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Abstract: This paper is devoted to the study of the theory of capacity in an
anisotropic Sobolev space WP(Q), where Q is a bounded set of RV(N > 2),
P = (po,p1,...,pn) with 1 < po,p1,....,pn < co. We will define the Cj 5 capacity
and prove its main properties, especially, it will be shown that Cj z defines a Cho-
quet capacity. To illustrate our results, we will present an application of this capacity.

Keywords: anisotropic Sobolev spaces; capacity; potential.

Mathematics Subject Classification (2010): 31C15.

1 Introduction

The theory of capacity and non-linear potential in the classical Lebesgue space LP(Q)
(1 < p < o0) was studied by Maz’ya and Khavin in [16] and Meyers in [18]. These
authors introduced the concept of capacity and non-linear potential in these spaces and
provided very rich applications in functional analysis, harmonic analysis, theory of partial
differential equations and theory of probabilities.

It has been developed specially by Adams [1], by Hedberg in |13], by Hedberg and
Wolff in |14] and others. The Sobolev capacity for constant exponent spaces has found a
great number of applications (see [12[15]) and, for example, Boccardo et al. [8] studied
the existence and non existence of solutions of the following problem:

—Au+u|VulP=p in Q,
(P){ u=0 on 09,

* Corresponding author: mailto:rachid.elharch@usmba.ac.ma
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where € is a bounded open set in RN, N > 2 and p is a radon measure on 2.

More precisely, the authors proved the existence of a solution w in Hg(2) for the
problem (P) if and only if the measure u does not charge the sets of capacity zero in Q.
Also, Kilpelainen [17] introduced the weighted Sobolev capacity and discussed the role
of capacity in the pointwise definition of functions in Sobolev spaces involving weights of
Muckenhoupt’s Ap-class. The previous concept was generalized by N. Aissaoui and A.
Benkirane in [2], by replacing LP with an Orlicz space. Later, this theory was studied by
M. C Hassib, Y. Akdim, A. Benkirane and N. Aissaoui in Musielak-Orlicz spaces (see [3]
and [4]).

The notion of capacity offers a standard way to characterize exceptional sets in various
function spaces. Depending on the starting point of the study, the capacity of a set can be
defined in many appropriate ways. A common property of capacities is that they measure
small sets more precisely than the usual Lebesgue measure. The Choquet theory [10]
provides a standard approach to capacities. Capacity is a necessary tool in both classical
and non-linear potential theory.

The main purpose of this paper is to study the theory of capacity in an anisotropic
Sobolev space W7(Q). Our results generalize those in [18] obtained in Lebesgue spaces,
in order to apply them to some problems of partial differential equations and harmonic
analysis.

The present paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge on the anisotropic Sobolev space and we recall main properties of
capacities. In Section 3, we define the C}, 7 -capacity in the anisotropic Sobolev space and
we show some of its properties. As an application of our results, we consider a variational
problem, where X is a subset of RY. We give a sufficient condition on the C,5 capacity
of X to ensure the existence and uniqueness of a C, 5 -capacitary distribution of X such
that the C} 5 -capacitary potential of X is greater than or equal to one.

2 Preliminaries

2.1 Anisotropic Sobolev spaces

Let © be an open bounded domain in RY (N > 2) with boundary 9.
Let 1 < po,p1,...,pN < 00, we denote

7= (po,p1,--pPN), Du=wand D'u= g~ fori=1,..,N.
The anisotropic Sobolev space W17(€Q) is defined as follows:
WLP(Q) = {u € LPo(Q) and D'u € LPi(Q2),i=1,..,N}.

We recall that the W1?(Q) is a separable and reflexive Banach space (see [19] )with

respect to the norm
N

lullwrs@= Y _IID"ullLri (o)
=0
We denoted - B
WP (Q) = {u € WHP(Q)\u > 0}.

The space Wol’ﬁ(ﬂ) is the closure of C§°(£2) with respect to this norm. The theory of
such anisotropic spaces was developed in [20-23]. Tt was proved that C5°(£2) is dense in

W, 7(2), and W, 7(Q) is a reflexive Banach space.
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For any p = (po, p1, -y PN), With 1 < p; < 00,7 =0,1,...... , N, the dual space of the
anisotropic Sobolev space I/VO1 P(Q) is equivalent to W17 (), where p = Py, Py - PN
and p} = Pl for all i = 0,1,...,,N.

pi— 1

Proposition 2.1 Let p € [1,400[ and (fy), be a sequence in (LP(p), ||.|[,) whose
series of norms Y || fullp converges. Then the series of functions Y fn converges for the

n n
norm .|l and we have |3 fullp< 2| fullp-
n n

Proof. For n € N* fixed, according to the inequality of Minkowski, we have

n +oo
<Y el Y Il
k=0 k=0

It follows from the monotone convergence theorem that

(/ (:Z:'f”)pdu); < gufknp.

n

Z\fﬂ

k=0

P

Thus,

—+o0 —+o00
Sfell <0,
k=0 k=0

Lemma 2.1 [see [9]] Let E be a Banach space. If (fy), converges weakly to f in E,
then the sequence || fn| is bounded and || f||< liminf]| f,||.

p

2.2 Capacity

Definition 2.1 Let E be a topological space and T' be the class of Borel sets in F,
and a function C' : T — [ 0,400 ].
1) The function C' is called a capacity if the following axioms are satisfied:
i) C(B) = 0.
HXCY=CX)<C{Y)forall X and Y in T.
iii) For all sequences (X,,) C T,

cJxn) <> C(X).

2) The function C' is called an outer capacity if, for all X € T,
C(X) =inf{C(0) : O D X, 0 is open }.
3) The function C is called an interior capacity if, for all X € T
C(X)=sup{C(K): K C X,K is compact}.

4) A property, that holds true except perhaps on a set of capacity zero, is said to be true
C-quasi everywhere (abbreviated C - g.e.).
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5) Let f and (f,) be real-valued finite functions C-q.e. We say that (f,,) converges to f
in C -capacity if

Ve > O’nli»rfoo C{x:|fu(x) — f(x)] >€})=0.

