
Nonlinear Dynamics and Systems Theory, 22 (1) (2022) 82–96

A Mathematical Study of Wuhan Novel Coronavirus

Epidemic Model

Sayed Sayari ∗

Carthage University, Isteub, 2 Rue de l’Artisanat Charguia 2, 2035 Tunis, Tunisia

Received: June 16, 2021; Revised: December 25, 2021

Abstract: In this paper, we introduce a simplified model of the novel coronavirus
pandemic (Covid-19), which appeared for the first time at Wuhan city in China.
We compute the reproduction number R, an epidemiologic index used to describe
whether the disease spreads or ends. We study the model from a mathematical point
of view, focusing on the local and global stability of the dynamical system by using
Lyapunov functionals. We proof that for R < 1, the disease dies and for R > 1, the
disease persists.
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1 Introduction

Pandemics are large-scale outbreaks of infectious disease that can cause sudden,
widespread morbidity and mortality over a wide geographic area and cause significant
economic, social, and political disruption. Throughout history, there have been a lot of
pandemics of diseases such as smallpox and tuberculosis. One of the most devastating
pandemics was the Black Death, which killed an estimated 75−200 million people in the
14th century. Other notable pandemics include the 1918 influenza pandemic (Spanish
flu), the 2003 severe acute respiratory syndrome (SARS) pandemic, the 2009 influenza
pandemic (H1N1), and the pandemic of human immunodeficiency virus/acquired im-
mune deficiency syndrome, current HIV/AIDS. Over the past century, evidence suggests
that the likelihood of pandemics has increased because of increased global travel, inte-
gration, urbanization and greater exploitation of the natural environment. These trends
are likely to continue and intensify around the world with the appearance in 2019-2020
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of the current coronavirus pandemic. The origin of most diseases occurs through the
”zoonotic” transmission of pathogens from animals to humans, on 31 December 2019,
the World Health Organization (WHO), China Country Office, was informed of cases of
the novel coronavirus (2019-nCoV) detected in Wuhan city. It is reported that the virus
might have a bat origin, and the transmission of the virus might be related to the Huanan
Seafood Wholesale Market in the same city [2]. Exported internationally via commer-
cial and air travel, the virus reaches several countries around the world. There are now
many times more cases outside of China than there were inside of it at the height of the
outbreak. There are large outbreaks of the disease in multiple places, including Italy,
Spain, France and the United States, which currently has the worst outbreak compared
to any country in the world.

Populations, as with individuals, have unique patterns of disease. The science of
epidemiology, which straddles biology, mathematical modeling, and dynamical systems,
seeks to describe, understand, and utilize these patterns to improve population health.
Therefore, several researches are focusing on mathematical modelling of Covid-19 to
estimate the transmissibility and dynamic of the transmission of the virus [2]. These
researches are focused on calculating the basic reproduction number R.

In this study, we developed and analysed a mathematical model introduced in [2]
and references therein, to describe the transmission of the virus from bats to people
via the reservoir seafood market. We calculated the basic reproduction number R. We
study the basic and global properties of the model. By using Lyapunov functions and
LaSalle’s invariance principle, we have established the global stability of the equilibria of
the model.

This paper is organized as follows. In Section 2, we propose the model and study its
basic properties. In Section 3, the local stability of equilibria is established. Section 4 is
offered to study the global stability of equilibria. In Section 5, we present some numerical
examples to illustrate the obtained results.

2 Mathematical Model and Its Properties

We used a modelling framework similar to that by Chen et al. [2]. The variables of the
model are introduced as follows: W denotes the SARS-CoV-2 in the reservoir (the seafood
market). The population was divided into five compartments: susceptible individuals (S),
exposed individuals (E), symptomatic infected individuals (I), asymptomatic infected
individuals (A) and removed individuals (R) including recovered and dead individuals.
The model parameters are given as follows: N represents the rate of the recruitment of
susceptible (birth rate + rate of people travelling into Wuhan), c is the rate of individuals
travelling out from the city. βw is the transmission rate of the infection of individuals
S from a sufficient contact with W , and β is the contagion rate due to the contact with
infected people I. 1/ω denotes the incubation period of human infection and 1/γ denotes
the same infectious period of I and A. 1/ε describes the lifetime of the virus in W . The
proportion of asymptomatic infection was defined as σ. θ denotes the multiple of the
transmissibility of A to that of I (see Figure 1). The population is assumed constant,
i.e., the births and natural deaths have the same value, due to the rapid disease spread.
We assumed also that the transmissibility rate θ ∈ [0, 1].

