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Abstract: The aim of this work is to study the capacity theory in anisotropic
Sobolev spaces. In particular, we will give main properties of capacity, including
monotonicity, countable subadditivity and several convergence results. Moreover, we
will define the anisotropic Sobolev space with zero boundary values B1,p⃗

0 (Ω), where Ω
is an open bounded set of RN (N ≥ 2), p⃗ = (p0, p1, ..., pN ) and 1 < p0, p1, ..., pN < ∞.
This allows us to prove that the Dirichlet energy integral has a minimizer in the
anisotropic Sobolev space with zero boundary values B1,p⃗

0 (Ω).

Keywords: capacity; anisotropic Sobolev space with zero boundary values; Dirichlet
energy.

Mathematics Subject Classification (2010): 31B15, 31C15, 46E35, 70Kxx,
93XX.

1 Introduction

The notion of capacity is an essential tool in the study of nonlinear potential theory,
which allows us to measure sets more precisely than the usual Lebesgue measure, to see
that functions are better defined almost everywhere (quasi everywhere). Capacities play
a key role in the study of solutions of partial differential equations, for example, Boccardo
et al. studied in [6] the existence and non existence of solutions of the following problem:

(P)

{
−△u+ u | ∇u |2= µ in Ω,

u = 0 on ∂Ω,

∗ Corresponding author: mailto:rachid.elharch@usmba.ac.ma

© 2022 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 1
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2 Y. AKDIM, R. ELHARCH, M.C. HASSIB AND S. LALAOUI RHALI

where Ω is a bounded open set in RN , N ≥ 2, and µ is a Radon measure on Ω. More
precisely, the authors proved the existence of a solution u in H1

0 (Ω) for the problem (P)
if and only if the measure µ does not charge the sets of capacity zero in Ω. Capacity is
also a tool to understand the point-wise behavior of functions in Sobolev spaces.

The theory of nonlinear potential was studied by Maz’ya and Khalvin in [13] and by
Meyers in [20] in the Lp space ( 1 < p < +∞ ) by introducing the concept of capacity
in those spaces which allowed very rich applications in functional analysis, harmonic
analysis, theory of probabilities and partial differential equations. The Sobolev capacity
for constant exponent spaces has found a great number of applications, see Maz’ya [19],
Evans and Gariepy [8], and Heinonen et al. in [12]. Also, Kilpeläinen introduced in
[14] the weighted Sobolev capacity and discussed the role of capacity in the point-wise
definitions of functions in Sobolev spaces involving the weights of Muckenhoup’s Ap-class.
On the other hand, Harjulehto et al. [9] generalized the Sobolev capacity to the variable
exponent case. Later, this notion was defined in Orlicz spaces in [4] by N. Aissaoui and
A. Benkirane and in Musielak-Orlicz space by M.C. Hassib, Y. Akdim, A. Benkirane
and N. Aissaoui in [2, 3].

In a recent work [5], we have defined the Ck,p⃗ capacity in anisotropic Sobolev spaces.
Also, we proved that Ck,p⃗ is a Choquet capacity.

The Sobolev space with zero boundary values was classically defined as a completion
of compactly supported smooth functions with respect to the Sobolev space [18]. Indeed,
the Sobolev space with zero boundary is essential to specify or compare boundary values
of Sobolev functions. This is particularly important in connection with boundary value
problems in the calculus of variations and partial differential equations and with compar-
ison principales in potential theory. Then, the variable exponent Sobolev space with zero
boundary values has been defined in [10] following a method developed by Kilpeläinen,
Kinnunen and Martio in [16] for metric measure spaces. On the other hand, this no-
tion was generalized by M.C. Hassib and Y. Akdim [11] to weighted variable exponent
Sobolev spaces on metric measure spaces. In [22], T. Ohno and T. Shimomura stud-
ied the Musielak-Orlicz-Sobolev space with zero boundary values on any metric space
endowed with a Borel regular measure.

Our goal in this work is to study the anisotropic Sobolev space with zero boundary
values using the concept of capacity.

The present paper is organized as follows. In the second section, we recall some
preliminary results on anistropic Sobolev spaces and some properties of capacities. In
Section 3, we develop a capacity theory in this space by including monotonicity, countable
subadditivity and serval convergence results, we define the anisotropic Sobolev space with
zero boundary values and we show some of its properties. As an application of our results,
we consider, in Section 4, the Dirichlet energy and we prove that it has a minimizer in
anisotropic Sobolev spaces with zero boundary values.

2 Preliminaries

2.1 Anisotropic Sobolev spaces

Let Ω be an open bounded domain in RN (N ≥ 2) with boundary ∂Ω.
Let 1 < p0, p1, ..., pN < ∞ and denote

p⃗ = (p0, p1, ..., pN ), D0u = u and Diu = ∂u
∂xi

for i = 1, ...., N.
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Set

p = min{p0, p1, ..., pN}, then p > 1.

The anisotropic Sobolev space W 1,p⃗(Ω) is defined as follows:

W 1,p⃗(Ω) = {u ∈ Lp0(Ω) and Diu ∈ Lpi(Ω), i = 1, ..., N}.

We recall that the W 1,p⃗(Ω) is a separable, reflexive Banach space (see [1]) with respect
to the norm

∥u∥W 1,p⃗(Ω)=

N∑
i=0

∥Diu∥Lpi (Ω).

We recall also the space W 1,p⃗
0 (Ω) is the closure of C∞

0 (Ω) with respect to this norm.
The theory of such anisotropic spaces was developed in [25], [21], [23], [24]. It was

shown that C∞
0 (Ω) is dense in W 1,p⃗

0 (Ω) and W 1,p⃗
0 (Ω) is a reflexive Banach space. For

any p⃗ = (p0, p1, ....., pN ), with 1 < pi < ∞, i = 0, 1, ......, N , the dual space of the

anisotropic Sobolev space W 1,p⃗
0 (Ω) is equivalent to W−1,p⃗′

(Ω), where p⃗′ = (p′0, p
′
1, ..., p

′
N )

and p′i =
pi

pi − 1
for all i = 0, 1, ..., , N.

Proposition 2.1 Let p ∈ [1,+∞[ and (fn)n be a sequence in (Lp(µ), ∥.∥p) whose
series of norms

∑
n
∥fn∥p converges. Then the series of functions

∑
n
fn converges for the

norm ∥.∥p and we have ∥
∑
n
fn∥p≤

∑
n
∥fn∥p.