6) Let f and (f,) be real-valued finite functions C-q.e. We say that (f,) converges to
f C -quasi-uniformly (abbreviated C' -q.u) if (Ve > 0),(3X € T) : C(X) < ¢ and (f,)
converges to f uniformly on X°¢.

3 Capacity in Anisotropic Sobolev Spaces

3.1 ()} - capacity

Let k be a positive integrable function on RY and X C RY (N > 2). We denote
SHX)={f e W"P(Q): kxf>1on X},

where k * f is the convolution of k and f.
The anisotropic Sobolev p-capacity of X is defined by

CplX) = | inf {1l ().

In the case where Sy(X) = 0, we set C 5(X) = oo.

Functions f € Sz(X) are said to be p- admissible for the X.
The anisotropic p-capacity enjoys all relevant properties of general capacities, specifically,
it will be shown that Cj, 7(X) defines a Choquet capacity.

Theorem 3.1 The anisotropic Sobolev p-capacity Cy, 5 is an outer capacity.

Remark 3.1 Let By, 5(X) = inf{|| f[|w150): f € Wi’ﬁ(Q) and k* f > 1 on X}, then
Ci 5(X) = By 5(X).

Indeed, it is obvious that Cj 5(X) < By 5(X).

On the other hand, let f € WP(Q), then |f| € Wi’ﬁ(ﬂ), and if k* f > 1 on X, then
kx|f] >1on X, thus

By 5(X) < I fllwr5)-

Therefore,
By 5(X) < Cp 5(X).
A direct application of Proposition [2.1]is the following result.

Lemma 3.1 Let (f,), be a sequence in WYP(Q) whose series of norms

Yl fullwizq) converges. Then we have
n

||Z fullwir@ < Z”anWlﬁ(Q)'

Proof. (Theorem It is obvious that Cy 5(0) = 0 and Cj, 5(X) < Cy (V) if
X C Y. Let (X;) be a subset of RN. If > Cj, 5X;) = +oo, there is nothing to show.
i=0

1=

We may assume that
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oo
> Crp(X;) < 400, then (Vi € N) Cp 5(X;) < 400,
i=0

thus,

(Vi € N) (Ve > 0) (3f; € WP(Q)) so that k* f; > 1 on X;,

and we have

3

I fillwrr )< Crp(Xi) + 3T

Let f = supf;, we show that f € W}r’ﬁ(ﬂ). For all ¢ > 0, we have by Lemma

[sup fillw.r)< ||Z fillwrs)< ZHfi”Wlfﬁ(Q)-

i=0 i=0
Thus,

o0 o0
I fllwrr@< Z I fillwrr) < Z Cr5(Xi) +e.

i=0 i=0

This implies that f € Wi’ﬁ(Q). Since kx f > 1 on U X;, we deduce that

i>0
o0 o0
Ok,ﬁ(U Xi) < |[fllwrr) < Z Cy5(Xi) +e, forall e>0.
i=0 i=0

The claim follows by letting ¢ — 0.
Now, it remains only to verify that Cy, 5(X) is an outer capacity. Let X C R, we have

Ci 7(X) <inf{C} 5(0),0 D X, O is open}.

For the reverse inequality, if C, 5(X) = +o00, there is nothing to show.

Assume that Cj, 5(X) < 400 and 0 < € < 1, then there exists g € Wi’ﬁ(Q) so that
kxg>1on X and
lgllwrs)< Crp(X) +e.

We put g. = -L  and let the set O; = {z : (k* g-)(z) > 1}.

1—¢

Thus O. is open, and
1

Hence X C O.. On the other hand, we have Cy 5(O:) < [|gcllw1.7(q), and we deduce
that

1
1—¢

Ck ﬁ(os) <

b

lgllw70)< (Crp(X) +¢),Ve > 0.

1-¢
Thus,
inf{Cy 5(0),0 D X, 0 open} < Cj 5 X).
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Proposition 3.1 The anisotropic Sobolev p-capacity Cy, 5 verifies the following prop-
erties:
1) If there exists f € WYP(Q) such that |k x f| = +oo on X, then Cy 5(X) = 0.
2) If Cy, 5(X) = 0, then there exists f € Wj_’p(Q) such that k * f = 400.

Proof.
1) Let f € WYP(Q) be such that |k * f| = +00 on X, then for all a > 0, |k * f| > «
on X, thus,
C Il.f”wl,ﬁ(ﬂ)
ep(X) < —2 Ya > 0.
This means that
Crp(X)=0

2) If Cy 5(X) = 0, then (Vi € N) (3fi € WP(Q)) with k* f; > 1 on X
and ‘
I fillwrry< 27

Let f =5 f;. By Lemma we have
I lwerey< D I fillwrr@y< D> 27"

Then
I fllw.7 )< +oo.

We conclude that f € W}rﬁ(Q) such that k * f = 400 on X.

Theorem 3.2 Let f and (f,)n be in WHP(Q) and consider the following propositions:
i) fn — f strongly in WHP(Q).
i) k* fr, = kx f Cj z-capacity.
iii) There is a subsequence (fn;) such that k* f,, — k* f Cpp - q.u.
) k* (fn;) = k* fin Cyp.- g.e.
Then we have
i) = i1) = i) = v).

Proof.
o We show i) = ii).

By Proposition we have k * f and k * f,, are finite Cy 5 -q.e, for all n.
Let € > 0, then

o W= Fllwn()
£

Crp{z : |k* fr —kx f(z) > €})

o We show i) = ii).
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Let € > 0, there exists f,; such that

Crp{z: [k * fn, — k* fl(z) >279}) <e-277,
We put
Ej ={x: |k fo, —k* fl(x)} > 277} and Gy, = | Ej.
j=m

Then we have

~Gm)§25~2_j<5.

j=zm
On the other hand,
Vo € (Gn)o Vi >m |kx fn, —kx fl(x) <277, thus k* f,, > kx f Crp- qu.

o We show iii) = iv).

