+

2
(2 + λ).

Proceeding to the next order O(ε4), we have

D2c4 = hτ + hX (DΦ2)X − (Φ0)XX Dc2 + (DΦ0)X (c2)X + (Φ2)XX δ(Z − Z0)− (c2)XX
(22)

with boundary conditions Dc4(0) = Dc4(1) = 0. Integrating equation (22) with respect
to Z from Z = 0 to Z = 1, yields the sought evolution equation

hτ = −AhXXXX − µ̂2B hXX + C (hX)2XX + E h2X hXX , (23)

where

A = −R0 (Z0 − Z2
0 )

10080 (2 + λ)

{
[35(Z4

0 + Z3
0 + Z2

0 + Z0)L1 − 96(Z5
0 + Z4

0 + Z3
0 + Z2

0 + Z0)]λ4

+[(70Z4
0 + 168Z3

0 + 168Z2
0 + 168Z0 + 70)L1 − (192Z5

0 + 374Z4
0 + 374Z3

0 + 374Z2
0

+374Z0 + 192)]λ3 + [(196Z3
0 + 56Z2

0 + 56Z0 + 196)L1 − (784Z4
0 − 1484Z2

0 − 84Z0

+364)]λ2 − [280(Z2
0 + 2Z0 + 1)L1 − 56(36Z3

0 + 21Z2
0 + Z0 + 16)]λ− 560(Z0 + 1)L1

−1680(2Z2
0 − Z0 + 1)

}
,

B =
1

3
(Z0 − Z2

0 ) (λZ0 + L1),

C =
R2

0 (Z0 − Z2
0 )

30240 (2 + λ)

{
[(72Z5

0 + 72Z4
0 + 72Z3

0 + 72Z2
0 − 96Z0)− 35(Z4

0 + Z3
0 + Z2

0

+Z0)L1]λ3[(144Z5
0 + 438Z4

0 + 438Z3
0 + 438Z2

0 − 318Z0 − 192)− (70Z4
0 + 280Z3

0

+280Z2
0 − 140Z0 − 70)L1]λ2 + [(588Z4

0 + 840Z3
0 + 840Z2

0 − 756)− (420Z3
0 + 630Z2

0

+70Z0 − 350)L1]λ+ 504Z3
0 + 504Z2

0 + 504Z0 − 756− 420(Z2
0 + Z0 − 1)L1

}
,
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E =
R2

0

30240

[
96λ2 + 504λ+ 756− (84λ2 + 476λ+ 870)L1 + (21λ2 + 140λ+ 280)L2

1

]
.

The evolution equation (23) is of parabolic type which is well-posed whenever the coef-
ficient of the fourth derivative, −A, is negative. Figure 4 shows that −A is negative for
all values of λ and Z0.

-1 -0.5 0 0.5 1

λ

-2

-1.5

-1

-0.5

0

A

Figure 4: The plot of A as a function of λ, where |λ| < 1 and 0 ≤ Z0 ≤ 1.

5 Uniformly Valid Periodic Solution

Upon using the general procedure of the Biot number [27], the term −γ̂ h will be added
to equation (23) to obtain

hτ = −AhXXXX − µ̂2B hXX − γ̂ h+ C (hX)2XX + E h2X hXX . (24)

Upon introducing the following scales and transformations: h = a f, ξ = bX, τ =
e τ̂ , γ = aγ̂ and e = 1/a, we have

fτ = −fξξξξ − 2µ2 fξξ − γ f + Γ (fξ)
2
ξξ + (fξ)

2 fξξ, (25)

where

a =

√
A
E
, b =

(
1

A

√
E
A

)1/4

, Γ =
C√
AE

and µ2 =
µ̂2 a b2

2
.

To investigate the stability of the static solution of equation (25) we consider the linear
part

fτ = −fξξξξ − 2µ2 fξξ − γ f. (26)

By introducing the normal modes f(ξ, τ) = eστ+iθ ξ, the following dispersion relation is
obtained:

σ = −(θ2 − µ2) + µ4 − γ. (27)

Therefore, the trivial static solution, f = 0, is unstable when γ < µ4. Upon introducing
the small parameter ε� 1, the weakly nonlinear stability of the evolution equation can
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be investigated. To conduct the perturbation analysis around the linear solution, we
expand

γ = µ4 − ε γ1 − ε2 γ2, τ = ε2 η

and
f = ε f1 + ε2 f2 + ε3 f3 + · · ·

The O(ε) problem of equation (25) is described by

(f1)ξξξξ + 2µ2 (f1)ξξ + γ f1 = 0 (28)

whose period solution on the interval

(
−π
µ
,
π

µ

)
is f1 = cos(µ ξ). Because of the sec-

ular terms that are expected due to the linear part and the nonlinear terms, we will
apply the Poincaré-Lindstedt method [28] to obtain a uniformly valid periodic solution.
Substituting ν = ω ξ and expanding ω = 1 + ε ω1 + ε2 ω2 + · · · in equation (25) we obtain

ω4 fνννν + 2µ2 ω2 fνν + γ f = ω4[Γ (fν)2νν + (fν)2 fνν ]. (29)

Define the operator L (f) = fνννν+2µ2 fνν+µ4 f . The leading order problem is described
by

L (f1) = (f1)νννν + 2µ2 (f1)νν + µ4 f1 = 0 (30)

whose solution is f1 = cos(µ ν). The O(ε2) problem is described by

L (f2) = γ1 cos(µν) + µ4 cos(2µν). (31)

To remove the mixed-secular terms, we set γ1 = 0, that is, there is no subcritical insta-
bility. Thus, the solution of L (f2) = µ4 cos(2µν) is f2 = 1

9 cos(2µν). When proceeding
to the next order, the O(ε3) problem is described by

L (f3) =

[
γ2 − 4ω2

1 µ
4 − Γµ4

4
− 5µ4

9

]
cos(µν)− 20ω1 µ

4

9
cos(2µν)

+

[
Γµ4

4
+

5µ4

9

]
cos(3µν). (32)

To remove the secular term, we set γ2 − 4ω2
1 µ

4 − Γµ4

4
− 5µ4

9
= 0 and then we solve for

ω1 to get

ω1 = ±

√
γ2

4µ4
− Γ

16
− 5

36
.