Proof. For n ∈ N∗ fixed, according to the Minkowski inequality, we have∥∥∥∥∥
n∑

k=0

|fk|

∥∥∥∥∥
p

≤
n∑

k=0

∥fk∥p≤
+∞∑
k=0

∥fk∥p.

It follows from the monotone convergence theorem that(∫
Ω

(
+∞∑
k=0

|fk|

)p

dµ

) 1
p

≤
+∞∑
k=0

∥fk∥p.

Thus, ∥∥∥∥+∞∑
k=0

fk

∥∥∥∥
p

≤
+∞∑
k=0

∥fk∥p.

Proposition 2.2 [ [7]] Let E be a Banach space. If (fn)n converges weakly to f in
E, then ∥fn∥ is bounded and ∥f∥≤ lim inf∥fn∥.

By the application of Proposition 2.1, we have the following result.

Lemma 2.1 Let (fn) be a sequence in W 1,p⃗(Ω) whose series of norms
∑
n

∥fn∥W 1,p⃗(Ω)

converges. Then we have

∥
∑
n

fn∥W 1,p⃗(Ω)≤
∑
n

∥fn∥W 1,p⃗(Ω).
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2.2 Capacity

Definition 2.1 Let E be a topological space and T be the class of Borel sets in E,
and let C : T → [ 0,+∞ ] be a function.
1) The function C is called a capacity if the following axioms are satisfied:
i) C(∅) = 0.
ii) X ⊂ Y ⇒ C(X) ≤ C(Y ) for all X and Y in T (monotonicity).
iii) For all sequences (Xn) ⊂ T

C(
⋃
n

Xn) ≤
∑
n

C(Xn) (countable subadditivity).

2) The capacity C is called an outer capacity if, for all X ∈ T,

C(X) = inf{C(O) : O ⊃ X,O is open }.

3) The capacity C is called an interior capacity if, for all X ∈ T,

C(X) = sup{C(K) : K ⊂ X,K is compact}.

4) A property that holds true, except perhaps on a set of capacity zero, is said to be true
C-quasi everywhere (abbreviated C − q.e) .

Definition 2.2 Let f be a real-valued function being finite C-q.e and (fn) be a
sequence of real-valued function being finite C-q.e.
1) We say that (fn) converges to f in C-capacity if

∀ε > 0, lim
n→+∞

C ({x : |fn(x)− f(x)| > ε}) = 0.

2) We say that (fn) converges to f C-quasi uniformly (abbreviated C − q.u) if
∀ε > 0,∃X ∈ T : C(X) < ε and (fn) converges to f uniformly on Xc.

Using same arguments as in Remark 1.27 in [18], we obtain the following remark.

Remark 2.1 Let Ω ⊂ RN and u, v ∈ W 1,p⃗(Ω), then max(u, v) ∈ W 1,p⃗(Ω) and
min(u, v) ∈ W 1,p⃗(Ω). Moreover, for j = 1, ..., N, we have

Dj max(u, v) =

{
Dju almost everywhere in {x ∈ Ω, u(x) ≥ v(x)},
Djv almost everywhere in {x ∈ Ω, v(x) ≥ u(x)}.

3 Anisotropic Sobolev p⃗ - Capacity

In the whole of this paper, we assume that Ω is an open bounded domain in RN (N ≥ 2)
with boundary ∂Ω and µ is a measure of Lebesegue.

Definition 3.1 The anisotropic Sobolev p⃗ - capacity of the set E ⊂ Ω is defined by

Cp⃗(E) = inf
u∈A(E)

{
∥u∥W 1,p⃗(Ω)

}
,

where

A(E) =
{
u ∈ W 1,p⃗(Ω) : u ≥ 1 on an open set containing E and u ≥ 0

}
.

If A(E) = ϕ, we set Cp⃗(E) = ∞. Functions belonging to A(E) are called admissible
functions for E.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (1) (2022) 1–12 5

Lemma 3.1 The anisotropic Sobolev p⃗ - capacity is a capacity.

Proof.

i) It is obvious that Cp⃗(ϕ) = 0.

ii) A(E2) ⊂ A(E1) implies Cp⃗(E1) ≤ Cp⃗(E2) for every E1 ⊂ E2.

iii) Let ε > 0, we may assume that

∞∑
i=0

Cp⃗(Ei) < +∞.

Let (Ei) be a subset of Ω
(
if

∞∑
i=0

Cp⃗(Ei) = +∞, there is nothing to show
)
,

then
∀i ∈ N, Cp⃗(Ei) < +∞,

therefore, we choose ui ∈ A(Ei) so that

∥ui∥W 1,p⃗(Ω)≤ Cp⃗(Ei) + ε× 2−i−1, i = 0, 1, 2, ...

Let v = supui, we show that v is an admissible function for

+∞⋃
i=0

Ei.

Indeed, for all i ∈ N, we have by Lemma 2.1 that

∥supui∥W 1,p⃗(Ω)≤ ∥
+∞∑
i=0

ui∥W 1,p⃗(Ω)≤
+∞∑
i=0

∥ui∥W 1,p⃗(Ω),

thus,

∥v∥W 1,p⃗(Ω)≤
+∞∑
i=0

∥ui∥W 1,p⃗(Ω)≤
+∞∑
i=0

Cp⃗(Ei) + ε,

which implies that v ∈ W 1,p⃗(Ω). Since ui ∈ A(Ei), there exists an open set Oi ⊃ Ei

such that ui ≥ 1 on Oi for every i= 0,1,2,..., it follows that

v = supui ≥ 1 on

+∞⋃
i=1

Oi which is an open set containing

+∞⋃
i=0

Ei.

Hence we conclude that Cp⃗ is a capacity.

Lemma 3.2 Let E ⊂ Ω. The anistropic Sobolev p⃗ - capacity of E is given by

Cp⃗(E) = inf
u∈B(E)

{
∥u∥W 1,p⃗(Ω)

}
,

where
B(E) =

{
u ∈ A(E) : 0 ≤ u ≤ 1

}
.