We have Vj € N,3X; : Cp5(X;) < % and  kx f,, — k* f converges uniformly on
(X;)¢. We put X = ﬂXj, then Cj, 5(X) =0 and k * f,, — k= f on X©.

Theorem 3.3 Let (K,,), be a decreasing sequence of compacts and K = (| K,,. Then

n

lim Cyp(K,) = Crp(K).

n=-+Foo
Proof. First, we observe that Cj, 5(K) < ngrfoo Ch.5(Kp).
On the other hand, let O be an open set that satisfies K C O; then
Knoc=0.
The sequence defined, for all n, K;L = K, NO° is a decreasing sequence of compacts and
satisfies ﬂ K,, = (). Then there exists ng such that K,/LO =0.

Hence Vn > ng K; =, then Vn > ng, K,, C O. Therefore,

lim Cy5(K,) < Cy 50).

n—-+4oo

Since C} 5 is an outer capacity, we have

m  Cp 5(Kn) < Cp p(K).

n——+o0o

Proposition 3.2 Let (f,),, f € W17ﬁ(Q) be such that f, — f weakly in leﬁ(Q),
then liminf(k * f,) < k= f <limsup(k = f,) Ckz-g.e.

Proof. Since WhP(Q) is a reflexive space, f, — f weakly in W17(Q), then by
the Banach-Saks theorem there is a subsequence denoted again by (f,) such that the
sequence g, = - Z fi converges to f strongly in W1?(Q).

By Theorem 3.2] . there is a subsequence of (g, ), denoted again (g, ), such that

lim (k*g,) =(kxf) Ciz—q.e

n——+o0o
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On the other hand,
liminf(k % f,) < lim (k*gp).

n—-+o0o

Therefore,

liminf(k* f,) < (k= f) Ciry—q.e.
For the second inequality, it suffices to replace f,, by (—f,) in the first inequality.

Theorem 3.4 If (X,), is an increasing sequence of sets and X = |J X,,, then

n

hm Ck,ﬁ(Xn) = Ck’ﬁ(X)

n—-+oo

Proof. First, we have lil}rl Crp(Xn) < Crp(X) .
n—-+0oo
For the reverse inequality, if 11111 Cy,5(X,,) = +00, there is nothing to show.
n—-+0oo

We assume that the sequence Cj, 7(X,,) converges to the finite £. Let f,, be p- admis-

sible for (X,,) such that
1
I fullwrr) < Crp(Xn) + - (1)

Since (f,,) forms a bounded sequence in W}r’ﬁ (Q), there exists a subsequence denoted

again (f,,) which converges weakly to a function f € W}r’ﬁ ().
We have by Proposition (3.2

VieN, kxf>1onX,, Cyz—q.e.

Therefore,
kExf>1onX,Crp—q.e. (2)

Let B be a subset of X where k* f > 1, then from and by Lemma we have

Crp(X) = Crp(B) < || fllLp <4, 3)

the desired result is now a simple consequence of .

Corollary 3.1 Let (E,), be a sequence of subsets of RY | then
Crp(liminf E,,) < liminf Cy 5(E,).

Proof. Let E = liminf F,,, we have E = ( N Ei>.

n “i>n
We put G, = [ Ej;, thus a sequence is increasing and by Theorem we have
i>n
Crp(E) = lm  Cpp(Gn).
Hence,
Ck’ﬁ(Gn) < Ck,ﬁ(En)-
Therefore,

Ckﬁ(E) S lim inf Ck,ﬁ(En).
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Definition 3.1 In the terminology of Choquet, C is called a capacity if it satisfies
the following four properties:

i) C(0) =0,
ii) C is increasing,

iii) If (E,) is an increasing sequence of sets, then sup C(X,,) = C (U Xn),

n
n

iv) If (K,,) is a decreasing sequence of compacts, then inf C(K,,) = C’(ﬂ K,).

n

Remark 3.2 By Theorems [3.1} 3.3 and 8.4, Cy 5 is a capacity in the sense of Cho-
quet.

Definition 3.2 Let C be a capacity in the sense of Choquet. A subset X C RY is
called capacitable if

C(X)=sup{C(K): K C X,K — compact}.
Theorem 3.5 All analytic sets are Cy, 5- capacitable.

Proof. 1t is an immediate consequence of the Choquet theorem in [11].

3.2 Application of a C}, 5 - capacity

In this subsection, we propose to study an application of C}, 5 capacities, more precisely,
we treat the following variational problem. -

Let X be a subset of RY such that Cy 5(X) < co. There exists fo € Wi’p(Q) such
that k * fo > 1 Ck 5 q.e on X, and

I follwsiy= t{|| flwrsqy: f € WP(Q) and k+f>1 on X}. (4)

Definition 3.3 We call a solution, fj, of problem a C}, 5 -capacitary distribution
of X and we call k* fy a C},  -capacitary potential of X.

Theorem 3.6 Let X be a subset of RN such that Cy 5(X) < 0o and denote by Qx
the set Qx = {f € Wi’p(Q) tkxf>1 Cpp(X) —ge on X}
Then there exists a unique fo € W}r’ﬁ (Q) such that:

i) | follwrsy= mf{l[ fllwrr): f € Qx}

Proof. i) Let the function 6 : W1P(Q) — R* be defined by 0(f) = || fllwr.70);
Vf € WHP(Q). 0 is lower semi-continuous on W?(Q) and coercive. By Theorem (3.2
Qx is strongly closed in W?(Q). On the other hand, Qx is convex. Since W1H7(0Q) is
reflexive, there exists a unique fy € W}r’ﬁ (Q) such that

| follwr.s= nf{[| fllwrr): f € Qx}
ii) Let Y be a subset of X where k* fo <1, then Cy 5 X) = Cj (X -Y).
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Since k* fo > 1 on X =Y, Cp 5(X —Y) < | follw1.5q), on the other hand, we have

{(FeWP(Q) : kxf>1 on X}CQx.