The diagram (Figure 1) describes the dynamics of the reservoir-people (seafood mar-
ket) transmission network model, and will be useful in the formulation of model equa-
tions. Based on the previous researches [1–4, 7–12, 15, 16] and using some assumptions,



84 S. SAYARI

Figure 1: Flow diagram of the reservoir-people transmission network model.

the proposed mathematical model is given as follows:

Ṡ = N − cS − βS(I + θA)− βwSW,

Ė = βS(I + θA) + βwSW − (ω + c)E,

İ = (1− σ)ωE − (γ + c)I,

Ȧ = σωE − (γ + c)A,

Ṙ = γ(I +A)− cR,

Ẇ = ε(I + θA−W ).

(1)

It is subject to the conditions

S(0) > 0, E(0) > 0, I(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0. (2)

For epidemiological reasons, all model parameters are assumed to be positive. Next, we
investigate the basic properties of model (1). Start by giving a result of boundedness
and positivity of solutions.

Proposition 2.1 1. All solutions of the model (1) with initial conditions (2) are
bounded and non-negative.

2. The region Ω = {(S,E, I, A,R,W ) ∈ R6
+ / S + E + I + A + R + W ≤ N

c̄
} is a

positively invariant attractor for system (1), where c̄ = min(c− ε, ε).

Proof. 1. The solution is positive due to the fact below. Since S = 0, one has Ṡ =
N > 0; if E = 0, then Ė = βS(I+θA)+βwSW > 0; once I = 0, then İ = (1−σ)ωE > 0;
if A = 0, then Ȧ = σωE > 0; if R = 0, then Ṙ = γ(I + A) > 0; and if W = 0, then
Ẇ = ε(I + θA) > 0.

The boundedness of solutions of system (1) can be proved by summing up all equations

of system (1), and denoting T = S + E + I + A + R + W − N

c̄
, then one obtains the
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following equation for the totality of individuals:

Ṫ = Ṡ + Ė + İ + Ȧ+ Ṙ+ Ẇ
= N − cS − cE − (c− ε)I − (c− εθ)A− cR− εW

≤ c̄(
N

c̄
− S − E − I −A−R−W )

= −c̄T.

Then

S + E + I +A+R+W ≤ N

c̄
+
(
S(0) + E(0) + I(0) +A(0) +R(0) +W (0)− N

c̄

)
e−c̄t.

(3)

Then the boundedness of the solution of system (1) holds since all compartments of T
are positive.

2. One can easily deduce from equality (3) that the set Ω is a positively invariant
attractor for system (1).

3 Stability of the Equilibria of the System

The equilibria are obtained by putting all the equations of the system (1) to zero, as
given below.

1. Disease-free equilibrium: E0 = (
N

c
, 0, 0, 0, 0, 0).

2. Endemic or positive equilibrium: E⋆ = (S⋆, E⋆, I⋆, A⋆,W ⋆).

To investigate the stability behavior of the equilibria, we need to compute the basic
reproduction number R using the generation matrix method proposed by Diekmann, et
al. [5] and elaborated by van den Driessche and Watmough [6] for an ODE compartmental
model. Let

ẋ = F (x)− V (x),

where x = (E, I,A,W ), F (x) is the matrix of new infection term, and V (x) is the matrix
of transfer terms into compartments and out of compartments. In our case, the Jacobian
matrices of F (x) and V (x) at E0 are given by

F =


0

βN

c
θ
βN

c

βwN

c
0 0 0 0
0 0 0 0
0 0 0 0

 , and V =


ω + c 0 0 0

−(1− σ)ω γ + c 0 0
−σω 0 γ + c 0
0 −ε −εθ ε

 .