Proof. Clearly, we have
B(E) ⊂ A(E),

thus,

Cp⃗(E) ≤ inf
u∈B(E)

{
∥u∥W 1,p⃗(Ω)

}
.
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For the reverse inequality, let ε > 0 and let u ∈ A(E) such that

∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

Then we have v = max(0,min(u, 1)) ∈ B(E). Thus, v ≤ u and by Remark 2.1, we have

| ∂v

∂xj
|≤| ∂u

∂xj
| for j = 1, ....., N almost everywhere.

Thus,

inf
u∈B(E)

{
∥u∥W 1,p⃗(Ω)

}
≤ ∥v∥W 1,p⃗(Ω)≤ ∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

Letting ε → 0, we obtain

inf
u∈B(E)

{
∥u∥W 1,p⃗(Ω)

}
≤ Cp⃗(E).

Theorem 3.1 The anisotropic Sobolev p⃗ - capacity is an outer capacity.

Proof. Indeed, by monotonicity, we have

Cp⃗(E) ≤ inf{Cp⃗(O) : E ⊂ O is open}.

To prove the other inequality, let ε > 0 and take u ∈ A(E) such that

∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

Since u ∈ A(E), there is an open set O containing E such that u ≥ 1 on O.
This implies that

Cp⃗(O) ≤ ∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

The claim follows by letting ε → 0.

Proposition 3.1 Let µ be a Lebesegue measure on Ω and E ⊂ Ω, then

µ(E) ≤ µ(Ω)Cp⃗(E).

Proof. If Cp⃗(E) = ∞, there is nothing to prove. Thus we may assume that
Cp⃗(E) < ∞. Let ε > 0 and take u ∈ A(E) such that

∥u∥W 1,p⃗(Ω)≤ Cp⃗(E) + ε.

There is an open O ⊃ E such that u ≥ 1 in O and u ≥ 0, thus

µ(E) ≤ µ(O) ≤
∫
O

|u|dµ ≤
∫
Ω

|u|dµ.

On the other hand, by Hölder’s inequality, we have∫
Ω

|u|dµ ≤ (µ(Ω))1−
1
p0 ∥u∥W 1,p⃗(Ω)≤ µ(Ω) (Cp⃗(E) + ε) .

The claim follows by letting ε → 0.
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Theorem 3.2 Let (kn) be a decreasing sequence of compacts and k =
⋂
n∈N

kn, then

lim
n→∞

Cp⃗(kn) = Cp⃗(k).

Proof. First, we observe that Cp⃗(k) ≤ lim
n→∞

Cp⃗(kn). On the other hand, let O be an

open set such that k ⊂ O, thus

k ∩Oc = ϕ.

The sequence (k
′

n) defined for all n by k
′

n = kn∩Oc is a decreasing sequence of compacts

that satisfies
⋂
n∈N

k
′

n = ∅. Then, there exists n0 such that k
′

n0
= ∅. Hence, for all n ≥ n0,

k
′

n = ∅ and then kn ⊂ O, for all n ≥ n0. Therefore,

lim
n→∞

Cp⃗(kn) ≤ Cp⃗(O).

And since Cp⃗ is an outer capacity, we obtain the claim by taking infimum over all open
sets O containing k.

Proposition 3.2 If there exists u ∈ W 1,p⃗(Ω) such that u = +∞ on an open set
containing E, then Cp⃗(E) = 0.

Proof. Let u ∈ W 1,p⃗(Ω) be such that u = +∞ on an open set O containing E, then
u ≥ α, for all α > 0. Therefore,

∀α > 0, Cp⃗(E) ≤ 1

α
∥u∥W 1,p⃗(Ω).

Letting α → +∞, we obtain Cp⃗(E) = 0.

Theorem 3.3 Let u and (un)n be in W 1,p⃗(Ω) and consider the following proposi-
tions:
i) un → u strongly in W 1,p⃗(Ω).
ii) un → u in Cp⃗-capacity .
iii) There is a subsequence (unj

) such that unj
→ u in Cp⃗ - q.u.

iv) (unj
) → u in Cp⃗.- q.e.

Then we have

i) ⇒ ii) ⇒ iii) ⇒ iv).

Proof.

• We show that i) ⇒ ii).

By Proposition 3.2, we have u and un are finite Cp⃗ -q.e, for all n.

Let ε > 0, then

Cp⃗

({
x : |un − u|(x) > ε

})
≤ ∥un − u∥W 1,p⃗(Ω)

ε
.

• We show that ii) ⇒ iii).
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Let ε > 0, then there exists unj
such that

Cp⃗

({
x : |unj − u|(x) > 2−j

})
≤ ε · 2−j .

We put

Ej =
{
x : |unj

− u|(x) > 2−j
}

and Gm =
⋃
j≥m

Ej .

Then we have
Cp⃗(Gm) ≤

∑
j≥m

ε · 2−j < ε.

On the other hand,

∀x ∈ (Gm)c,∀j ≥ m |unj − u|(x) ≤ 2−j ,

thus
unj

→ u in Cp⃗ − q.u.

• We show that iii) ⇒ iv).

We have

∀j ∈ N,∃Xj : Cp⃗(Xj) ≤
1

j
,

thus,

unj
converges uniformly to u on (Xj)

C .

We put X =
⋂
j

Xj , then Cp⃗(X) = 0 and unj → u on XC .

As an immediate consequence of Theorem 3.3 and Proposition 3.1, we have the following
result.

Corollary 3.1 If (un)n is a sequence which converges to u in W 1,p⃗(Ω), then there
exists a subsequence of (un)n which converges to u, µ a.e.

Definition 3.2 A function u : Ω → [−∞,+∞] is called a Cp⃗ - quasicontinuous
function in Ω if for every ε > 0, there is a set X such that Cp⃗(X) < ε and u|Ω\X is
continuous.

Theorem 3.4 The anistropic Sobolev p⃗ - capacity Cp⃗ satisfies the following proper-
ties:

1) If O is an open set of Ω and E ⊂ Ω is such that µ(E) = 0, then

Cp⃗(O) = Cp⃗(O − E).

2) Let u and v be Cp⃗− quasicontinuous functions in Ω, we have
i) if u = v almost everywhere in an open O ⊂ Ω, then

u = v Cp⃗ − quasi everywhere in O,

ii) If u ≤ v almost everywhere in an open O ⊂ Ω, then

u ≤ v Cp⃗ − quasi everywhere in O.
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Proof.

1) By monotonicity of Cp⃗, we get Cp⃗(O) ≥ Cp⃗(O − E).
Let ε > 0 and let u ∈ A(O − E) be such that

∥u∥W 1,p⃗(Ω)≤ Cp⃗(O − E) + ε.