Therefore, the solution of equation (32) is given by

f3 = −5ω1

36
cos(2µν) +

9Γ + 20

2916
cos(3µν). (33)

Thus, a uniformly valid steady state of equation (25) is given by

f = ε cos((1 + εω1)ξµ) + ε2
1

9
cos(2(1 + εω1)ξµ)

+ ε3
[
−5ω1

36
cos(2(1 + εω1)ξµ) +

9Γ + 20

2916
cos(3(1 + εω1)ξµ)

]
. (34)

Figure 5 shows the plot of the uniformly valid periodic solution of equation (25) as a
function of ξ for γ2 = 10 and µ = 0.7.
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Figure 5: A plot of the periodic solution of equation (25) as a function of ξ with γ2 = 10 and
µ = 0.7.
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Figure 6: The plot of the velocity Φ0 as a function of the depth Z with λ = −0.5 (dotted line),
λ = 0 (solid line) and λ = 0.5 (dashed line).
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Figure 7: The 2D plot of the growth rate σ as a function of the wave number θ and the Biot
number γ (left figure) and the 3D plot (right figure) with µ = 0.7.
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6 Discussion and Conclusion

In this paper, we studied the mathematical model that was proposed by Hill and Morad
[22]. That is, we considered an incompressible fluid-saturated porous layer bounded by
two infinite parallel plates. The Boussinesq approximation and Darcy’s law are applied.
The permeability is assumed to be a linear function of the depth z, namely, F(z) = 1+λ z.
The base state of the model consists of a light free-carbon layer, [0, Z0), at the bottom and
a havier carbon-saturated layer, (Z0, 1], at the top, Figures 1 and 2 illustrate the problem.
Steady-state linear stability analysis is conducted and the critical Rayleigh-Darcy number

is obtained, namely, R0 =
6

L1(2Z0 + λZ2
0 )− (3z2) + 2λZ3

0 )
. If we let λ → 0, then the

critical Rayleigh-Darcy number becomes R0 =
2

Z0 − Z2
0

, which is consistent with the

value obtained in [17]. The relation between the critical Rayleigh-Darcy number and the
permeability coefficient λ is depicted in Figure 3.

The weakly nonlinear stability analysis is conducted by the long wavelength expansion
method and the evolution equation (23) is derived and analyzed. Figure 6 shows the
velocity, Φ0, as a function of the depth Z for different values of the permeability coefficient
λ.

Moreover, the dispersion equation is obtained and the relation between the growth
rate, the Biot number and the wave number is depicted in Figure 7 and a uniformly valid
periodic solution is obtained by the application of the Poincaré-Lindstedt method. The
plot of this periodic solution is shown in Figure 5.
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Abstract: Dynamic and non-dynamic reliability systems play an important role in
industry, manufacturing, safety engineering and quality. The most commonly used
models in the parametric statistical reliability analysis are the exponential, Weibull,
inverted Weibull, lognormal, Lindley and Raleigh ones as well as their generalizations.
In certain engineering applications such as the distribution of repair time and the dis-
tribution of delay time, it is found that the Ailamujia model is a suitable alternative
compared to other models. This work considers system reliability analysis of the
Ailamujia model, in which different reliability measures were computed. The combi-
nations of additive failure rate models associated with the Ailamujia distribution were
derived, they include the exponential, Weibull, Frechet and Raleigh distributions.

Keywords: Ailamujia distribution; stress strength model; reliability; additive rate
model.
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1 Introduction

The lifetime of equipment or apparatus is a random time from the beginning of the
operation until the appearance of a complete failure. Reliability is the ability of a system
to perform its stated purpose adequately for a specified period of time under specified
operational conditions. The system defined here could be an electronic or mechanical
hardware product, a software product, a manufacturing process or even a service. For
example, in case of a mechanical system, a failure is a breakdown of some of its parts or
an increase in vibration above the permitted level. One of the most dangerous failures
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of a nuclear reactor is a leak of radioactive material. The reliability characteristics are
usually expressed in terms of the lifetime.

Modeling and analyzing lifetime data are important issues in many disciplines includ-
ing medicine, engineering, industry, quality control and finance, etc. Different lifetime
data can be represented by several well-known continuous probability distributions such
as exponential, Lindley, Weibull, lognormal, and Frechet as well as their generalizations.
The Ailamujia distribution is a newly proposed lifetime model that has many engineering
applications [1]. In some practical applications such as the distribution of repair time
and the distribution of delay time, it is found that the Ailamujia model is a convenient
one compared to other models. Lv et. al. [2] studied the different properties including
mean, variance, and median and maximum likelihood estimators. This distribution has
also been investigated for the interval estimation and the hypothesis [3]. The minimax
estimation of the Ailamujia model parameter has been discussed under a non-informative
prior using three loss functions [4].

The probability density function of the Ailamujia distribution is given by

f(x, θ) = 4θ2xe−2θx; x ≥ 0, θ > 0, (1)

while the corresponding cumulative distribution function is given as

F (x, θ) = 1 − (1 + 2θx)e−2θx; x ≥ 0, θ > 0, (2)

where θ is the unknown parameter. It can be easily concluded that

E(X) =
1

θ
and σ2 =

1

2θ
.

The maximum likelihood estimator for θ is given by

θ̂ =
n∑n
i=1 xi

. (3)

The survival function and failure rate are, respectively, given by

r(x) = (1 + 2θx)e−2θx, (4)

h(x) =
4θ2x

1 + 2θx
. (5)

The reliability of the system is given by

R(t) = exp
{
−
∫ t

0

h(x)dx
}
. (6)

Having in mind that∫ t

0

h(x)dx =

∫ t

0

4θ2x

1 + 2θx
dx = 2θt− ln (2θt+ 1), (7)

the reliability can be expressed as

R(t) = e−
∫ t
0

4θ2x
1+2θxdx = (2θt+ 1)e−2θt. (8)

The time to failure can be expressed as
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F (t) = 1 − (1 + 2θx)e2θx. (9)

There is a wide application of the mean residual life function in reliability and survival
analysis (see [5–8] ). The mean residual life function for the Aijamujia distribution is
given by

e(t) =

∫∞
t
R(x)dx

R(t)
(10)

=

∫∞
t

(1 + 2θx)e−2θxdx

R(t)
(11)

=
te−2θt + (1+θt)

θ e−2θt

(1 + 2θt)e−2θt
=

1 + θt

θ(1 + 2θt)
. (12)

The following section explains the stress-strength model using the Ailamujia model,
while the derivation of additive failure rate models is followed, where the Ailamujia failure
rate model is combined with every one of the Ailamujia, exponential, Weibull, Frechet,
and Raleigh distributions.

2 Stress-Strength Reliability

The stress-strength reliability describes the life of a component which has a random
strength subjected to a random stress. When the stress applied to the component ex-
ceeds the strength, the component fails instantly and the component will not function
satisfactorily. Therefore, there is a measure of component reliability known as a stress-
strength parameter. The stress-strength reliability has wide applications in almost all
areas, especially in engineering including structures, deterioration of rocket motors, static
fatigue of ceramic components, aging of concrete pressure vessels etc. Beg and Singh [9]
gave estimation of P (X > Y ) for the Pareto distribution. Maroof and Islam [10] studied
the Bayesian estimation of a system reliability when the stress and strength follow the Lo-
max distribution. Nandi and Aich [11] have shown that Reliability (R) can be obtained as
the Laplace transform of the stress. Also, Kotz et. al. [1] investigated the generalization
of the stress-strength model. Their main findings are summarized as follows.