Now,

V −1 =


1

ω+c 0 0 0

A 1
γ+c 0 0

B 0 1
γ+c 0

D E G 1
ε

 ,
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where 

A =
(1− σ)ω

(ω + c)(γ + c)
,

B =
σω

(ω + c)(γ + c)
,

D =
(1− σ)ω + σωθ

(ω + c)(γ + c)
,

E =
1

ω + c
,

G =
θ

γ + c
,

(4)

and then

FV −1 =


0

βN

c
θ
βN

c
βw

N

c
0 0 0 0
0 0 0 0
0 0 0 0





1

ω + c
0 0 0

A
1

γ + c
0 0

B 0
1

γ + c
0

D E G
1

ε



=


A
βN

c
+Bθ

βN

c
+Dβw

N

c

βN

c(ω + c)
+ Eβw

N

c
θ

βN

c(γ + c)
+Gβw

N

c
βw

N

cε
0 0 0 0
0 0 0 0
0 0 0 0

 .

Then the basic reproduction number for model (1) is given by R = ρ(FV −1), where
ρ denotes the spectral radius of the next-generation matrix FV −1. Therefore, the basic
reproduction number R for our model is

R =
N(β + βw)

(
(1− σ)ω + σωθ

)
c(ω + c)(γ + c)

= R1 +R2, (5)

where R1 =
Nβ
(
(1− σ)ω + σωθ

)
c(ω + c)(γ + c)

and R2 =
Nβw

(
(1− σ)ω + σωθ

)
c(ω + c)(γ + c)

.

Next, the local stability of equilibria was discussed with respect to the basic repro-
duction number R.

3.1 Analysis of the local stability for E0

The local stability of the disease-free equilibrium of the system (1) is given in the following
theorem.

Theorem 3.1 The disease-free equilibrium E0 is locally asymptotically stable when
the basic reproduction number R is less than one and unstable when R is greater than
one.
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Proof. The Jacobian matrix of (1) evaluated at E0 = (
N

c
, 0, 0, 0, 0, 0) is given by

J0 =



−c 0 −βN

c
−θ

βN

c
0 −βw

N

c

0 −(ω + c)
βN

c
θ
βN

c
0 βw

N

c
0 (1− σ)ω −(γ + c) 0 0 0
0 σω 0 −(γ + c) 0 0
0 0 γ γ −c 0
0 0 ε εθ 0 −ε


.

The characteristic equation of the matrix J0 is

P 0(λ) =(λ+ γ + c)(λ+ c)2
(
(λ+ ω + c)(λ+ γ + c)(λ+ ε)− (ω + c)(γ +m)R1λ

− ε(ω + c)(γ + c)R
)
.

Obviously, −c and −γ − c are eigenvalues of J0. To determine the other eigenvalues of
J0, let p(λ) = (λ+ γ + c)(λ+ c)2p3(λ), therefore

P3(λ) =λ3 + (ω + c+ γ + c+ ε)λ2 +
(
ε(ω + c+ γ + c) + (ω + c)(γ + c)(1−R1)

)
λ

+ ε(ω + c)(γ + c)(1−R).

We rewrite p3(λ) as p3(λ) = λ3+A1λ
2+A2λ+A3. The Routh-Hurwitz stability criterion

ensures that Re(λ) < 0 under the conditions A1, A3 > 0 and A1A2−A3 > 0 for a monic
polynomial of degree 3, then we have

A1 =ω + c+ γ + c+ ε > 0,

A2 =ε(ω + c+ γ + c) + (ω + c)(γ + c)(1−R1) > 0 for R1 < R < 1,

A3 =ε(ω + c)(γ + c)(1−R) > 0 for R < 1.

Now we compute the term A1A2 −A3:

A1A2 −A3 =(ω + c+ γ + c+ ε)
(
ε(ω + c+ γ + c) + (ω + c)(γ + c)(1−R1)

)
− ε(ω + c)(γ + c)(1−R)

=(ω + c+ γ + c)
(
ε(ω + c+ γ + c) + (ω + c)(γ + c)(1−R1)

)
+ ε2(ω + c+ γ + c) + ε(ω + c)(γ + c)(R−R1) > 0 for R < 1.

This completes the proof.

3.2 Existence and analysis of the local stability for E⋆

In this section, the conditions for the existence of the endemic equilibrium E⋆ =
(S⋆, E⋆, I⋆, A⋆, R⋆,W ⋆) are investigated and the local stability of the endemic equilib-
rium E⋆ is discussed. The endemic equilibrium E⋆ is obtained by putting all equations
of the system (1) to zero as given below:

N = cS⋆ + βS⋆(I⋆ + θA⋆) + βwS
⋆W ⋆,

βS⋆(I⋆ + θA⋆) + βwS
⋆W ⋆ = (ω + c)E⋆,

(1− σ)ωE⋆ = (γ + c)I⋆,
σωE⋆ = (γ + c)A⋆,
γ(I⋆ +A⋆) = cR⋆,
I⋆ + θA⋆ = W ⋆.