Then there exists an open G ⊂ Ω with (O −E) ⊂ G and u ≥ 1 almost everywhere
in G. Since G∪O is open, O ⊂ G∪O and u ≥ 1 almost everywhere in G∪ (O−E),
and almost everywhere in G ∪O since µ(E) = 0, we have u ∈ A(O)

Cp⃗(O) ≤ ∥u∥W 1,p⃗(Ω)≤ Cp⃗(O − E) + ε

by letting ε → 0 , we deduce that Cp⃗(O) ≤ Cp⃗(O − E).

2) Since Cp⃗ is an outer capacity, we get the results by [15].

Lemma 3.3 For any bounded open O ⊂ Ω, we have

µ(O) = 0 ⇐⇒ Cp⃗(O) = 0.

Proof. If µ(O) = 0, then, by applying Theorem 3.4, we get Cp⃗(O) = Cp⃗(O\O) =
Cp⃗(ϕ) = 0. On the other hand, if Cp⃗(O) = 0, then, by Proposition 3.1, µ(O) ≤ Cp⃗(O) =
0.

Proposition 3.3 Let (un)n, u ∈ W 1,p⃗(Ω) be such that un ⇀ u weakly in W 1,p⃗(Ω),
then lim inf(un) ≤ u ≤ lim sup(un) Cp⃗-q.e.

Proof. Since W 1,p⃗(Ω) is a reflexive space, un ⇀ u weakly in W 1,p⃗(Ω). Then, by
the Banach-Saks theorem, there is a subsequence denoted again by (un) such that the

sequence (gn) defined by gn = 1
n

n∑
i=1

ui converges to u strongly in W 1,p⃗(Ω).

By Theorem 3.3, there is a subsequence of (gn) denoted again by (gn) such that

lim
n→+∞

gn = u Cp⃗ − q.e.

On the other hand,
lim inf un ≤ lim

n→+∞
gn.

Therefore,

lim inf(un) ≤ u Cp⃗ − q.e.

For the second inequality, it suffices to replace un by (−un) in the first inequality.

3.1 Anisotropic Sobolev spaces with zero boundary values

Definition 3.3 We say that a function u belongs to the anisotropic Sobolev space
with zero boundary values, and we denote u ∈ B1,p⃗

0 (Ω) if there is a Cp⃗-quasicontinuous
function ũ ∈ W 1,p⃗(RN ) such that ũ = u almost everywhere in Ω and ũ = 0 Cp⃗ -quasi

everywhere in RN\Ω. The set B1,p⃗
0 (Ω) is endowed with the norm

||u||
B1,p⃗

0 (Ω)
= ||ũ||W 1,p⃗(RN ).
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Theorem 3.5 B1,p⃗
0 (Ω) is a Banach space.

Proof. Let (un)n be a Cauchy sequence in B1,p⃗
0 (Ω), for every n, there is a Cp⃗-

quasicontinuous function ũn ∈ W 1,p⃗(RN ) such that ũn = un almost everywhere in Ω and
ũn = 0Cp⃗-quasi everywhere in RN\Ω.

Since W 1,p⃗(RN ) is a Banach space, there is a function u such that ũn → u in
W 1,p⃗(RN ) as n → +∞. By applying Theorem 3.3, we deduce that u is Cp⃗− quasi-
continuous and by Proposition 3.3, we have u = 0 Cp⃗ -q.e in RN\Ω. Consequently,
u ∈ B1,p⃗

0 (Ω) and we conclude that the spaces B1,p⃗
0 (Ω) are complete.

Corollary 3.2 The space B1,p⃗
0 (Ω) is reflexive.

Proof. The space W 1,p⃗(RN ) is a reflexive Banach space, by applying Theorem 3.5,

we deduce the space B1,p⃗
0 (Ω) is closed in W 1,p⃗(RN ) and therefore B1,p⃗

0 (Ω) is reflexive.

Corollary 3.3 We have W 1,p⃗
0 (Ω) ⊂ B1,p⃗

0 (Ω) ⊂ W 1,p⃗(Ω).

Proof. Since D(Ω) ⊂ B1,p⃗
0 (Ω) and by applying Theorem 3.5, we obtain the first

inclusion. The second inclusion follows directly from the definition of the space B1,p⃗
0 (Ω).

Proposition 3.4 Let u ∈ B1,p⃗
0 (Ω) and v ∈ W 1,p⃗(RN ) be bounded functions. If v is

Cp⃗- quasicontinuous, then uv ∈ B1,p⃗
0 (Ω).

Proof. Let ũ ∈ W 1,p⃗(RN ) be a Cp⃗- quasicontinuous representative function of u.
ũv is Cp⃗- quasicontinuous in RN . Let D = {x ∈ RN\Ω : ũv ̸= 0}, D = G ∪ H, where
G = {x ∈ RN\Ω : ũ ̸= 0} and H = {x ∈ RN\Ω : v = ∞}. It is obvious that Cp⃗(G) = 0
and by Proposition 3.2, we have Cp⃗(H) = 0, thus Cp⃗(D) = 0. Therefore, ũv = 0 Cp⃗ -

quasi everywhere in Ω. Since ũv = uv a.e in Ω, we get uv ∈ B1,p⃗
0 (Ω).

Theorem 3.6 Let O ⊂ Ω be such that Cp⃗(O) = 0, we have

B1,p⃗
0 (Ω) = B1,p⃗

0 (Ω\O).

Proof. It is obvious that B1,p⃗
0 (Ω\O) ⊂ B1,p⃗

0 (Ω).

Let u ∈ B1,p⃗
0 (Ω), then there is a Cp⃗- quasicontinuous function ũ ∈ W 1,p⃗(RN ) such

that ũ = u a.e in Ω and ũ = 0 Cp⃗- quasi everywhere in RN\Ω. Since Cp⃗(O) = 0, we have

ũ = 0 Cp⃗ - quasi everywhere in RN\(Ω\O). Thus u ∈ B1,p⃗
0 (Ω\O).

Remark 3.1 If Cp⃗(∂Ω) = 0, then B1,p⃗
0 (Ω̊) = B1,p⃗

0 (Ω).