Let X and Y be two non-negative and continuous random variables having densities
f(x) and g(y), respectively. If X and Y are independent, then the probability that Y
exceeds X is given as [1]

R = P (Y > X) =

∫ ∞
0

xf(x)
[ ∫ ∞

1

g(vx)dv
]
dx. (13)

Theorem 2.1 Let the random stress X and the random strength Y be two indepen-
dent Ailamujia distributions with probability density functions given by

f(x, θ) = 4θ21xe
−2θ1x;x ≥ 0, θ1 > 0,

f(y, θ) = 4θ22ye
−2θ2x; y ≥ 0, θ2 > 0,

then the system reliability, R = P (Y > X), is

R = P (Y > X) =
θ21(θ1 + 3θ2)

(θ1 + θ2)
.
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Proof : It is given that

R = P (Y > X) =

∫ ∞
0

xf(x)
[ ∫ ∞

1

4xθ22ve
−2θ2xvdv

]
dx (14)

= P (Y > X) =

∫ ∞
0

xf(x)[I]dx, (15)

where

I =

∫ ∞
1

4xθ22ve
−2θ2xvdv.

Then we evaluate the integral I:

I = 2θ2

∫ ∞
1

2θ2xve
−2θ2xvdv.

Integration by parts can be used which gives

I = 2θ2

∫ ∞
0

2θ2xve
−2θ2xvdx (16)

= 2θ2

{[
− ve−2θ2xv

]∞
1

−
∫ ∞
1

e−2θ2xvdv
}

(17)

= 2θ2

{[
− ve−2θ2xv

]∞
1

−
[ 1

−2θ2x
e−2θ2xv

]∞
1

}
(18)

= 2θ2

{
e−2θ2x +

1

2θ2x
e−2θ2x

}
(19)

=
1 + 2θ2x

x
e−2θ2x. (20)

Substitute (20) into (15):

R = P (Y > X) =

∫ ∞
0

xf(x)
[ (1 + 2θ2x)e−2θ2x

x

]
dx

=

∫ ∞
0

x(4θ21xe
−2θ1x)

[ (1 + 2θ2x)e−2θ2x

x

]
dx

= 4θ21

∫ ∞
0

xe−2θ1x
(

(1 + 2θ2x)e−2θ2x
)
dx

= 4θ21

[∫ ∞
0

xe−2(θ1+θ2)xdx+ 2θ2

∫ ∞
0

x2e−2(θ1+θ2)xdx

]

= 4θ21

[
1

2(θ1 + θ2)

∫ ∞
0

2(θ1 + θ2)xe−2(θ1+θ2)xdx

+
2θ2

2(θ1 + θ2)

∫ ∞
0

2(θ1 + θ2)x2e−2(θ1+θ2)xdx

]

= 4θ21

[
1

2(θ1 + θ2)

1

2(θ1 + θ2)
+

2θ2
(θ1 + θ2)

2

4(θ1 + θ2)2

]

= θ21

[ 1

(θ1 + θ2)2
+

2θ2
(θ1 + θ2)3

]
=
θ21(θ1 + θ3)

(θ1 + θ2)3
.
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3 Additive Failure Rate Models

More attention is given to the reliability of a combination of two failure rate mod-
els for a system with two components that function independently. Assume X1

and X2 with respective failure densities, failure probabilities and failure rates being
f1(x), f2(x);F1(x), F2(x);h1(x), h2(x), then the system reliability is given by

R(t) = Exp

{
−
∫ t

0

[h1(x) + h2(x]dx

}
.

It is then possible to obtain the failure density and the failure rate of the series system
whose reliability is given by (1). Different options have been considered in the literature
regarding h1(x) and h2(x) [12–15].

The following subsections describe derivation of the additive failure rate models as
related to the Ailamujia distribution.

3.1 Ailamujia-Ailamujia failure rate model

The Ailamujia distribution with parameter θ1 for h1(x) and the Ailamujia distribution
with parameter θ2 for h2(x) are selected.∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ t

0

4θ21x

1 + 2θ1x
dx+

∫ t

0

4θ22x

1 + 2θ2x
dx

= 2θ1t− ln (2θ1t+ 1) + 2θ2t− ln (2θ2t+ 1)

= 2(θ1 + θ2)t− ln
2θ1t+ 1

2θ2t+ 1
.

Then the reliability function of the system can be written as

R(t) = e
−
(
(2(θ1+θ2)t−ln 2θ1t+1

2θ2t+1

)
=

2θ1t+ 1

2θ2t+ 1
e−2(θ1+θ2)t

and the probability density of the Ailamujia-Ailamujia failure rate model (AAFRM) is
given by

f(t) = − d

dt
R(t) = 2(θ1 + θ2)

2θ1t+ 1

2θ2t+ 1
e−2(θ1+θ2)t − 2θ1 + θ2

(2θ2t+ 1)2
e−2(θ1+θ2)t.

3.2 Ailamujia-exponential failure rate model

The probability density, cumulative distribution, and hazard functions of the exponential
distribution are respectively given by

f(x) = λe−λx ; x > 0, λ > 0,

F (x) = 1 − e−λx ; x > 0, λ > 0,

R(x) = e−λx and h(x) = λ.
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The Ailamujia distribution is selected with parameter θ for h1(x) and the exponential
distribution for h2(x). ∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ 1

0

4θ2x

1 + 2θx
dx+

∫ t

0

λdx

= (2θ + λ)t+ ln (2θt+ 1)

and the reliability function of the system can be written as

R(t) = e−[(2θ+λ)t+ln 2θt+1] = (2θt+ 1)e−(2θt+λ)t

and the probability density of the Ailamujia-Ailamujia failure rate model (AAFRM) is
given by

f(t) = − d

dt
R(t) = (4θ2t+ 2θλt+ λ)e−(2θt+λ)t.

3.3 Ailamujia-Weibull failure rate model

The probability density, cumulative distribution, and hazard functions of the Weibull
distribution are respectively given by

f(x) = λαxα−1 ; x > 0, λ > 0, α > 0,

F (x) = 1 − e−λx
α

; x > 0, λ > 0, α > 0,

R(x) = e−λx
α

and h(x) = λαxα−1.

The Ailamujia distribution was selected for h1(x) and the Weibull distribution for
h2(x). ∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ 1

0

4θ2x

1 + 2θx
dx+

∫ t

0

λαxα−1dx

= 2θt− ln (2θt+ 1) + λtα.

Then the reliability function of the system can be written as

R(t) = e−(2θt−ln 2θt+1+λtα) = (2θt+ 1)e−(2θt+λt
α)

and the probability density of the Ailamujia-Weibull failure rate model (AWFRM)
is given by

f(t) = − d

dt
R(t) = (4θ2t+ 2θλαtα + λαtα−1)e−(2θt+λt

α).
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3.4 Ailamujia-Frechet failure rate model

The probability density, cumulative distribution, and hazard functions of the Frechet
distribution are respectively given by

f(x) = λαx−(α+1) ; x > 0, λ > 0, α > 0,

F (x) = 1 − e−λx
−α

; x > 0, λ > 0, α > 0,

R(x) = e−λx
−α

and h(x) = λαx−(α+1).