(6)
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Now we get

E⋆ =
( (ω + c)(γ + c)

(β + βw)
(
(1− σ)ω + σωθ

) , N − cS⋆

ω + c
,
(1− σ)ω

γ + c
E⋆,

σω

γ + c
E⋆,

1

c(γ + c)
γE⋆,

(1− σ)ω + σωθ

γ + c
E⋆
)
.

Using the definition of reproduction number R in (5), we obtain

S⋆ =
N

cR
,

E⋆ =
N

ω + c
(1− 1

R ),

I⋆ =
(1− σ)ωN

(ω + c)(γ + c)
(1− 1

R ),

A⋆ =
σωN

(ω + c)(γ + c)
(1− 1

R ),

R⋆ =
1

c(ω + c)(γ + c)
(1− 1

R ),

W ⋆ =
(1− σ)ω + σωθ

(ω + c)(γ + c)
N(1− 1

R ).

(7)

Next, we study the local stability of system (1) around the endemic equilibrium E⋆.

Theorem 3.2 The endemic equilibrium E⋆ exists and is locally asymptotically stable
when the basic reproduction number R is less than one.

Proof. The matrix J is evaluated at E⋆ = (S⋆, E⋆, I⋆, A⋆, R⋆,W ⋆) and is given by

J⋆ =


−c− β(I⋆ + θA⋆)− βwW

⋆ 0 −βS⋆ −βθS⋆ 0 −βwS
⋆

β(I⋆ + θA⋆) + βwW
⋆ −ω − c βS⋆ βθS⋆ 0 βwS

⋆

0 (1− σ)ω −(γ + c) 0 0 0
0 σω 0 −(γ + c) 0 0
0 0 γ γ −c 0
0 0 ε εθ 0 −ε

 .

Note that, by using (7), we have −c− β(I⋆ + θA⋆)− βwW
⋆ = −cR and β(I⋆ + θA⋆) +

βwW
⋆ = c(R− 1). The characteristic polynomial of the Jacobian matrix J⋆ is given by

p⋆(λ) =(λ+ c)(λ+ γ + c)

[
(λ+ cR)(λ+ ε)(λ+ γ + c)(λ+ ω + c)

− (λ+ c)S⋆

(
(1− σ)ω

(
εβw + β(λ+ ε)

)
+ σω

(
βwεθ + βθ(λ+ ε)

))]
.

Clearly, the two roots of p⋆, λ1 = −c and λ2 = −γ − c are negative. The remaining
roots can be determined by setting p⋆(λ) = (λ + c)(λ + γ + c)p4(λ), with p4(λ) =
λ4 +B1λ

3 +B2λ
2 +B3λ+B4.
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We get

p4(λ) =λ4 +
(
ω + c+ γ + c+ ε+ cR

)
λ3

+
(
εcR+ (ω + c)(γ + c) + (ε+ cR)(ω + c+ γ + c)− βS⋆

(
(1− σ)ω + σωθ

))
λ2

+
(
εcR(ω + c+ γ + c) + (ε+ cR)(ω + c)(γ + c)− S⋆

(
(1− σ)ω + σωθ

)
×(

βc+ ε(β + βw)
))

λ+
(
εcR(ω + c)(γ + c)− εcS⋆

(
(1− σ)ω + σωθ

)
(β + βw)

)
.