4 Application

4.1 The Dirichlet energy integral minimisers

Definition 4.1 Let w ∈ W 1,p⃗(Ω). For all u ∈ B1,p⃗
0 (Ω), we define I p⃗Ω,w(u) by

I p⃗Ω,w(u) =

∫
Ω

| w | dx+

N∑
i=0

∫
Ω

(
| ∂u

∂xi
|pi + | ∂w

∂xi
|pi

)
dx.

I p⃗Ω,w is called the energy operator corresponding to the boundary value function w.
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Lemma 4.1 [17] Let H be a reflexive Banach space. If I : H → R is a convex, lower
semi-continuous and coercive operator, then there is an element in H that minimizes I.

Theorem 4.1 Let B1,p⃗
0 (Ω) be the anisotropic Sobolev space with zero boundary val-

ues. Then there exists a function u ∈ B1,p⃗
0 (Ω) such that

I p⃗Ω,w(u) = inf
v∈B1,p⃗

0 (Ω)
I p⃗Ω,w(v).

Proof. It follows from Theorem 3.5 and Corollary 3.2 that B1,p⃗
0 (Ω) is a reflexive

Banach space. Since the function x → xp is convex for every fixed 1 < p < ∞, we
deduce that I p⃗Ω,w is convex. Moreover, I p⃗Ω,w is lower semi-continuous and coercive, hence
all assumptions of Lemma 4.1 are satisfied.

4.2 Conclusion

In this work, we first show that the anisotropic Sobolev p⃗-capacity Cp⃗ is an outer capacity
and we give sufficient conditions ensuring that Cp⃗(E) = 0 whenever E is a subset of Ω.
Then, we discuss the convergence of a sequence in Cp⃗-capacity. This allows us to show

that the anisotropic Sobolev space with zero boundary values B1,p⃗
0 (Ω) is a reflexive

Banach space. We also prove that B1,p⃗
0 (Ω) coincides with B1,p⃗

0 (Ω\E) for all E ⊂ Ω
satisfying Cp⃗(E) = 0. Finaly, we apply our results to show that the Dirichlet energy has
a minimizer in anisotropic Sobolev spaces with zero boundary values.
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[10] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen. The Dirichlet energy integral and
variable exponent Sobolev spaces with zero boundary values. Potential Analysis 25 (3)
(2006) 205–222.

[11] M.C. Hassib, Y. Akdim. Weighted Variable Exponent Sobolev spaces on metric measure
spaces. Moroccan Journal of Pure and Applied Analysis 4 (2) (2018) 62–76.



12 Y. AKDIM, R. ELHARCH, M.C. HASSIB AND S. LALAOUI RHALI
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[16] T. Kilpeläinen, J. Kinnunen, and O. Martio. Sobolev spaces with zero boundary values on
metric spaces. Potential Analysis. 12 (3) (2000) 233–247.

[17] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities and Their
Applications. Academic Press, London, 1980.

[18] J. Kinnunen. Sobolev spaces. Department of Mathematics and Systems Analysis. Aalto Uni-
versity, 2017.

[19] V. G. Maz’ya. Sobolev spaces. Translated from the Russian by TO Shaposhnikova. Springer
Ser. Soviet Math., Springer, 1985.

[20] N. G. Meyers. A theory of capacities for potentials of functions in Lebesgue classes. Math.,
Scand. 26 (2) (1970) 255–292.

[21] S.M. Nikolski. On imbedding, continuation and approximation theorems for differentialble
functions of several variables. Russian Math. Surveys 16 (5) (1961) 55–104.

[22] T. Ohno and T. Shimomura. Musielak-Orlicz-Sobolev spaces with zero boundary values on
metric measure spaces. Czechoslovak Mathematical Journal 66 (2) (2016) 371–394.

[23] J. Rakosnik. Some remarks to anisotropic Sobolev spaces I. Beiträge zur Analysis. 13 (1979)
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1 Introduction

By definition, an autonomous planar Kolmogorov system is a system of the form
x′ =

dx

dt
= xF (x, y) ,

y′ =
dy

dt
= yG (x, y) ,

(1)

these equations are equivalent to the differential equation

dy

dx
=

yQ (x, y)

xP (x, y)
,

where F , G are two functions in the variables x and y and the derivatives are taken
with respect to the time variable. The theory of differential equations is one of the
basic tools of mathematical science [1–3,20]. System (1) is frequently used to model the
iteration of two species occupying the same ecological niche [14, 16]. There are many
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natural phenomena which can be modeled by the Kolmogorov systems, for example, in
mathematical ecology and population dynamics [11,15,17,18], chemical reactions, plasma
physics [13], hydrodynamics [7], etc. We remind that in the phase plane, a limit cycle
of system (1) is an isolated periodic orbit in the set of all its periodic orbits. In the
qualitative theory of planar dynamical systems [9, 19], one of the most important topics
is related to the second part of the unsolved Hilbert 16th problem [12]. There is a huge
literature about limit cycles, most of it deal essentially with their detection, their number
and their stability and rare are papers concerned with giving them explicitly [4, 5].

System (1) is integrable on an open set Ω of R2 if there exists a non constant C1

function H : Ω → R, called a first integral of the system on Ω, which is constant on the
trajectories of the system (1) contained in Ω, i.e., if

dH (x, y)

dt
=

∂H (x, y)

∂x
xF (x, y) +

∂H (x, y)

∂y
yG (x, y) ≡ 0 in the points of Ω.

Moreover, H = h is the general solution of this equation, where h is an arbitrary
constant. It is well known that for differential systems defined on the plane R2, the
existence of a first integral determines their phase portrait [8], and one of the classical
tools in the classification of all trajectories of a dynamical system is to find first integrals,
for more details about the first integral, see for instance [6, 10].

In this paper, we are interested in studying the existence of a first integral and
the curves which are formed by the trajectories of the autonomous planar Kolmogorov
systems of the form

x′ = x
(
B1 (x, y) sin

(
A3(x,y)
A4(x,y)

)
+B3 (x, y) sin

(
A1(x,y)
A2(x,y)

))
,

y′ = y
(
B2 (x, y) sin

(
A5(x,y)
A6(x,y)

)
+B3 (x, y) sin

(
A1(x,y)
A2(x,y)

))
,

(2)

where A1 (x, y) , A2 (x, y) , A3 (x, y) , A4 (x, y) , A5 (x, y) , A6 (x, y) , B1 (x, y) , B2 (x, y)
and B3 (x, y) are homogeneous polynomials of degree a, a, b, b, c, c, n, n, m, respectively.