The Ailamujia distribution was selected for h1(x) and the inverted Weibull distribu-
tion for h2(x). ∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ 1

0

4θ2x

1 + 2θx
dx+

∫ t

0

λαx−(α+1)dx

= 2θt− ln (2θt+ 1) − λt−α

= (2θt− λt−α) − ln (2θt+ 1).

Then the reliability function of the system can be written as

R(t) = e−((2θt−λt
−α)−ln (2θt+1) = (2θt+ 1)e−(2θt+λt

−α)

and the probability density of the Ailamujia-Frechet failure rate model (AFFRM) is
given by

f(t) = − d

dt
R(t) = (4θ2t+ 2θλαtα−1 + λαtα−1)e−(2θt+λt

α).

3.5 Ailamujia-Raleigh failure rate model

The probability density, cumulative distribution, and hazard functions of the Raleigh
distribution are respectively given by

f(x) = 2β2xe−(βx)
2

; x > 0, β > 0,

F (x) = 1 − e−(βx)
2

; x > 0, β > 0,

R(x) = e−(βx)
2

and h(x) = β2x.

The Ailamujia distribution was selected for h1(x) and the Raleigh distribution for
h2(x). ∫ t

0

h(x)dx =

∫ t

0

[h1(x) + h2(x)]dx

=

∫ 1

0

4θ2x

1 + 2θx
dx+

∫ t

0

2β2xdx

= 2θt− ln (2θt+ 1) + βt2.

Then the reliability function of the system can be written as
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R(t) = e−(2θt−ln (2θt+1)+β2t2) = (2θt+ 1)e−(2θt+β
2t2)

and the probability density of the Ailamujia-Raleigh failure rate model (ARFRM) is
given by

f(t) = − d

dt
R(t) = 2(2θβ2t2 + 2θ2t2 + β2t)e−(2θt+β

2t2).

These findings suggest further research involving estimation of parameters of the
failure rate distributions, testing of hypothesis and the power likelihood ratio criterion
for the proposed models and apply the proposed failure rate models to certain real lifetime
data sets.

4 Conclusion

System reliability measures were derived where the failure data follow the Ailamujia
distribution. The system reliability is estimated at the conditions where the applied
stress and strength follow the Ailamujia distribution. The combinations of the Ailamujia
distribution and every one of well-known reliability distributions are developed. The
additive failure rate model of the Ailamujia distribution and every one of the Ailamujia,
exponential, Weibull, Frechet, and Raleigh distributions were derived.
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1 Introduction

The analysis of vibrations in a mechanical system is very crucial to engineers because
neglecting the vibrations in a system can result into wears, tears, and an eventual system
breakdown. It can be observed that from a cell to a community of organisms, from an
atom to galaxies, oscillatory processes are a fundamental characteristic of all organic and
inorganic nature [1]. This makes the philosophic significance of the science of vibrations
absolutely necessary [1]. The bodies in the nano-scale dimensions are not exempted from
these studies. Morikazu Toda studied and proposed the well-known Toda lattice. His
proposed lattice is one-dimensional and has nonlinear interactions that were described
by a potential having one exponent [2]. His results and subsequent findings were later
published as a book [3].

In this paper, we will construct a nanochain, described as a continuum containing
an attachment of infinite atoms, using Hamilton’s principle. The finite-difference scheme
and Maclaurin series can also be used to formulate the governing PDE. The disadvantage
of the former is that the Lagrangian formalism automatically conserves energy. The
interaction potential between the atoms in the continuum is chosen as the Generalized
Morse potential. The potential is one of the hybrid forms of the Morse potential [4].

The exact solution of the governing second-order PDE to be formulated, is very dif-
ficult to obtain. Hence, the method of lines (MOL) will be used to obtain a numerical
solution of the governing PDE. The MOL details the conversion of a PDE into a coupled
system of ODEs using the discretisation of the space variable. This conversion is nec-
essary because most computer algebra softwares have built-in algorithms for effectively
solving a system of ODEs [5,6]. The MOL was first proposed, discovered and presented
by William Schiesser in [7]. Several other books have been published by him on the
subject (see [5, 8–12]).

2 Derivation of the Governing PDE and Boundary Conditions

Let us represent the Generalized Morse interatomic potential

UGM(r) = Āe−ᾱr − B̄e−β̄r, (1)

where Ā > B̄ > 0 and ᾱ > β̄ > 0 are constant parameters, in this form

UGM(r) = Ae−ᾱ(r−r̄) −Be−β̄(r−r̄), (2)

where A and B are new amplitude parameters. Indeed,

A = Āe−ᾱr̄ and B = B̄e−β̄r̄. (3)

Let us assume that the coordinate r̄ corresponds to the minimum of UGM(r) as presented
in Figure 1,
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Figure 1: Potential energy curve of Generalized Morse potential for gold atom.

where U ′GM(r = r̄) =
dUGM

dr

∣∣∣
r̄

= 0. We differentiate Equation (2) with respect to r at

the coordinate r = r̄
dUGM

dr

∣∣∣
r̄

= −ᾱA+ β̄B = 0. (4)

From Equation (3) and Equation (4), we obtain the coordinate of r̄

r̄ =
1

ᾱ− β̄
ln

(
ᾱĀ

β̄B̄

)
. (5)

By substituting Equation (5) into Equation (3), the following expressions are derived:

A = Ā exp

[
− ᾱ

ᾱ− β̄
ln

(
ᾱĀ

β̄B̄

)]
= Ā

(
ᾱĀ

β̄B̄

)− ᾱ
ᾱ−β̄

,

B = B̄ exp

[
− β̄

ᾱ− β̄
ln

(
ᾱĀ

β̄B̄

)]
= B̄

(
ᾱĀ

β̄B̄

)− β̄
ᾱ−β̄

. (6)

Let us consider a nonlinear chain of identical atoms (unit mass, m) in which the atoms
at equilibrium are located at the distance, r̄, with respect to each other, and assume that
the linear longitudinal displacement of the kth atom is uk = uk(t), where k = 1, 2, . . . , N
number of atoms in the chain. We only consider the interactions between the kth and
(k + 1)th or (k − 1)th and kth atoms.

It is reasonable to apply the variational principles to simultaneously derive the govern-
ing PDE and possible boundary conditions. We write the kinetic energy of the continuum
as

K =

∫ l

0

1

2
mu̇2dr, (7)

where the stress u̇ =
∂u(t, r)

∂t
and l is the length of the distributed chain. The potential

energy of the continuum is

P =

∫ l

0

(Ae−αu
′
−Be−βu

′
)dr, (8)
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where the strain u′ =
∂u(t, r)

∂r
. It should be noted that

α = ᾱr̄, β = β̄r̄. (9)

Hence, the Lagrangian of the continuum is L = K − P =

∫ l

0

Λdr, where Λ is the

Lagrangian density defined as

Λ = Λ(u̇, u′) =
1

2
mu̇2 − (Ae−αu

′
−Be−βu

′
). (10)

The explicit governing second-order PDE is

∂2u

∂t2
−
[
ā exp

(
−α∂u

∂r

)
− b̄ exp

(
−β ∂u

∂r

)]
∂2u

∂r2
= 0, (11)

where

ā =
α2A

m
=
ᾱ2A

m
r̄2, b̄ =

β2B

m
=
β̄2B

m
r̄2.