Now we show, by a direct calculation, that all coefficients Bi, i = 1, · · · , 4, of the
polynomial p4 are nonnegative, more precisely,

B1 =ω + c+ γ + c+ ε+ cR > 0,

B2 =εcR+ (ω + c)(γ + c) + (ε+ cR)(ω + c+ γ + c)− βS⋆
(
(1− σ)ω + σωθ

)
=εcR+ (ω + c)(γ + c) + (ε+ cR)(ω + c+ γ + c)− (ω + c)(γ + c)

R1

R

=εcR+ (ε+ cR)(ω + c+ γ + c) + (ω + c)(γ + c)(1− R1

R
) > 0,

B3 =εcR(ω + c+ γ + c) + (ε+ cR)(ω + c)(γ + c)

− S⋆
(
(1− σ)ω + σωθ

)(
βc+ ε(β + βw)

)
=εcR(ω + c+ γ + c) + (ε+ cR)(ω + c)(γ + c)− c(ω + c)(γ + c)

R1

R
− ε(ω + c)(γ + c)

=εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
) > 0 for R > 1,

and

B4 =εcR(ω + c)(γ + c)− εcS⋆
(
(1− σ)ω + σωθ

)
(β + βw)

=εcR(ω + c)(γ + c)− εc(ω + c)(γ + c)

=εc(ω + c)(γ + c)(R− 1) > 0.

It follows, by using the Routh-Hurwitz criteria, that all the eigenvalues associated to J⋆

have negative real parts iff Bi > 0, i = 1, 3, 4, and B1(B2B3 −B1B4)−B2
3 > 0.

Now, calculating B := B2B3 −B1B4, and after simplifying negative terms, we get

B =
(
cR(ω + c+ γ + c) + (ω + c)(γ + c)(1− R1

R
)
)
×(

εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
)
)

+ εc(cR+ ω + c)
(
εR(ω + c+ γ + c) + (ω + c)(γ + c)(1− R1

R
)
)

+ εc(γ + c)2
(
εR+ (ω + c)(1− R1

R
)
)
+ ε2c(γ + c)(ω + c).
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Let B′ = B1(B2B3 −B1B4)−B2
3 = B1B −B2

3 , after simplifying, we obtain

B′ =(γ + c+ cR)
(
cR(ω + c) + cR(γ + c) + (ω + c)(γ + c)(1− R1

R
)
)
×(

εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
)
)

+ (ω + c)
(
cR(ω + c) + (ω + c)(γ + c)(1− R1

R
)
)
×(

εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
)
)

+ ε(ω + c)(γ + c)(1− R1

R
)
(
εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
)
)

+ εc(cR+ ω + c)(ω + c+ γ + c+ ε+ cR)
(
εR(ω + c+ γ + c) + (ω + c)(γ + c)(1− R1

R
)
)

+ εc(γ + c)2(ω + c+ γ + c+ ε+ cR)
(
εR+ (ω + c)(1− R1

R
)
)

+ ε2c(γ + c)(ω + c)(ω + c+ γ + c+ ε+ cR) + c2R2(ω + c)2(γ + c)2(1− R1

R2
)
R1

R2

+ εc2R2(ω + c+ γ + c)(ω + c)(γ + c)
R1

R2
.

Since the compartments 1 − R1

R and 1 − R1

R2 are nonnegative for R > 1, we get B′ > 0.
This ends the proof.

4 Global Stability Analysis of Both Equilibria of the System

In what follows, we investigate the global attractivity of both disease-free equilibria E0

and E⋆ .

Lemma 4.1 The set Ω2 = {(S,E, I, A,R,W ) ∈ R6
+ / S + E + I + A + R + W ≤

N

c̄
;S ≤ N

c
,W ≤ I + θA} is a positively invariant attractor for system (1), where c̄ =

min(c− ε, ε).

Proof. It is proved in Proposition 2.1 that Ω1 is a positive invariant attractor set of

all solution of system (1). Now, since Ṡ(t) < 0 for S(t) >
N

c
, one has lim inf S(t) ≤ N

c
.

Similarly, since Ẇ (t) < 0 for W (t) > I(t) + θA(t), one has lim infW (t) ≤ I(t) + θA(t).
This completes the proof.

Theorem 4.1 If R ≤ 1, then the disease-free equilibrium E0 is globally asymptoti-
cally stable (GAS). If R > 1, then the disease-free equilibrium E0 is unstable.