We define the trigonometric functions

f1 (θ) = B1 (cos θ, sin θ)
(
cos2 θ

)
sin
(

A3(cos θ,sin θ)
A4(cos θ,sin θ)

)
+

B2 (cos θ, sin θ)
(
sin2 θ

)
sin
(

A5(cos θ,sin θ)
A6(cos θ,sin θ)

)
,

f2 (θ) = B3 (cos θ, sin θ) sin
(

A1(cos θ,sin θ)
A2(cos θ,sin θ)

)
,

f3 (θ) = (cos θ sin θ)B2 (cos θ, sin θ) sin
(

A5(cos θ,sin θ)
A6(cos θ,sin θ)

)
−

(cos θ sin θ)B1 (cos θ, sin θ) sin
(

A3(cos θ,sin θ)
A4(cos θ,sin θ)

)
.

2 Main Result

Our main result on the integrability and the periodic orbits of the Kolmogorov system
(2) is as follows.

Theorem 2.1 Consider the Komogorov system (2), then the following statements
hold.
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(1) If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 2, 4, 6 and n ̸= m, then system (2) has
the first integral

H (x, y) =
(
x2 + y2

)n−m
2 exp

(
(m− n)

∫ arctan y
x

0

M (s) ds

)
− (n−m)F

(
arctan y

x

)
,

where M (θ) = f1(θ)
f3(θ)

, N (θ) = f2(θ)
f3(θ)

and F (θ) =
∫ θ

0
exp

(
(m− n)

∫ w

0
M (s) ds

)
N (w) dw.

The curves which are formed by the trajectories of the differential system (2), in
Cartesian coordinates are written as

x2 + y2 =

[(
h+ (n−m)F

(
arctan

y

x

))
exp

(
(n−m)

∫ arctan y
x

0

M (s) ds

)] 2
n−m

,

where h ∈ R. Moreover, the system (2) has no periodic orbits.
(2) If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 2, 4, 6 and n = m, then system (2) has

the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(M (s) +N (s)) ds

)
,

and the curves which are formed by the trajectories of the differential system (2), in
Cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(M (s) +N (s)) ds

)
= 0,

where h ∈ R. Moreover, the system (2) has no periodic orbits.
(3) If f3 (θ) = 0 for all θ ∈ R, then system (2) has the first integral H = y

x , and the
curves which are formed by the trajectories of the differential system (2), in Cartesian
coordinates are written as y − hx = 0, where h ∈ R. Moreover, the system (2) has no
periodic orbits.

Proof. In order to prove our results, we write the differential system (2) in polar
coordinates (r, θ) , defined by x = r cos θ and y = r sin θ, then system (2) becomes{

r′ = f1 (θ) r
n+1 + f2 (θ) r

m+1,
θ′ = f3 (θ) r

n,
(3)

where the trigonometric functions f1 (θ) , f2 (θ) , f3 (θ) are given in the Introduction,
r′ = dr

dt and θ′ = dθ
dt .

If f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 2, 4, 6 and n ̸= m, we take as a new indepen-
dent variable the coordinate θ, then the differential system (3) becomes the differential
equation

dr

dθ
= M (θ) r +N (θ) r1+m−n, (4)

where M (θ) = f1(θ)
f3(θ)

and N (θ) = f2(θ)
f3(θ)

, which is a Bernoulli equation. By introducing

the standard change of variables ρ = rn−m, we obtain the linear equation

dρ

dθ
= (n−m) (M (θ) ρ+N (θ)) . (5)
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The general solution of linear equation (5) is

ρ (θ) = exp

(
(n−m)

∫ θ

0

M (s) ds

)
(µ+ (n−m)F (θ)) ,

where µ ∈ R.
From the expression of the constant µ, we deduce the first integral of system (2) as

H (x, y) =
(
x2 + y2

)n−m
2 exp

(
(m− n)

∫ arctan y
x

0

M (s) ds

)
+ (m− n)F

(
arctan y

x

)
.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the open
quadrants, and let hΓ = H (Γ) .

The curves H = h with h ∈ R, which are formed by the trajectories of the differential
system (2), in Cartesian coordinates are written as

x2 + y2 =

[(
h+ (n−m)F

(
arctan

y

x

))
exp

(
(n−m)

∫ arctan y
x

0

M (s) ds

)] 2
n−m

,

where h ∈ R.
Therefore the periodic orbit Γ is contained in the curve

x2 + y2 =

[(
hΓ + (n−m)F

(
arctan

y

x

))
exp

(
(n−m)

∫ arctan y
x

0

M (s) ds

)] 2
n−m

.

But this curve cannot contain the periodic orbit Γ in the realistic quadrant (x >
0, y > 0), because this curve in the realistic quadrant has at most a unique point on
every straight line y = ηx for all η ∈ ]0,+∞[ .

To be convinced by this fact, one has to compute the abscissa points of the intersection
of this curve with the straight line y = ηx for all η ∈ ]0,+∞[ , the abscissa is given by

x =
1√

1 + η2

[
(hΓ + (n−m)F (arctan η)) exp

(
(n−m)

∫ arctan η

0

M (s) ds

)] 1
n−m

= f (η) .

Since f is a function (of η), there exists at most one value of x on the half-line OX+.
Consequently, at most one point in the realistic quadrant (x > 0, y > 0) exists. So, this
curve cannot contain the periodic orbit.

Hence statement (1) of Theorem 1 is proved.
Suppose now that f3 (θ) ̸= 0, Ai (cos θ, sin θ) ̸= 0 for i = 2, 4, 6 and n = m.
Taking as the independent variable the coordinate θ, this differential system (3) is

written as
dr

dθ
= (M (θ) +N (θ)) r. (6)

The general solution of equation (6) is

r (θ) = µ exp

(∫ θ

0

(M (s) +N (s)) ds

)
,
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where µ ∈ R.
From the expression of the constant µ, we deduce the first integral of system (2) as

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(M (s) +N (s)) ds

)
.

Let Γ be a periodic orbit surrounding an equilibrium located in one of the realistic
quadrants (x > 0, y > 0), and let hΓ = H (Γ) .