There are four possible different combinations of the boundary conditions, and we select
one of them, which is the fixed left end and the free right end

r = 0 : u(t, r = 0) = 0; r = l :
∂u

∂r

∣∣∣
r=l

= 0. (12)

See Appendix A and B for the derivation.

3 Applying the Method of Lines to Obtain the Numerical Approximation
of the Solution for the Governing PDE

The method of lines (MOL) is a semi-analytical approach that involves the conversion
of a PDE to a coupled system of infinite ODEs [13, 14]. The PDE is converted to a
coupled system of infinite ODEs by discretizing one of the spatial variables while using
an analytical solution for the other spatial variable [14]. The coupled system of infinite
ODEs can then be truncated to obtain a coupled system of finite ODEs.

For simplicity, we assume that r = l becomes r = 1. In our case, we discretize the
space variable r and use an analytical solution for the time variable t. The definitions
for the first-order and second-order centered-difference formulas are

∂uk(t)

∂r

∣∣∣
r=rk

=
1

2∆r
[uk+1(t)− uk−1(t)], (13)

∂2uk(t)

∂r2

∣∣∣
r=rk

=
1

∆r2 [uk−1(t)− 2uk(t) + uk+1(t)], (14)

where ∆r is the spacing between the discretized lines, and k = 1, 2, . . . , N − 1. Finally,

we write
∂2u(t, r)

∂t2
=
d2uk(t)

dt2
. These definitions are introduced into Equation (11) and

Equation (12) to obtain the coupled system of infinite second-order ODEs and new
boundary conditions (See Appendix C).

We have partially discretised the space variable, r, of the function, u(t, r), into a cou-
pled system of infinite ODEs whose unknown solutions are u1(t), u2(t), u3(t), . . . , uN−1(t),
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and we also converted the boundary conditions into initial conditions. It should be noted
that u0(t) = 0, uN (t) = uN−1(t) and k = 1, 2, . . . , N − 1. The infinitely coupled system
is truncated into a coupled system of finite ODEs, where N = 60, 75, 150. We select the

initial conditions as uk(0) = A sin
πk

2N
, where A is the amplitude of the wave solution

and u′k(0) = 0 for k = 1, 2, . . . , N − 1. The value of the amplitude determines how the
nonlinear terms in the continuum manifest themselves. We consider the initial condi-
tions, corresponding to the boundary conditions, at the first mode of vibration of the
linearized wave equation. The initial conditions for A = 1.75 are illustrated in Figure 2.

During the numerical simulations of the truncated system of ODEs, it was found
that A ∈ (0.0, 1.75]. We did not consider negative values of the amplitude, A, because
the negative values make the continuum oscillate in the opposite direction. The value
of the amplitude to be used depends on the number of the truncated coupled system
of finite ODEs to be numerically integrated. This is because the truncated coupled
system of ODEs becomes a stiff system (with higher values of A) and the computer
algebra software takes a lot of time in unsuccessfully integrating the problem. The time
integration of the numerical analysis for the coupled system of ODEs was carried out
within the interval t ∈ [0, 4π] seconds.

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

Figure 2: Graph of initial conditions, uk(0).

For convenience of numerical simulations, the parameters ā, b̄, α, and β were further
scaled to the new parameters

a =
ā

ā− b̄
∆r−2, b =

b̄

ā− b̄
∆r−2, ᾰ =

α

20r̄∆r
, β̆ =

β

20r̄∆r
.

We also defined the parameter values m = 197, A = 0.058, B = 0.174, and r̄ = 3.006174,
where we choose the molar mass of the gold atom as the unit mass. It should be noted
that ᾱ, β̄, Ā and B̄ have been calculated in [15,16].

3.1 Numerical analysis of truncated coupled ODEs

The numerical simulations for a grid of 60 points using the amplitude value A = 1.75
is shown in Figure 3. Then, bearing in mind that the higher the number of lines, the
more accurate the approximation, we consider the Equation (26) for higher grids, i.e.,
N = 75, 150 points, respectively. However, for higher number of lines, N > 150, the
numerically approximated solution of the governing PDE significantly deteriorates. The
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NDSolve framework of Wolfram Mathematica R©, student edition, version 12.0.0.0 was
used to numerically solve the truncated coupled system of ODEs. We also invoked the
“Adams” sub-method (for computational time efficiency) with no specified “Accuracy-
Goal” or “PrecisionGoal” values defined. The amplitude for all the numerical simulation
in Figure 3(a) to (d) was 1.75 and time interval t ∈ [0, 4π] seconds. In nonlinear acous-
tics, the trough of the wave solutions in continuum mechanics is skewed and triangle-like.
This was the case in Figure 3(d), which was also observed from Figure 3(b). In Figure
3(a), we see that the approximate solution for u1(t), is substantially deteriorated. This
was due to the high value of the amplitude, A, used for the numerical simulation. Figure
3(c) displays how nonlinear terms in the continuum are manifested.

See Figure 4(a) to (d) for the numerical simulations of an amplitude value 1.0 and the
number of grids having 75 points. Figure 4(b) and (e) reveals the wave troughs are still
triangle-like through the entire solution, although not as sharp as those in Figure 3(b) and
(e). The value of the amplitude is reasonable but still high. A comparison between Figure
3(b) and Figure 4(b) implies that the higher the value of the amplitude, the more skewed
the troughs become all through the wave solution. Surprisingly, Figure 4(a) presents a
symmetric solution as compared to Figure 3(a). This means the number of lines chosen
and the value of the amplitude used influence the reliability of the approximate solution
of the governing PDE.

For the next solution, we use an amplitude value of 0.04 and show numerical simula-
tion results for 150 grid points. The solution plots display perfect symmetric edges (from
a pictorial perspective) all through the wave solution. The effect of high amplitude is
clearly observed in the comparisons between Figure 3(b), Figure 4(b) and Figure 5(b).
The contour plots for Figure 3(b), Figure 4(b) and Figure 5(b) are each distinct because
different amplitude values were used and the number of lines was varied. The lines in the
contour plots clearly detail the manifestation of the nonlinear terms and the suppression
of the terms.

3.2 Analysis of the periodic motion of the wave solution

Now, we want to calculate the spectrum of a number of cosine and sine harmonics
using the Fourier coefficients for the right end of the continuum. We do this by taking
into consideration the solution, u149(t), interpolate the solution, find the zeros of the
solution using the LogPlot function of the absolute value for the interpolated function
(in Wolfram Mathematica R©), then we plot one period of the solution and integrate the
plotted function from 0 to 2π in order to obtain the desired coefficients. Although the
Fourier series are well-known and used in longitudinal oscillations in crystals, vibrating
mechanical systems or in describing physical processes in which events recur in a regular
pattern [17, 18], we apply the knowledge to understand the manifestation of nonlinear
terms in the continuum of atoms.