Then
[ follwrr)< Cr(X).

4 Concluding Remarks

In this paper we defined the notion of Cj, 5 -capacity in the anisotropic Sobolev space
WLP(Q) for p = (po,p1,-..y PN), With 1 < pg,p1,....., by < 00. We showed that this
capacity is an outer capacity and proved some convergence properties related to it. More-
over, we proved that C}, 5 is a Choquet capacity. Finally, we gave an application of this
capacity in anisotropic Sobolev spaces.

Note that the results obtained previously, especially, the properties of the
anisotropic Sobolev p -capacity Cj 5 will be useful in the study of some differential equa-
tions problems. Namely, for problems, studied previously in [5H7|, we can treat solutions
in anisotropic Sobolev spaces and we can assume that the right hand side is a measure
data.

A perspective of this work will focus on the application of our results to a unilateral
problem that was addressed in a previous study [4] in Musielak—Orlicz—Sobolev spaces.
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Abstract: In this paper the restricted three body problem in the context of
Schwarszchild-de Sitter’s space-time is studied. The equations of motion that govern
the bodies are derived using the Schwarszchild-de Sitter metric, by introducing a set
known as the parameter domain, the existence of equilibrium points for any element
of this set is shown. The stability conditions for the orbital motion of the system are
established by the analysis of the eigenvalues of the linearized system.
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1 Introduction

A de Sitter universe is an exact solution to the Einstein field equations of general relativ-
ity, named after Willem de Sitter. Setting the foundations of a particular cosmological
universe, which is characterized as spatially flat and neglects ordinary matter, thus, the
dynamics of the universe is dominated by a positive cosmological constant [7], or equiv-
alent, de Sitter solution corresponds to a metric of a space-time of constant curvature.
When the curvature is negative, the cosmological constant is too, and the corresponding
universe is called anti-de Sitter space. In both cases, the metric corresponds to a general
symmetry of Einsteins field equations, see Brinkmann’s theorem [6]. The current obser-
vations indicate that the universe is expanding in an accelerated rate, and may approach
de Sitter space asymptotically, that is, the concordance models of physical cosmology
are converging on a consistent model that is best described as a de Sitter universe. See
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Carroll 3] and Zwicky |14] for a preliminary introduction, and [8] for a more detailed
description and a consistent mathematical deduction.

Under the assumptions of this universe, we present a study of the Lagrangian tri-
angular equilibria in the planar restricted three body problem, where the primaries are
homogeneous spheroids rotating around their axis of symmetry and whose equatorial
planes coincide throughout their motion. We follow closely the work of Arredondo et
al. |1] for the Schwarszchild potential and the reference found there [9], but with the new
ingredient of a potential associated to a more general metric, that is, in terms of rela-
tivistics effects, a new physical universe endowed with other qualities [4]. On the other
hand, we introduce a new algebraic idea to give an analytical proof of the existence and
uniqueness of a Lagrangian equilibrium, while as usual, linear stability of this equlibria
is studied numerically.

2 Schwarszchild-de Sitter Potential

The Schwarzschild metric is the simplest solution of Einstein’s equation with zero cos-
mological constant, while a de Sitter space is the simplest solution when a positive
cosmological constant is considered [2], but both are obtained from considering a spher-
ical symmetry [8]. As described in [10], a de Sitter-Schwarzschild space-time is just a
combination of the two, and we can imagine it as the horizon of a black hole that is
centered in a universe with de Sitter properties, which from the mathematical point of
view, is properly described as a Riemannian space with one independent component of
its curvature tensor. All the discussion behind this object and its beautiful developments
can be found in Theorems 8.10 to 8.15 of [12]. For the purpose of this paper we just have
to establish that the Schwarszchild-de Sitter metric is given by

2GM A 2GM A L\ *
ds* = ¢? (1 —— = 3r2) dt* — <1 - — = —3T2) dr? — r?(d6? + sin® 0d¢?),
cAr Ar
(1)

where G is the universal gravitational constant, M is the mass of the filed source, c is
the speed of light and A is the cosmological constant. It is known that the associated
potential to this metric is given by the time-time component of the metric

_ —(®+goo) Kk B 2
U(r) = ) =+ 5o (2)
Ac? B GMIL?

where k = GM, C = e and B (see [3] and [10] for details).

c2

3 Approach to the Restricted Problem

Let us consider two bodies, m; and mo, that interact mutually under the Schwarszchild-
de Sitter potential, describing a circular orbit, and ms be the mass of a body with
spherical symmetry such that mi, ms >> mg. Also, we assume that the center of mass
of my,my is fixed at the origin. As we consider m; and ms source of the potential of
type , that we rewrite as

B B
U(r) = g2 <1+ Bi+ B,

: TR o). ®)



128 JOHN A. ARREDONDO AND JULIAN JIMENEZ-CARDENAS

the interaction among masses m; and ms is given by the equation

(mlm ) o dUR) _d (Gm1m2 (1 Ik R TG 02)33))

my + mo dR " dR R R2

ie.,

< mimso )R__Gmlmg <1+3(B1+Bg)

op2
. R 3 2R (Cl + C2)> .

As it is supposed that mq,ms are in an orbit with uniform circular movement, we have
(Ro,w). This is equivalent to finding the equilibrium points of the increased potential
or effective potential [5]. Doing a rescaling, we consider Gmims = 1; then the increased
potential will be defined by

1 B, +B 2w?
Unug(R) = —— <1 + % +(Cy + CQ)T’3> + 7 ; (4)
and the effective potential as
1 B + B, 3\ | L2
Ueff(’l"):—; <1+r+(01+02)7’ > +ﬁ' (5)

Remember that equilibrium points are critical ones in the effective potential. So,
operating and making R = 1, we have

w=+/1+3(B1 + By) —2(Cy + Cy). (6)

Now, to guarantee orbit’s stability, we use the fact that a critical point is further a
minimal potential, namely, U”ff (R)|r=1 > 0.