Proof. Construct the following Lyapunov function L(S,E, I, A,R,W ) as:

L = ω(1− σ + σθ)E + (ω + c)(I + θA).
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Along the trajectory of the solution of system (1), we have

L̇ =ω(1− σ + σθ)Ė + (ω + c)(İ + θȦ)

=ω(1− σ + σθ)
(
βS(I + θA) + βwSW − (ω + c)E

)
+ (ω + c)

(
(1− σ)ωE − (γ + c)I + σθωE − (γ + c)θA

)
=ω(1− σ + σθ)

(
βS(I + θA) + βwSW − (ω + c)E

)
+ (ω + c)

(
(1− σ + σθ)ωE − (γ + c)I − (γ + c)θA

)
=ω(1− σ + σθ)

(
βS(I + θA) + βwSW

)
− (ω + c)(γ + c)(I + θA)

≤(1− σ + σθ)
ωN

c

(
β(I + θA) + βw(I + θA)

)
− (ω + c)(γ + c)(I + θA)

(since S ≤ N

c
,W ≤ I + θA)

=
[
(1− σ + σθ)

ωN

c
(β + βw)− (ω + c)(γ + c)

]
(I + θA)

=(ω + c)(γ + c)
[ (1− σ + σθ)

(ω + c)(γ + c)

ωN

c
(β + βw)− 1

]
(I + θA)

=(ω + c)(γ + c)(R− 1)(I + θA), ∀(S,E, I, A,R,W ) ∈ Ω2.

Since all parameters of the model are non-negative, it follows that L̇ ≤ 0 for R ≤ 1
with L̇ = 0 only if I = A = 0. Hence, L is a Lyapunov function on Ω2. Further, by
Lemma 4.1, Ω2 is a compact, absorbing subset of R6

+, and the largest compact invariant

set in {(S,E, I, A,R,W ) ∈ Ω2 : L̇ = 0} is the singleton {E0}. Therefore, by Lasalle’s
invariance principle (see, for instance, [13, Theorem 3.1]), every solution of system (1)
with initial conditions in R6

+ converges to E0 as t → +∞.

The global stability of the disease-persistence (endemic) equilibrium E⋆ is given in
the following theorem.

Theorem 4.2 If R > 1, then the disease-persistence equilibrium E⋆ =
(S⋆, E⋆, I⋆, A⋆, R⋆,W ⋆) is GAS. If R ≤ 1, then the disease-persistence equilibrium E⋆ is
unstable.

Proof. Introduce the following Lyapunov function:

H =
(
S − S⋆ ln(

S

S⋆
)
)
+
(
E − E⋆ ln(

E

E⋆
)
)
+

ω + c

(1− σ)ω + σωθ

(
I + θA− (I⋆ + θA⋆)×

ln(
I + θA

I⋆ + θA⋆
)
)
+

βwS
⋆

ε

(
W −W ⋆ ln(

W

W ⋆
)
)
.

The equilibrium E⋆ is the only internal stationary point of system (1). The function H(t)

admits its minimum value Hmin = S⋆ + E⋆ +
ω + c

(1− σ)ω + σωθ
(I⋆ + θA⋆) +

βw

ε
S⋆W ⋆

when S = S⋆, E = E⋆, I = I⋆, A = A⋆,W = W ⋆, and H(t) → +∞ at the boundary of
the positive quadrant. Therefore, E⋆ is the global minimum point, and the function is
bounded from below.
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Now we compute the derivative of H(t) along the solutions of system (1) as follows:

Ḣ =(1− S⋆

S
)Ṡ + (1− E⋆

E
)Ė +

ω + c

(1− σ)ω + σωθ
(1− I⋆ + θA⋆

I + θA
)(İ + θȦ)

+
βw

ε
S⋆(1− W ⋆

W
)Ẇ

=(1− S⋆

S
)
(
N − cS − βS(I + θA)− βwSW

)
+ (1− E⋆

E
)
(
βS(I + θA) + βwSW − (ω + c)E

)
+

ω + c

(1− σ)ω + σωθ

(
1− I⋆ + θA⋆

I + θA

)(
((1− σ)ω + θσω)E − (γ + c)(I + θA)

)
+ βwS

⋆(1− W ⋆

W
)(I + θA−W )

=(1− S⋆

S
)
(
c(S⋆ − S) + βS⋆(I⋆ + θA⋆)− βS(I + θA) + βwS

⋆W ⋆ − βwSW
)

+ βS(I + θA) + βwSW − (ω + c)E − E⋆

E
βS(I + θA)− E⋆

E
βwSW + (ω + c)E⋆

+
(
1− I⋆ + θA⋆

I + θA

)(
(ω + c)E − (ω + c)(γ + c)

(1− σ)ω + σωθ
(I + θA)

)
+ βwS

⋆(I + θA)− βwS
⋆W − βwS

⋆W
⋆

W
(I + θA) + βwS

⋆W ⋆.