Numerical simulations yielded the following harmonics for an amplitude value of 0.04:

c0 = 2.674036× 10−4,
c1 = −3.985559× 10−4, s1 = 3.9736× 10−2,
c2 = 1.318224× 10−4, s2 = 2.296953× 10−6,
c3 = 9.509503× 10−7, s3 = −8.771975× 10−5,
c4 = −1.256332× 10−6, s4 = 7.783809× 10−8,
c5 = −1.06498× 10−6, s5 = 1.434977× 10−5.

(15)
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Figure 3: (a) First solution plot, u1(t), of the truncated coupled ODEs for N = 60 points; (b)
Last solution plot, u59(t), of the truncated coupled ODEs for N = 60 points; (c) Contour plot
of the truncated coupled ODEs for N = 60 points; (d) Parametric plot of the truncated coupled
ODEs for N = 60 points; (e) Surface plot of the truncated coupled ODEs for N = 60 points.
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Figure 4: (a) First solution plot, u1(t), of the truncated coupled ODEs for N = 75 points; (b)
Last solution plot, u74(t), of the truncated coupled ODEs for N = 75 points; (c) Contour plot
of the truncated coupled ODEs for N = 75 points; (d) Parametric plot of the truncated coupled
ODEs for N = 75 points; (e) Surface plot of the truncated coupled ODEs for N = 75 points.

Numerical simulations for an amplitude value of 0.25 yielded the following harmonics:

c0 = 9.945892× 10−3,
c1 = −1.4423× 10−2, s1 = 2.41632× 10−1,
c2 = 4.65619× 10−3, s2 = 5.031898× 10−4,
c3 = 8.796602× 10−5, s3 = −2.461517× 10−3,
c4 = −2.389894× 10−4, s4 = 1.930631× 10−5,
c5 = −5.048646× 10−5, s5 = 2.905531× 10−4.

(16)
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Figure 5: (a) First solution plot, u1(t), of the truncated coupled ODEs for N = 150 points; (b)
Last solution plot, u149(t), of the truncated coupled ODEs for N = 150 points; (c) Contour plot
of the truncated coupled ODEs for N = 150 points; (d) Surface plot of the truncated coupled
ODEs for N = 150 points.

Numerical simulations for an amplitude value of 1.0 yielded the following harmonics:

c0 = 1.37004× 10−1,
c1 = −1.81718× 10−1, s1 = 8.61703× 10−1,
c2 = 4.5512× 10−2, s2 = 2.3806× 10−2,
c3 = 1.0145× 10−2, s3 = −3.7237× 10−2,
c4 = −1.0638× 10−2, s4 = −4.446461× 10−3,
c5 = −3.749745× 10−3, s5 = 8.400466× 10−3.

(17)
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Figure 6: Zeros of interpolated function for u149(t) solution.
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Figure 7: Plot of one period.

The numeric values in the respective harmonics for the respective amplitude show that
the sine and cosine harmonics increase as the value of the amplitude is increased. This
is therefore a substantial (and more reliable) measure of how nonlinear interactions in
the continuum of gold atoms manifest. Although the simulation plots for amplitude
values 0.25 and 0.04 will appear to be perfectly smooth, the calculation of the Fourier
coefficients helps us to understand (by numerical computations) how the nonlinear terms
are changing.

4 Discussion and Summary

A continuum describing an attachment of infinite atoms was theoretically investigated.
The nonlinear interactions in the nanochain were described by the Generalized Morse
potential energy function. A governing second-order PDE was derived using Hamilton’s
principle and the corresponding boundary conditions were also formulated. The MOL
was employed to obtain approximate solutions of the continuum because of the PDE’s
complexity. The contour plots indicate how the nonlinear terms in the continuum are
manifested or suppressed.

This study can be used as an example to understand the fast building of slender
nanostructures/nanochain or one-dimensional lattices. This can be done by taking into
consideration the dynamics which includes fast growing amplitudes and the manifestation
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of nonlinear growth of nonlinear effects due to the large amplitudes of vibration as well
as manifestation of nonlinear quadratic terms in the potential function.

It was generally observed that the waves motion towards the right end of the con-
tinuum became more skewed for increasing values of A. The formation of the sharp
corners in longitudinal displacement (see Figures 3(b) and 4(b)) means the formation of
discontinuity in the radial strain (which is equal to the derivative of displacement with
respect to longitudinal coordinate). The strain discontinuity forms the stress discon-
tinuity (Hooke’s law). In continuous structures, the stresses must change continuously:
“stress × area = applied force”, but “action = reaction” due to Newton’s third law. This
means, at fast growth and oscillations, the long nanochains demonstrate the tendency
for disruption. We can interpret this to be one of fundamental properties of asymmetry
of the interatomic potentials, not only for the Morse potential investigated in this study.
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A Derivation of explicit governing equation for the continuum

We introduce the functional of action

I =

∫ t

0

Ldτ =

∫ t

0

∫ l

0

Λdrdτ, (18)

and the variation of the functional of action

δI =

∫ t

0

δLdτ =

∫ t

0

∫ l

0

δΛdrdτ. (19)

We know that

δΛ(u̇, u′) =
∂Λ

∂u̇
δu̇(t, r) +

∂Λ

∂u′
δu′(t, r). (20)

Now, we can write

δΛ(u̇, u′) =
∂

∂t

[
∂Λ

∂u̇
δu(t, r)

]
− ∂

∂t

(
∂Λ

∂u̇

)
δu(t, r) +

∂

∂r

[
∂Λ

∂u′
δu(t, r)

]
− ∂

∂r

(
∂Λ

∂u′

)
δu(t, r).

(21)

Hamilton’s principle at the stationary point is applied, i.e., δI = 0 while bearing in mind
that δu(t, r) = 0 at the limits of integration, τ ∈ [0, t]

δI =

∫ t

0

[
∂Λ

∂u′
δu(t, r)

]l
0

dτ −
∫ t

0

∫ l

0

[
∂

∂t

(
∂Λ

∂u̇

)
+

∂

∂r

(
∂Λ

∂u′

)]
δu(t, r)drdτ = 0. (22)

Since δu(t, r) is arbitrary, the fundamental lemma of calculus of variations requires that
δI = 0 if and only if

∂

∂t

(
∂Λ

∂u̇

)
+

∂

∂r

(
∂Λ

∂u′

)
= 0,

[
∂Λ

∂u′
δu(t, r)

]r=l
r=0

= 0.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 21 (2) (2021) 202–215 213

The Euler-Lagrange equation presented in terms of the Lagrangian density (i.e., an im-
plicit form of the Euler-Lagrange equation) is

∂

∂t

(
∂Λ

∂u̇

)
+

∂

∂r

(
∂Λ

∂u′

)
= 0,

and possible boundary conditions for the continuum are

r = 0 : [δu(t, r)]r=0 = 0 or

[
∂Λ

∂u′

]
r=0

= 0,

r = l : [δu(t, r)]r=l = 0 or

[
∂Λ

∂u′

]
r=l

= 0. (23)