The curves H = h with h ∈ R, which are formed by the trajectories of the differential
system (2), in Cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(M (s) +N (s)) ds

)
= 0,

where h ∈ R.
Therefore the periodic orbit Γ is contained in the curve

(
x2 + y2

) 1
2 = hΓ exp

(∫ arctan y
x

0

(M (s) +N (s)) ds

)
.

Again, this curve cannot contain the periodic orbit Γ in the realistic quadrant (x >
0, y > 0), for the same reason as in the previous case.

To be convinced by this fact, one has to compute the abscissa points of the intersection
of this curve with the straight line y = ηx for all η ∈ ]0,+∞[ , the abscissa is given by

x =
hΓ√

(1 + η2)
exp

(∫ arctan η

0

(M (s) +N (s)) ds

)
= f (η) .

Since f is a function (of η), there exists at most one value of x on the half-line OX+.
Consequently, at most one point in the realistic quadrant (x > 0, y > 0) exists. So, this
curve cannot contain the periodic orbit.

Hence statement (2) of Theorem 1 is proved.

Assume now that f3 (θ) = 0 for all θ ∈ R. Then from system (3) it follows that θ′ = 0.
So, the straight lines through the origin of coordinates of the differential system (2) are
invariant by the flow of this system. Hence, y

x is a first integral of the system, then
curves which are formed by the trajectories of the differential system (2), in Cartesian
coordinates are written as y − hx = 0, where h ∈ R, since all straight lines through the
origin are formed by the trajectories, clearly, the system has no periodic orbits.

This completes the proof of statement (3) of Theorem 1.

2.1 Examples

The following examples are given to illustrate our result.

Example 1 If we take A1 (x, y) = 5x2 + 4y2, A2 (x, y) = x2 + y2, A3 (x, y) =
π
2A4 (x, y) , A5 (x, y) =

π
2A6 (x, y) , B1 (x, y) = x4 + x3y + 2x2y2 + xy3 + y4, B2 (x, y) =

x4 + 2x3y + 2x2y2 + 2xy3 + y4 and B3 (x, y) = 3x2 − xy + 3y2, then system (2) reads
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
x′ = x

((
x4 + x3y + 2x2y2 + xy3 + y4

)
+
(
3x2 − xy + 3y2

)
sin
(

5x2+4y2

x2+y2

))
,

y′ = y
((

x4 + 2x3y + 2x2y2 + 2xy3 + y4
)
+
(
3x2 − xy + 3y2

)
sin
(

5x2+4y2

x2+y2

))
.

(7)

The Kolmogorov system (7) in polar coordinates (r, θ) becomes
r′ =

(
1 + 3

4 sin 2θ −
1
8 sin 4θ

)
r5 + (3− cos θ sin θ) sin

(
9
2 + 1

2 cos 2θ
)
r3,

θ′ =
(
cos2 θ sin2 θ

)
r4,

here f1 (θ) = 1+ 3
4 sin 2θ−

1
8 sin 4θ, f2 (θ) = (3− cos θ sin θ) sin

(
9
2 + 1

2 cos 2θ
)
and f3 (θ) =

cos2 θ sin2 θ. In the realistic quadrant (x > 0, y > 0) it is the case (1) of Theorem 1, then
the Kolmogorov system (7) has the first integral

H (x, y) =
(
x2 + y2

)
exp

(
−2
∫ arctan y

x

0
M (s) ds

)
−

2
∫ arctan y

x

0
exp

(
−2
∫ w

0
M (s) ds

)
B (w) dw,

where M (s) =
1 + 3

4 sin 2s−
1
8 sin 4s

cos2 s sin2 s
, N (w) =

(3− cosw sinw) sin
(
9
2 + 1

2 cos 2w
)

cos2 w sin2 w
.

The curves H = h with h ∈ R, which are formed by the trajectories of the differential
system (7), in Cartesian coordinates are written as

x2+y2 =

(
h+ 2

∫ arctan y
x

0

exp

(
−2

∫ w

0

N (s) ds

)
N (w) dw

)
exp

(
2

∫ arctan y
x

0

M (s) ds

)
,

where h ∈ R. Moreover, the system (7) has no periodic orbits.

Example 2 If we take A1 (x, y) = πx2 + πy2, A2 (x, y) = 2x2 + 2y2, A3 (x, y) =
A5 (x, y) = y, A4 (x, y) = A6 (x, y) = x, B1 (x, y) = −x2+xy−y2, B2 (x, y) = x2+xy+y2

and B3 (x, y) = x2 + y2, then system (2) reads
x′ = x

((
−x2 + xy − y2

)
sin
(
y
x

)
+
(
x2 + y2

)
sin
(

πx2+πy2

2x2+2y2

))
,

y′ = y
((

x2 + xy + y2
)
sin
(
y
x

)
+
(
x2 + y2

)
sin
(

πx2+πy2

2x2+2y2

))
.

(8)

The Kolmogorov system (8) in polar coordinates (r, θ) becomes r′ =
(
1 +

(
1
2 sin 2θ − cos 2θ

)
sin (tan θ)

)
r3,

θ′ = (sin 2θ) sin (tan θ) r2.

In the realistic quadrant (x > 0, y > 0) it is the case (2) of Theorem 1, then the
Kolmogorov system (8) has the first integral

H (x, y) =
(
x2 + y2

) 1
2 exp

(
−
∫ arctan y

x

0

(
1 +

(
1
2 sin 2s− cos 2s

)
sin (tan s)

(sin 2s) sin (tan s)

)
ds

)
.
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The curves H = h with h ∈ R, which are formed by the trajectories of the differential
system (8), in Cartesian coordinates are written as

(
x2 + y2

) 1
2 − h exp

(∫ arctan y
x

0

(
1 +

(
1
2 sin 2s− cos 2s

)
sin (tan s)

(sin 2s) sin (tan s)

)
ds

)
= 0,

where h ∈ R. Moreover, the system (8) has no periodic orbits.

3 Conclusion

The elementary method used in this paper seems to be fruitful to investigate more general
planar differential systems of ODEs in order to obtain an explicit expression for a first
integral which characterizes its trajectories. This is one of the classical tools in the
classification of all trajectories of dynamical systems.
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Abstract: Description of all possible types of behavior, or evolution, of solutions
to a semilinear sectorial equation is given. The phase space is divided into separate
regions containing bounded solutions, grow-up solutions and those which blow up in
a finite time. An overview of results concerning the typical situation when solutions
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1 Introduction

This paper is devoted to the fundamental question connected with solutions of semilinear
sectorial equations (1) being generalizations of parabolic equations: Provided that a local
in time solution exists, what is the expected future for the rest of its existence?