Using the fact that (S⋆, E⋆, I⋆, R⋆,W ⋆) is a solution of system (6), (7) and (5), we get

W ⋆ =(I⋆ + θA⋆), N = cS⋆ + S⋆(β + βw)(I
⋆ + θA⋆), (ω + c)E⋆ = βS⋆W ⋆ + βwS

⋆W ⋆

(ω + c)E =
E

E⋆
βS⋆W ⋆ +

E

E⋆
βwS

⋆W ⋆ and
(ω + c)(γ + c)

(1− σ)ω + σωθ
= S⋆β + S⋆βw.

We obtain

Ḣ =− c
(S − S⋆)2

S
+ βS⋆(I⋆ + θA⋆)− βS(I + θA) + βwS

⋆W ⋆ − βwSW

− βS⋆(I⋆ + θA⋆)
S⋆

S
+ βS⋆(I + θA)− βw

(S⋆)2

S
W ⋆ + βwS

⋆W + βS(I + θA)

+ βwSW − (ω + c)E − E⋆

E
βS(I + θA)− E⋆

E
βwSW + (ω + c)E⋆ + (ω + c)E

− S⋆(β + βw)(I + θA)− I⋆ + θA⋆

I + θA
(ω + c)E + S⋆(β + βw)W

⋆ + βwS
⋆(I + θA)

− βwS
⋆W − βwS

⋆W
⋆

W
(I + θA) + βwS

⋆W ⋆.
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Therefore the expression of Ḣ reduces to

Ḣ =− c
(S − S⋆)2

S
+ βS⋆W ⋆ + βwS

⋆W ⋆ − βS⋆W ⋆S
⋆

S
− βw

(S⋆)2

S
W ⋆

− E⋆

E
βS(I + θA)− E⋆

E
βwSW + βS⋆W ⋆ + βwS

⋆W ⋆

− I⋆ + θA⋆

I + θA

( E
E⋆

βS⋆W ⋆ +
E

E⋆
βwS

⋆W ⋆
)
+ S⋆βW ⋆ + S⋆βwW

⋆

− βwS
⋆W

⋆

W
(I + θA) + βwS

⋆W ⋆.

More simply,

Ḣ =− c
(S − S⋆)2

S
+ βS⋆W ⋆

(
3− S⋆

S
− E⋆

E

S

S⋆

I + θA

I⋆ + θA⋆
− I⋆ + θA⋆

I + θA

E

E⋆

)
+ βwS

⋆W ⋆

(
4− S⋆

S
− E⋆

E

S

S⋆

W

W ⋆
− I⋆ + θA⋆

I + θA

E

E⋆
− I + θA

W

)
.

Note that
S⋆

S

E⋆

E

S

S⋆

I + θA

I⋆ + θA⋆

I⋆ + θA⋆

I + θA

E

E⋆
= 1,

and
S⋆

S

E⋆

E

S

S⋆

W

W ⋆

I⋆ + θA⋆

I + θA

E

E⋆

I + θA

W
= 1.

We recall also the following inequality:

n
√
x1x2x3 · · ·xn ≤ x1 + x2 + x3 + · · ·+ xn

n
, x1, x2, x3, · · · , xn ≥ 0. (8)

Since the geometric mean of nonnegative real numbers is less than the arithmetical one,
we obtain the inequalities

3− S⋆

S
− E⋆

E

S

S⋆

I + θA

I⋆ + θA⋆
− I⋆ + θA⋆

I + θA

E

E⋆
≤ 0,

4− S⋆

S
− E⋆

E

S

S⋆

W

W ⋆
− I⋆ + θA⋆

I + θA

E

E⋆
− I + θA

W
≤ 0.

Therefore Ḣ ≤ 0, and one deduces that E⋆ = (S⋆, E⋆, I⋆, A⋆,W ⋆) is stable in the sense
of Lyapunov.