We recall Equation (10) to obtain the expressions

∂

∂r

(
∂Λ

∂u′

)
=
∂

∂r
[−αA exp(−αu′) + βB exp(−βu′)]

=

[
α2A exp

(
−α∂u

∂r

)
− β2B exp

(
−β ∂u

∂r

)]
∂2u

∂r2
,

∂

∂t

(
∂Λ

∂u̇

)
=
∂

∂t
(mü) = m

∂2u

∂t2
. (24)

B Derivation of boundary conditions

Before writing the explicit boundary conditions, let us remark that

∂Λ

∂u′
= −αA exp(−αu′) + βB exp(−βu′),

but from Equation (4), ᾱA = β̄B and hence, αA = βB. This means that
∂Λ

∂u′
= 0 if and

only if
∂u

∂r
= 0. The explicit boundary conditions are then obtained from Equation (23)

r = 0 : u(t, r = 0) = 0 or
∂u

∂r

∣∣∣
r=0

= 0,

r = l : u(t, r = l) = 0 or
∂u

∂r

∣∣∣
r=l

= 0. (25)

C Formulation of coupled system of infinite ODEs

Introducing definitions (13) and (14) into Equation (11) and Equation (12), we will obtain
the coupled system of infinite second-order ODEs

d2uk(t)

dt2
−
{
ā exp

(
− α

2∆r
[uk+1(t)− uk−1(t)]

)
− b̄ exp

(
− β

2∆r
[uk+1(t)− uk−1(t)]

)}

× 1

(∆r)2
[uk−1(t)− 2uk(t) + uk+1(t)] = 0, (26)
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and the new boundary conditions

r = 0 : uk(0) = 0, (27)

r = 1 :
∂u(t, r)

∂r

∣∣∣
r=rN

= 0. (28)

At the boundary, r = 1, Equation (13) is replaced by the backward-difference (or implicit
difference) method

∂uk(t)

∂r

∣∣∣
r=rk

=
1

2∆r
[uk(t)− uk−1(t)]. (29)

Evaluating Equation (29) at r = rN and comparing with Equation (26) give the expres-

sion
1

2∆r
[uN (t)− uN−1(t)] = 0. This simply means uN (t) = uN−1(t).
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Abstract: This paper is concerned with the topic of chaos control in fractional maps.
It presents two linear control laws to stabilize the dynamics of a new three-dimensional
fractional Hénon map. The chaos control has been achieved by proving a new theorem,
based on a suitable Lyapunov function and a linear method. Finally, numerical
simulations have been carried out to highlight the effectiveness of the proposed control
method.
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1 Introduction

Recently, researchers have diverted their attention to the discrete-time case of fractional
calculus and attempted to put together a complete theoretical framework for the sub-
ject [1]. Perhaps one of the earliest works is that of Diaz and Olser [2]. Successively,
several types of discrete operators have been proposed, including some fractional h-
difference operators, which represent further generalizations of the fractional difference
operators [3–5]. Furthermore, numerical formulas and stability conditions corresponding
to fractional difference systems can be found in [6,7]. Most recently, some advances have
been made in the applications of discrete fractional calculus [8]. The introduction of dif-
ferent discrete fractional operators has led to the publication of several papers regarding
the chaotic behaviors of fractional nonlinear maps [9–17].
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Dynamics and control of fractional-order chaotic systems have received considerable
attention over the last few years [18,19]. So far, nonlinear control laws have been mainly
used for controlling at zero the chaotic dynamics of new three-dimensional fractional
maps. Some interesting results have been recently published regarding this challenging
topic [20–24]. For example, in [20], nonlinear control methods for some three-dimensional
fractional chaotic maps (i.e., the Stefanski map, the Rössler map and the Wang map)
have been studied. In [21], a novel control law for stabilizing a new three-dimensional
fractional Hénon map has been proposed. In [22], the fractional-order Grassi–Miller
chaotic map has been stabilized via nonlinear controllers. In [23], a control scheme to
control hidden chaotic attractors in a new fractional map has been illustrated. In [24],
the chaotic behavior of a new three-dimensional fractional map with no equilibrium has
been studied along with a control method that exploits the stability properties of linear
fractional discrete systems.

It is worth noting that all the control methods developed so far for fractional chaotic
maps have exploited nonlinear control laws. This work aims to provide a contribution
to the topic by presenting a very simple linear control law to control chaotic dynamics of
the well-known fractional generalized Hénon map. This map is defined via the Caputo
h-difference operator. The asymptotic convergence of the states is established using the
Lyapunov method. The paper is organized as follows. In Section 2, some basic notions
of the Caputo h-difference operator and discrete fractional calculus are introduced. In
Section 3, a novel control result is proved which enables the dynamics of the three
dimensional fractional Hénon map to be controlled by a two-dimensional linear control.
Finally, simulation results are reported through the paper, with the aim to show the
effectiveness of the proposed approach.

2 Basic Tools

In this section, some basic concepts related to the Caputo h-difference operator are briefly
summarized.

Definition 2.1 [4] Let X : (hN)a → R and 0 < ν be given. a is a starting point.
The ν–th order h–sum is given by

h∆−ν
a X (t) =

h

Γ (ν)

t
h−ν∑
s= a

h

(t− σ (sh))
(ν−1)
h X (sh) , σ (sh) = (s+ 1)h, a ∈ R, t ∈ (hN)a+νh ,

(1)
where the h–falling factorial function is defined as

t
(ν)
h = hν

Γ
(
t
h + 1

)
Γ
(
t
h + 1− ν

) , t, ν ∈ R,

where (hN)a+(1−ν)h = {a+ (1− ν)h, a+ (2− ν)h, ...} .

Definition 2.2 [5] For X (t) defined on (hN)a a and 0 < ν, ν /∈ N , the Caputo–like
difference is defined by

C
h ∆ν

aX (t) = ∆−(n−ν)
a ∆nX (t) , t ∈ (hN)a+(n−ν)h , (2)

where ∆X (t) = X(t+h)−X(t)
h and n = dνe+ 1.
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Now a theorem reported in [25] is briefly illustrated, with the aim to identify the
stability conditions of the zero equilibrium point for the fractional nonlinear difference
system written in the form

C
h ∆ν

aX (t) = f (t+ νh,X (t+ νh)) , (3)

where X (t) = (x1 (t) , x2 (t) , ..., xn (t))
T
, t ∈ (hN)a+(1−ν)h and f is a nonlinear function.

Theorem 2.1 Let x = 0 be an equilibrium point of the nonlinear discrete fractional
system (3). If there exists a positive definite and decrescent scalar function V (t,X (t))
such that Ch ∆ν

aV (t,X (t)) ≤ 0, t ∈ (hN)a+(1−ν)h , then the equilibrium point is asymp-
totically stable.

In the following, a useful inequality for Lyapunov functions is introduced.