€

2 B, + By 3L2
hr(R)lnms = | = g~ 127 —AC+ O+ G

> 0, (7)
and replacing @ in we get
—2 —12(By + Bg) — 2(Cy + C2) + 3(1 + 3(By + By) — 2(Cy + Cy)) > 0.
1> 3(By + Ba) +8(Cy + C5). (8)

In the other way, the expression inside the root of @ must be positive. So, another
constraint for the coefficients is

14 3(By + Ba) > 2(Cy + Cy). (9)

With and @, it is possible to uncouple one pair of the coefficients:

1

5 > Cy + Ch. (10)
Also, in , since 7 and C are always non-negative, the other pair of coefficients is
uncoupled:

1
g > By + Bs. (11)
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i

T

Figure 1: Representation of the restricted three body problem in the non-inertial system.

1
A particle’s Hamiltonian in a central field is given by H(r,7) = §m7*2 — U(r), then the

Hamiltonian of mg in the inertial reference system is

H(r,7) = 17m’~2 — (1= p) (1 + BTI +Cll£1))> - (1 + 3722 + Czlg) ’ (12)
2 1 i3 lo l5
where
h=+(§+pn)?+1? (13)
and
b= V/(E+n—1)2+n? (14)

are the distances from the masses mi, ms to the mass mg, respectively.
Now, we name my = u, located on &1; and mo = 1 — p, located on &;. In this order,
p<g, & —&="1and p& + (1 — p)é =0. So, & = —p and & =1 — p. Also,

| = —pcos(wt),
= { y = —psin(wt), (15)
. (1 — ) cos(wt)
_J z=(1—p)cos(wt),
m={ i Mo 1o

as in Figure[I]
Consider (£,7) as the coordinates of mg in the non-inertial system; therefore, the
interaction between the mases m, and msy with mg is given by the following potential:

1-— B B
Ums(g,n):( 2 1+ 2o+ 2 (1+ 2+ 08 ), (17)

Iy 5 lo 15

and the Hamiltonian for mj3 in the non-inertial system is
1
H(&m, Pe, Py) = 5 (P¢ + Py) 4 w(Pen = Py&) = Upny (€,1)- (18)
Apply Hamilton’s motion equations
OH .

= Petun = w, (19)

OP
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OH
ap,

Multiply the equation by w and derive it with respect to time, knowing that
w = 0, since the circular movement is uniform:

=P, —w§ = wi. (20)

wPe = w?(€ — 1),

P =w(—1). (21)

In an analogous way, multiply the equation by w and derive it with respect to time:

P.n:w(ﬁ‘f'f')- (22)

Before continuing, the partial derivatives of U,,, are going to be calculated, in order to
facilitate the calculus of the other two Hamilton’s motion equations:

U, (€,7m) dly 1 3B 0lg 1 3B,
—— 2 =1—-p)—= -5 — = +2C4l — | — =5 — = + 205l
o€ ( “)ag( FANN TR C“)“‘ag( zZ- t Cal2). -
(1 —p)(E+p) 3B, 3\ mE+p—1) 3B 3
= —T(lJr? 720111) — T(lJr? *202[2),
on the other hand,
aUmS (57 77) _ (1 _ :u) 3B 3 1% 3B, 3

By the last two Hamilton’s motion equations we have

OH .
—— — —wP, 2
OH .
Replacing ([18)) in these equations we get
OUp. . Uy, .
—wP, — ng = —wP:.whP; — n 2 = —wP,. (27)

Therefore, using and in the last couple of equations, it is obtained that

. U,
w2(§_7'7) =wP, + 3 (28)
Wi+ 6) = —wbe + W, (20)

Now, with the centrifuge potential

(.(}2
Q(£7 ’r]) = ?(52 + 7]2) + Ums (57 77)7 (30)
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one can find the critical points of mg by deriving it with respect to £ and p and making
it equal to zero. Before doing that, one should consider the following equations:

% 2 2m), (31)
%S; = W2 (ij + 2€). (32)

Obtain summing —w- and w'—|—, respectively. With this pair of equa-
tions, it is possible to deduce that the components (£, 7) are orthogonal between them,
but this is already known because of the nature of the problem and the coordinate axis.
Consequently, the relation that is going to be used to find the critical points is

o _oe_
oc  on

3.1 Collinear stability points

In order to obtain the collinear stability points, the partial derivative of Q with respect
to & is done, and all the n are replaced by zero. This gives the stability points that are
in the £ axis. After some algebra, one obtains that

—px*[3By + (x — 1) — (. — 1)*[3B1(u — 1) + 2012°(pn — 1) — 2Coux* (z — 1)
24 2 (33)
et (- w) — 22— 1)] = 0,

where x = & + p. Since is a ninth grade polynom, it has at least a real solution.

3.2 Non-collinear stability points (1 # 0)

In this case, both partial derivatives of ) are zero, but 1 # 0, so one has two equations,
the derivative with respect to £ and n of . These two equations can be written as

1- B ~1)/, 3B
( “;35““) (1+3717201l§’7w21§)+u(£ 7 )(1+&720215’7w2l§’) (34)
1 2

0= z z

(1 - ,u) 3B1 E 1% 3B2 q

0= n[ - (1 + 3 200 - m%) + 1—3(1 + 2 20l - uﬂlg)], (35)
1 1 2 2

respectively, due to the fact that (1 — p)(€ + p) + p(§ + p— 1) = €. Consider Iy, 13 as an

independent system of variables, last two equations hold if and only if

w2 +20)1° - 1?2 -3B; =0, 36
( 1 1

for ¢ = 1,2. Since has a single change of sign, by Descartes’s rule of signs, each
equation has exactly one positive root. The next proposition shows that these roots
satisfy the triangle inequalities.

Definition 3.1 [Parameter domain| The set of all possible combinations of the non-
negative parameters (Bi, Bo, C1,Cs) that satisfy the constraints (8]) — will be called
D.
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Theorem 3.1 For every combination in D, there exists a unique non-collinear ro-
tating equilibrium.