Now, to show the asymptotic stability of E⋆ = (S⋆, E⋆, I⋆, A⋆,W ⋆), we will use the
Lasalle invariance principle cited, for instance, in Theorem 3.1 in [13]. To do this, let us
define

s2 =− c
(S − S⋆)2

S
,

s3 =3− S⋆

S
− E⋆

E

S

S⋆

I + θA

I⋆ + θA⋆
− I⋆ + θA⋆

I + θA

E

E⋆
,

s4 =4− S⋆

S
− E⋆

E

S

S⋆

W

W ⋆
− I⋆ + θA⋆

I + θA

E

E⋆
− I + θA

W
.

Then one has
Ḣ(S,E, I, A,W ) = 0 ⇐⇒ s2 = s3 = s4 = 0.
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Using the above relations, we obtain the following implications:

s2 = 0 =⇒ S = S⋆,
(S = S⋆, s3 = 0) =⇒ E⋆(I + θA) = E(I⋆ + θA⋆),
(S = S⋆, E⋆(I + θA) = E(I⋆ + θA⋆), s4 = 0) =⇒ E⋆W = EW ⋆.

Finally, we obtain

Ḣ(S,E, I, A,W ) = 0 ⇐⇒ S = S⋆, E⋆(I + θA) = E(I⋆ + θA⋆), E⋆W = EW ⋆. (9)

Let r =
E

E⋆
=

I + θA

I⋆ + θA⋆
=

W

W ⋆
, then E = rE⋆, W = rW ⋆ and I + θA = r(I⋆ + θA⋆) =

rW ⋆.
For S = S⋆, the first equation of system (1) gives

Ṡ = Ṡ⋆ = N − cS⋆ − βS⋆(I + θA)− βwS
⋆W = 0.

Replacing I + θA,W in the above equation by their values given by (9) yields

N − cS⋆ − rβS⋆(I⋆ + θA⋆)− rβwS
⋆W ⋆ = 0.

By comparing with the first equation of system (6), we deduce that r = 1 and therefore
E = E⋆,W = W ⋆ and I + θA = I⋆ + θA⋆ ∀θ > 0. Finally,

Ḣ(S,E, I, A,W ) = 0 ⇐⇒ (S = S⋆, E = E⋆, I = I⋆, A = A⋆,W = W ⋆).

Thus {E⋆ = (S⋆, E⋆, I⋆, A⋆,W ⋆)} is the largest invariant set contained in
{(S,E, I, A,W )

∣∣Ḣ = 0}. Then the global stability of the equilibrium E⋆ =
(S⋆, E⋆, I⋆, A⋆,W ⋆) holds according to the Lasalle invariance principle [14].

5 Numerical Examples

The parameters used in the implementation of the model (1) are given by c = 1, β =
0.5, βw = 0.3, ω = 3, γ = 5, ε = 0.3, σ = 0.75, θ = 0.25.
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Figure 2: (S(t), E(t), I(t), A(t), R(t),W (t)) behaviours for N = 1(left), then R = 0.044 ≤ 1,
and for N = 10(right), then R = 0.438 ≤ 1.

Four tests were considered. Two of them (Figure 2) confirming the global stability
of the disease-free equilibrium E0 when R ≤ 1. We note that the solution of system (1)
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converges asymptotically to E0 and only susceptible compartment persists and the other
compartments vanish.

The other two tests (Figure 3) confirm the global stability of the disease-persistence
equilibrium E⋆ when R > 1. We observe that the solution of system (1) converges
asymptotically to E⋆ and all compartments persist.
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Figure 3: (S(t), E(t), I(t), A(t), R(t),W (t)) behaviours for N = 100(left), then R = 4.375 > 1,
and for N = 1000(right), then R = 43.75 > 1.

6 Concluding Remarks

In this paper, we have considered an epidemic model for the Covid-19 coronavirus, in
which we have divided the total population into five compartments, namely, susceptible,
exposed, symptomatic infected, asymptomatic infected and recovered, and we investi-
gated the dynamical behavior of this model. Here, we have found that

R =
N(β + βw)

(
(1− σ)ω + σωθ

)
c(ω + c)(γ + c)

is the basic reproduction number of system (1), which helps us to determine the dynamical
behavior of the system. We showed, for system (1), that the disease-free equilibrium E0

is globally asymptotically stable when R < 1. However, when R > 1, the endemic
equilibrium E⋆ is both locally and globally stable. These results have been verified
numerically for some parameters of the model.
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