Lemma 2.1 [25] For any discrete time t ∈ (hN)a+(1−ν)h , 0 < ν ≤ 1, the following
inequality holds

C
h ∆ν

a

(
XT (t)X (t)

)
≤ 2XT (t+ νh)

C
h ∆ν

aX (t) . (4)

3 The Three-Dimensional Fractional Generalized Hénon Map

Recently, a new three-dimensional fractional Hénon map with Lorenz-like attractors has
been proposed in [26]. This map is an example of a fractional discrete–time system
with the ν Caputo–like operator that can display chaotic behavior. In the following, by
adopting the Caputo h-difference operator we described the fractional generalized Hénon
map as

C
h ∆ν

ax (t) = M1 +Bz (t+ νh) +M2y (t+ νh)− x2 (t+ νh)− x (t+ νh) ,
C
h ∆ν

ay (t) = x (t+ νh)− y (t+ νh) ,
C
h ∆ν

az (t) = y (t+ νh)− z (t+ νh) ,
(5)

where x, y, z are the states of the fractional map (5) and M1,M2 and B are parameter
values, with t ∈ (hN)a+(1−ν)h.

To study the properties of the fractional generalized Hénon map (5), the following
discrete numerical solution is defined based on the h-fractional sum (1) as

x (n+ 1) = x0 + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1)

(
M1 +Bz (j + 1) +M2y (j + 1)− x2 (j + 1)

−x (j + 1)) ,

y (n+ 1) = y0 + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (x (j + 1)− y (j + 1)),

z (n+ 1) = z0 + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (y (j + 1)− z (j + 1)),

(6)
where x0, y0 and z0 are initial states. According to the discrete equation (6), the fractional
generalized Hénon map (5) has memory effects, which means that the implicit solution
is determined by all the previous states with the state x(n+ 1), y (n+ 1) and z (n+ 1).
Considering parameter values M1 = 1.4, M2 = 0.2 and varying B from 0 to 0.3, the
resulting bifurcation diagram and the largest Lyapunov exponents are depicted in Figure
1 with fractional order ν = 0.98. Different dynamic behaviors including chaos periodic
windows are observed in the fractional generalized Hénon map (5). From this, it can
be seen that the system has the positive largest Lyapunov exponent when B takes the
smallest values, indicating that the system has indeed a chaotic attractor, as shown in
Figure 1(a) for B = 0.1.
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Figure 1: Numerical simulation of the fractional generalized Hénon map for the fractional order
value ν = 0.98. (a) The chaotic attractor for M1 = 1.4, B = 0.1. (b) The bifurcation diagram
versus B. (c) The corresponding largest Lyapunov exponents diagram.
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4 Two-Dimensional Chaos Control Law

In this section, by exploiting a novel theorem based on a suitable Lyapunov function,
a two-dimensional linear control law is illustrated, with the aim to control the chaotic
dynamics of the three-dimensional fractional Hénon map. To obtain our results, the
following theorem is presented.

Theorem 4.1 The three-dimensional fractional Hénon chaotic map is controlled un-
der the following linear two-dimensional control law:{

C1 = −lx (t)− (M2 + 1) y (t)−Bz (t)−M1,
C2 = −z (t) ,

(7)

where |x (t)| ≤ l, for t ∈ (hN)a+(1−ν)h .

Proof. The controlled fractional Hénon chaotic map involves the time–varying con-
trol law (C1,C2)

T
and is given by

C
h ∆ν

ax (t) = M1 +Bz (t+ νh) +M2y (t+ νh)− x2 (t+νh)− x (t+νh) + C1 (t+νh) ,
C
h ∆ν

ay (t) = x (t+ νh)− y (t+ νh) + C2 (t+ νh) ,
C
h ∆ν

az (t) = y (t+ νh)− z (t+ νh) .
(8)

Substituting the proposed control law (7) into (8) yields the simplified dynamics
C
h ∆ν

ax (t) = −y (t+ νh)− x2 (t+ νh)− (l + 1)x (t+ νh) ,
C
h ∆ν

ay (t) = x (t+ νh)− y (t+ νh)− z (t+ νh) ,
C
h ∆ν

az (t) = y (t+ νh)− z (t+ νh) .
(9)

Now, by taking a Lyapunov function in the form

V =
1

2

(
x2(t) + y2(t) + z2 (t)

)
, (10)

it follows that

C
h ∆ν

aV =
1

2

C

h
∆ν
ax

2(t) +
1

2

C

h
∆ν
ay

2(t) +
1

2

C

h
∆ν
az

2(t), (11)

and by exploiting Lemma 1, we get

C
h ∆ν

aV ≤ x(t+ νh)Ch ∆ν
ax(t) + y(t+ νh)Ch ∆ν

ay(t) + z(t+ νh)Ch ∆ν
az(t)

= −x (t+ νh) y (t+ νh)− x3 (t+ νh)− (l + 1)x2 (t+ νh)

+y (t+ νh)x (t+ νh)− y2 (t+ νh)− y (t+ νh) z (t+ νh)

+z (t+ νh) y (t+ νh)− z2 (t+ νh)

= − (l + 1)x2(t+ νh)− y2(t+ νh)− z2(t+ νh)− x3 (t+ νh)

≤ − (l + 1)x2(t+ νh)− y2(t+ νh)− z2(t+ νh) + |x|x2 (t+ νh)

≤ − (l + 1)x2(t+ νh)− y2(t+ νh)− z2(t+ νh) + lx2 (t+ νh)

= −x2(t+ νh)− y2(t+ νh)− z2(t+ νh) < 0.

It can be concluded that the controlled states of the fractional Hénon chaotic map (5)
are stabilized at the origin by the two-dimensional linear control law (7).
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To verify the theoretical results obtained above, numerical simulations are preformed
using Matlab. We start by employing h-fractional sum (1) to obtain the numerical
formula of the controlled dynamical system (5). The parameter values are taken as
M1 = 1.4 and M2 = 0.2, B = 0.1 to ensure the existence of chaos. Figures 2 and 3 show
the states trajectories and the phase portrait, respectively, of the controlled fractional
map (5) when the fractional order value is taken as ν = 0.98. These plots clearly show
that the chaotic dynamics of the fractional map (5) are controlled to equilibrium point
(0, 0, 0) by control law (7).
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Figure 2: Phase portrait of the controlled fractional generalized Hénon map with ν = 0.98.
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Figure 3: Evolution of the controlled fractional generalized Hénon map with ν = 0.98.

5 Conclusion

Using linear control laws, this paper has studied the control of a new fractional chaotic
map. Specifically, the three-dimensional fractional Hénon map has been controlled by
a two-dimensional control law. All the results have been achieved by exploiting a new
linear control law based on the Lyapunov method as well as on the properties of the
Caputo h-difference operator. Note that, by virtue of the linearity of the control law
proposed herein, the conceived method for controlling the chaotic dynamics requires
less control effort with respect to the nonlinear techniques developed in literature to
date. Finally, simulation results have been presented to highlight the effectiveness of the
proposed approach.
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