Proof. It will be shown that every possible combination of D gives positive solutions
in that satisfy the triangle inequalities. It can be seen that [; and I depend on the
values of the constants in D, and moreover,

li = li(B1, B2, C1,C3) = l2(Ba, B1,Cs,Cy) =1y (37)

taking advantage of the symmetry in (36). Define D as the set D with its frontier, i.e.,

D=DUS{D.

It is known that a differentiable real-valued function whose domain is closed and bounded
attains its extreme values either at a critical point or on the boundary. In this context,
the functions B
l;: D — R,
(Bl, Bg, Cl, Cg) — ;= li(Bl, BQ, Cl, 02),

despite of being implicitly defined, are differentiable. A direct calculation proves that
l; does not accept critical points inside D, so the extreme values of it must be in the
frontier. All cases are shown below [11].

1. For By =0,
1

I, = .
' Y1138, - 20,

Given the constraints for the sum of two constants, it follows that /" = i/g ~
0.79.

2. For By = 0, the equation becomes
5 1 9 3B,

)

- 13- = 0.
' (143B;-20y) " (1+3B; —20y) 0

To find a minimum bound, notice that the last polynomial can be rearranged as
2 (l3 _ 1 ) _ 3B
WU 143B 20,/ T 14+3B; - 20y

from where it is deduced that

1 5/ 1 .
L > > ifL =g
V1+3By —2Cs 2

3. For C; = 0, the minimum value for [ is given by the same arguments shown in the
last case, so

1

3

lmin _ 3
1

4. For Cy = 0, by similar reasons as in the previous cases, it follows that

1

3

lmin 3
1
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5. For C1 + Cy = %, equation can be written as
0= (1+3(B1 + Bs) —2(Cy + Ca) +2C1)I5 — 1} — 3By

3
= (5 +3(B1 + B2) +2C1)1; — 1§ =3B
Calculating the derivative of the last polynomial expression with respect to C7 and
clearing dl, /dC1 yield to

dl —613 __
dCy ~ 5(3/5+3(By + By) +2C))I =21, 312+15B,

since 5(3/5+3(B1+B2)+2C1)l3 = 513+ 15B;. This implies that the function [;(C})
with its other variables fixed is decreasing on Cy + Co = 1/5. Then its minimum is
reached when C4 is maximum. Therefore, if C; = 1/5, notice that the polynomial
equation can be rearranged as

12<l3— 1 ): 3By
Y\ 143(B1+By)/  1+3(Bi+By)’

from where it is deduced that
1 Z i _ lmin.

ll Z 3 1
/1+3(B1+ Bs) 2

6. For By + By, = %, equation becomes

(220,17 —12 —3B, =0.
Differentiating it with respect to By and clearing dl; /dB; lead to

dh 3 B 3l 3L -
dBy  5(2—2Co)lF =21 5(2—2Cy)I3 —212 313+ 158

since 5(2—2C3)I} = 512+ 15B;. This implies that the function /1 (B;) with its other
variables fixed is increasing on By + Bs = 1/3. Then its minimum value is reached
when Bj; is minimum. Therefore, when B; = 0,

1

R

min __ 3
i

7. For 1 = 3(B; + B2) + 8(C1 + Cs), one writes equation as

13<l3— 1 ): 3B,
M 280 — 100, 2 —8C, — 100y’

replacing 3(B; + Bg) with 1 — 8(C; 4+ C3). Using the same argument as in the

previous cases,
1 at .
I > 3><[zmm,
" Va2-8c,—100, = V2 !
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Testing the triangular inequalities with [J® = \3/2 , one gets that if {7*** is in the vicinity

1 1
1_37<lmax<1 §/>
\/g—1 =ity

0% and 7" satisfy the triangular inequalities. Therefore, a candidate to be an upper

bound is [7"™* =1+ \3/% To show that it is, in fact, a valid bound, notice that replacing

I =1 in yields

2 max\5 _ /ymax\2 __ § i/Ts_ :\3/T2_
(w? 4 20) (I2x)5 — (pmax) 33125(1+ 2) (1+ 2) 1> 0.

Since the result is positive, independently of the constant value, [7"** is effectively an
upper bound for the real root of , because the polynomial is positive only after the
root.

By , 1 and Iy share the same minimum and maximum values, so every combina-
tion of constants

(Bl, By, C1, 02) eD

raises solutions of for [; and [l that satisfy the triangular inequalities since their
bounds satisfy them.

3.2.1 Isosceles cases

The distances between the primaries were normalized to be one. Thus, a possible isosceles
solution is when [; = 1, and for that raises the following condition:

3B; = 20}, (38)
and with this, equation for j # i becomes
(W® +2C))15 — 15 —2C; = 0.

Therefore, if holds, I; = 1 and [; is given by the last polynomial equation that can
be numerically solved in terms of w? and C; (see Figure . Another possible case is
when [; =[5, and a sufficient condition for this to happen is the trivial case when the
bodies m; and mso have the same constants and the same mass.

4 Stability

To study the movement near the equilibrium points in this problem, the Hamiltonian
is expanded through the Taylor series around these points, the linear terms in this
are omitted because the equilibrium points are zeroes in the potential and the constant
term does not affect the form of the motion equation, so it is not taken into account.
The Hamiltonian function rises the Hamiltonian matrix

0 w 1 0
—w 0 0 1
PUps  02Upns , (39)
0 w
0&2 0&0n
?Us  0%Ups
—w 0

OO on?
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3.0
2.5
2.0
15

10

Figure 2: I; in function as C; and w? when I; = 1.

whose eigenvalues determine the behavior of the linearized system. The characteristic
equation reads

Uz 0?Upy,: 0?Upz  0%Upy,:
4 2 m3 B m3 2 m3 m3 2 4
A+ <2w ae2 an? ))\ ( o2 + o2 )w +w w0
_(82Um3)2 OUns 8°Uns _,
d¢n oz o2

The conditions that insure linear stability are given by the root of the quadratic formula

0*U,, 0?Up3\ 2 0%U,, 0*U,,
Gl(Bl,BQ,Cl,OQ,'LL)E (2w2— 3 — 3) —4(( 8523 an23>w2+w4

€2 on?
32Um3 2 82Um3 aZUmS
_< o€n ) + 02 On? >>O

(41)
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Figure 3: pcrit as a function of B; and C7 when By = C2 = 0.1.

and by the sign of the part outside the root

02U, 02U,
G1(B1, B2,C1,Ca, p) = 2w* — o 3 o 2> 0. (42)

Both conditions must be fulfilled in order to have spectral stability. Five dimentions are
needed to visualize the regions of the parameter domain and the values of p for which
the spectral stability exists. One way to display the data in three dimentions is to make
projections: fix By and By and graph pie;; (the maximum value of u that satisfies both
conditions) as a function of By and C5 (see Figures [3| and [4).

Figure 4: pcri¢ as a function of Bz and C2 when By = C; = 0.1.
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Conclusion

have shown that always the primaries are in a rotational equilibrium (a.k.a, when

the coefficients belong to the parameter domain), there is a collinear and a non-collinear
relative equilibrium in the restricted three body problem induced by this configuration.
Knowing the exact numerical value of these coefficients allows a direct calculation of the
position of these equilibrium points.

Also, we discussed the particular case when the non-collinear relative equilibrium is

in an isosceles configuration with the primaries, plotting its value given w?, C; and I; = 1.
Finally, we provided two conditions necessary to have spectral stability for a given non-
collinear equilibrium point. With these conditions, we plotted pi..;+ for some values of

the

6

[10]

[11]
[12]

[13]

[14]

parameter domain.
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1 Introduction

Let us consider the nonlinear steady-state problem of the viscous incompressible fluid
flow past a body of revolution in a spherical coordinate system [11}16]:

9, 1 oY OEY 0y OEY 1 oy 20¢ .
vE™) = r2sinf \ 00 Or or 00 + r2sin 0 2ctel or r 00 EyinQ, (1)
_q 9 _
Ylga =0, n o 0, (2)
. —2 1 . 92
rl}inoc Yeor = §Uoo sin” 6, (3)

1

where v = Re™ " is the coefficient of viscosity, Re is the Reynolds number, ¢ = v¢(r, §) is

2 ; 1
0“1 smeg 8¢>7E2¢:E(E¢),nis the outer

the stream function, Fi = 52 2 20 \ 500 90
normal to 0F), Uy is the unperturbed fluid velocity at infinity.

The methods of solving problem (I}) — (3 have not been sufficiently developed. This
is due to the fourth order and nonlinearity of equation , as well as the unboundedness
of the region in which equation is considered.

Mathematical modeling is becoming an increasingly effective tool for researchers in
the study of viscous fluid dynamics. The need to model such flows arises, for example,
in hydrodynamics, thermal energy, chemical kinetics, biomedicine, radio electronics, etc.
[2)1114H16]. Due to using a computer, one can obtain an overall picture of the entire fluid
flow and graphically visualize the velocity, pressure, or temperature fields throughout the
flow region.

The purpose of the paper is to develop a new method of mathematical modeling for
the nonlinear stationary problem of the flow of viscous incompressible fluid around a body
of revolution on the basis of the R-functions method and nonlinear Galerkin method.

The use of the R-functions method [17}/18] to construct the boundary value problem
solution structure will allow us to accurately take into account the geometric and analyt-
ical information included into the statement of the problem. Using further the nonlinear
Galerkin method [6l/13] to approximate the uncertain components of the structure will
allow us to obtain an approximate solution in an analytical form.

2 R-Functions Method

The R-functions method applied to hydrodynamics problems of viscous fluid (steady
and unsteady flows) in bounded domains or in the presence of helical symmetry was used
in [1,[3l/12]. The problems of the steady flow of viscous fluid past bodies of revolution
were solved using the R-functions method in [4}/5,{7H10], but there the authors considered
the slow flow of viscous incompressible fluid past bodies (the Stokes linearization) or the
application of the R-functions method, successive approximations and Galerkin-Petrov
method for calculating the axisymmetric steady flows of viscous incompressible fluid.
To apply the R-functions method to the problems of hydrodynamics it is necessary:

1) To construct such a function that is equal to zero at the boundary points, positive
inside the region and whose normal derivative (in the direction of the outer normal)
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on the boundary is equal to —1. It will allow to accurately describe analytically the
geometry of the computational domain and to continue the functions and operators,
defined on the boundary, at the interior points of the area.

2) To construct the general structure of the solution, i.e., such a formula that depends
on some indeterminate functions and exactly satisfies all the boundary conditions
of the problem for any choice of these functions.

3) To construct an approximate solution by approximating the undefined functions
included in the structure by the chosen numerical method.

Let us consider the general principles of the R-functions method theory [9L|17}/18].

Definition 2.1 A function whose sign is completely determined by the signs of
its arguments is called an R-function (V.L. Rvachev’s function) corresponding to the
partition of the numerical axis into intervals (—oo,0) and [0, 4+ o0), i.e., a function
z = f(z,y) is called the R-function if there exists a Boolean function F' such that

0,z <0,
Slz(x,y)] = F[S(z),S(y)], where S(z) = 1230

this case, the Boolean function F' is called a companion function.

is a two-valued predicate. In

Each R-function is associated with a Boolean function. It allows us to use logic
algebra methods to describe complex geometric objects.
The following system R, is the most commonly used system of the R-functions:

r=-—x,

1

TN Y= T2 <m+y—\/x2+y2—2axy),
1

T+y+ \/x2—|—y2—2a:ry),

where —1 < a(z,y) < 1, a(z,y) = a(y,z) = a(—z,y) = a(z,—y). Their companion
Boolean functions are, respectively, negation, conjunction and disjunction.

Suppose that a geometric object €2 with a piecewise-smooth boundary 9N is given
in R2. Let us assume that © can be constructed from auxiliary (supporting) loci
¥ ={wilz,y) >0}, ..., 3, = {wm(x,y) > 0} according to the logical rules defined by
the Boolean function F', by means of the operations of union, intersection, and comple-
ment:

“ayflTa<

Q=F(Z1,%, ...,%m),

and all functions w;(z,y) (i = 1,2,...,m) are elementary. Replacing Q by w(z,y), %,
by wi(z,y) (¢ = 1,2,...,m), and the symbols {N,U, -} by the R-operations symbols
{Aa,Va,” }, we obtain an analytic expression that defines in the elementary functions
the equation of the boundary w(z,y) = 0. In this case, w(z,y) > 0 for the interior points
of the region, and w(zx,y) < 0 for the external points.

Thus, the equation w(z,y) = 0 in an implicit form determines the locus of points
representing the boundary 99 of the domain 2, and the function w(z,y) = 0 has the
form of a single analytic expression.
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Definition 2.2 The equation w(z,y) = 0 is called normalized to the n-th order if

aiw
on

B Ow

Wlyy =0 -, 2
o0 ’ ) i
90 on

o0

where n is a vector of the outer normal to 0f).

The equation w(z,y) = 0, normalized to the first order, can be obtained from the
equation wi(x,y) = 0 as follows.

Theorem 2.1 If wi(z,y) € C™(R?) satisfies the conditions wil,, = 0 and

0
% > 0, then the function w = it € O™ 1 (R?) satisfies the conditions
Hlon W} + Ve
0
wlyn =0, a—?}l o = —1 at all regular points of the boundary OS).

To construct the equation normalized to the first order, one can also use the formula

w1
W= ="
|VOJ1‘

if [Vwi| #0in Q = QU N,
Let us construct the normalized equation w(z,y) = 0 of the boundary of the closed

area ) = {O <r<3 3-vV9-—122<y< 3} with the help of the system ¥ (Figure.

¥
At

-3 -2 -1 1 2 3

Figure 1: The area (.

The area Q can be constructed from the following primitive regions:
— the interior of a circle of radius 3 centered at the point (0,3):
1
o = (6 (9—w2—<y—3)2) 20),
— the half-plane below the line y = 3: ¥ = (3 —y > 0),

— the half-plane to the right of the line x = 0: X3 = (= > 0).
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Then Q = ¥ AX A X3 and the equation of the boundary of the area €2 is determined
by the equation w(zx,y) = 0, where

=[2(9%2—(2—3)2)%0[3—y+x— B+t -

:%(9_$2_(y—3)2)+3—y+1:—\/m_ )

- E (9x2(y3)2>]2+ {3y+x (3y)2+x2r-

wlo) =[5 (9=~ =37) | -4l nao =

The contour lines of the obtained normalized boundary equation are shown in
Figure [2|

Figure 2: The area (.

The constructed function is positive inside the area ) and negative outside 2. If
it is necessary to obtain a function that is positive in the exterior of the finite area €2,
then it is required to use the function —w(z,y).

Let us consider the problem

Au = f, (5)

Liu|agi =i, t=1m, (6)

where A and L; are some differential operators; f and ¢; are functions defined inside the
region (2 and on its boundary regions 0f);.

Definition 2.3 The expression u = B(®,w,{w;};1,{p;}j=,) is called the general
structure of the solution of the boundary value problem - @ if it exactly satisfies
the boundary conditions @ for any choice of the indeterminate component ®. Here, B
is an operator that depends on the geometry of the area €2 and parts 9€; of its border,
as well as the operators of the boundary conditions, but does not depend on the type of
the operator A and the function f.

The solution structure extends the boundary conditions inside the region.
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The undefined component ® of the solution structure in the R-functions method is
represented as a sum

@(x,y) ~ (I)n(xvy) = ch@k(fc»y)a
k=1

where ¢ (z,y) are known elements of the complete functional sequence, and ¢, (k =
1,2,...,n) are unknown coefficients of the expansion. To determine unknown coefficients
one can use, for example, variational methods (Ritz, least squares, etc.), projection
methods (Galerkin, collocations, etc.), grid methods and others.

3 The Method for Solving Problem -

For an exact analytical description of the geometry of computational domain, let us
introduce a function w(r, #) satisfying the conditions:

0
a) w(r,0)>0inQ, b) w(rb),,o=0, c) ) -1,
on |,
where n is the outer normal to 0f2.
Let us introduce the function (3]
Mw
1— 0< M:;
wir = fu(w) = P T DY (7)
1, w > M (M = const > 0),
that satisfies the conditions:
. Owpy .
1) wy > 0in Q, 2) warlyg =0, 3) =-1, 4wy =1ifwpy > M.
on |y,

The introduction of the function @ allows us to carry out calculations in the fi-
nite region since function differs from unity only in some finite ring-shaped region
{0 < w(r,f) < M} adjacent to the contour 9.

Let us construct the general structure of the solution. In [7,9}/10] it was proved that
for any choice of sufficiently smooth functions ®; and ® (®; -r=2 — 0 as r — +00)
the boundary conditions and the condition at infinity are exactly satisfied by a
function of the form

P = wi(o + 1) + wif (1 — war)Po, (8)

1 R
where 1y = ZUOO(T — R)? (2 + r) sin? @ is the Stokes solution for the problem of the

flow past a sphere of radius R ( the sphere of radius R lies entirely inside the streamlined
body). Thus, the function is the structure of the solution of the boundary value
problem — .

Let us construct an approximate solution by approximating the undefined components
®; and P, of structure by the nonlinear Galerkin method [6,[13]. The functions ®;
and ®5 will be presented in the form

m 1 m2

~ m —_— ~ m jr—

q)l~q)11—£ Otk~g0k,(1>2~(1)22—5 ﬂj~7’j,
k=1 J=1
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where
{op(r,0)} = {r' % Jy(cos0), k = 2,3, ..; 7* " Jy(cos0), k = 4,5,... }

is a complete system of particular solutions of the equation E2¢ = 0 with respect to the
exterior of a sphere of finite radius;

{rj(r,0)} = {’I"JQ(COS 0), J3(cosB)