It is known from the classical references, such as [20, Chapter I], that, in general,
there are three potential forms of the further evolution of such solutions:
– the local solution may blow up, which means that its phase space norm becomes un-
bounded in a finite time; in general, it can be a consequence of unboundedness of the
values of the solution or the values of some of its derivatives, even though the solution
itself may stay bounded in the L∞−norm,
– the local solution may grow up, that is, it will exist for all positive times, while some
of its norms will become unbounded as t→ ∞,
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– the local solution will be extended globally in time with the required norms being
bounded for all t ≥ 0. This is a particularly interesting form of behavior, including the
possibility that the equation generates a dynamical system possessing a global attractor.

Throughout the last 70 years, plenty of results appeared in the literature concerning
qualitative behavior of solutions and describing separately the blow-up phenomenon,
less known case of grow-up solutions and, finally, well studied globally bounded in time
solutions, the latter including the particular case of semigroups with global attractors.
From the abundance of references, we distinguish [20] and [15] for the local solvability
of parabolic and sectorial equations, [24] for the issues regarding the blow-up, and [4,12,
19,31] for the existence of the global attractors for dissipative semigroups.

Usually, the authors study the above types of behavior as if these types would exist
apart. The reason is perhaps connected with the fact that even the description of one
kind is complicated enough. However, the situation we face in practice is the coexistence
of all these three types of behavior for a single evolution equation.

Our aim in this paper is thus to describe such a general typical situation for the
Cauchy problem for the semilinear sectorial equation

ut +Au = F (u), t > 0, u(0) = u0, (1)

where A is a sectorial positive operator and F stands for the nonlinear term. It is well-
known that many ordinary and partial differential equations or systems from the Applied
Sciences can be investigated within the approach of (1). This includes the heat propaga-
tion equation, reaction-diffusion systems, Fitzhugh-Nagumo equation, pattern formation
models like the Cahn-Hilliard equation or viscous Cahn-Hilliard equation, models of fluid
flows like the Burgers equation or the celebrated Navier-Stokes system and many others
(see e.g. [4, 31, 33]). Wherever possible, we illustrate the discussed type of behavior of
solutions using particular examples, mostly of ordinary differential equations or parabolic
second order equations, that allow a more detailed description. Of course, the questions
studied in this paper are much more involved for real world systems. Nevertheless, our
paper may serve as a guide for the future application to the above mentioned problems.

The contents of this paper are as follows. In Section 2, we formulate the basic
Assumption 2.1 on A and F in (1) and recall in Corollary 2.1, following [4,15], the local
existence of Xα solutions of (1) under this assumption (Xα stands for the phase space).
In Definition 2.2, we introduce the partition of Xα according to the above-mentioned
three types of behavior, introducing the subsets Xα

D, Xα
G and Xα

B . Moreover, we briefly
describe consequences of their coexistence and mention some previous results from works
where asymptotics of equations with solutions of different behavior was investigated.

In Section 3, we present a simple introductory example of a scalar reaction-diffusion
problem (7), (8) exhibiting the coexistence of all three ways solutions may evolve.

In Section 4, we show in Theorem 4.1 that the life time of an Xα solution of (1) is
a lower semicontinuous function of the initial data u0. As Example 4.1 shows, in general,
this function is not continuous, which makes it hard to characterize the components of
the partition of Xα from Definition 2.2. Nevertheless, the subordination condition (18)
together with an appropriate a priori estimate (17) allows to estimate the life time from
below (see Theorem 4.2).

In Section 5, we present a range of examples of parabolic equations which possess,
among others, solutions which grow up. The first example (20) shows that a linear
reaction term leads to the existence of grow-up solutions. However, for the Neumann
problem of the form (19), this observation can be generalized to nonlinearities with the
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divergent integral (21). Of course, this property still holds if we perturb the linear
reaction term by a bounded nonlinearity. In this case, except for the grow-up solutions,
all other solutions are globally bounded. As the example of (19), (25) exhibits, not only
sub-linear nonlinearities lead to grow-up solutions. Furthermore, as seen in problems (26)
and (27), reaction-diffusion equations with gradient-dependent nonlinearities may also
possess grow-up solutions. In certain cases, the asymptotics of equations with grow-up
solutions can be described in terms of non-compact attractors (see [22,23]).

In Section 6, we briefly explain the reasons of appearance of blow-up solutions for
parabolic equations and provide further examples of equations with solutions which be-
come unbounded in finite time.

If the problem under consideration manifests at least two different kinds of behavior
of solutions, there cannot exist a global attractor in the whole phase space in the sense of
Definition 2.4. Nevertheless, there may be determined local attractors, like stable station-
ary solutions, and their basins of attraction can be considered. In Section 7, we discuss
these notions and relate them with the existence of a Lyapunov function. In particular,
a Lyapunov function on Xα

D for the problem (1) with A having compact resolvent guar-
antees that solutions which stay bounded must approach the set of equilibria, although
the other solutions may become unbounded in a finite or infinite time (see Corollary 7.1).

For completeness of the presentation, we gather in the Appendix results concerning
the existence of sufficiently regular solutions and their global extendibility in time for
the homogeneous Neumann boundary problem for a reaction-diffusion equation with
a gradient-dependent nonlinearity.

2 Setting of the Problem

Our purpose is to examine the behavior of solutions of evolution equations, which can be
treated as autonomous abstract parabolic equations. To this end, consider an abstract
Cauchy problem (1) under the following assumptions.

Assumption 2.1 (i) −A : X ⊃ D(A) → X generates a strongly continuous analytic
linear semigroup {e−At : t ≥ 0} in a Banach space X and Reσ(A) > 0,
(ii) F : Xα → X is Lipschitz continuous on the bounded subsets of Xα = D(Aα) for
some α ∈ [0, 1).

Remark 2.1 Note that the generation of a strongly continuous analytic semigroup
by −A is equivalent to the sectoriality of the operator A (see e.g. [4, 15]). If A is merely
sectorial, the condition Reσ(A) > 0 of positivity of its spectrum can always be achieved
by adding a term cu to both sides of the differential equation in (1) with a sufficiently
large constant c. Then we define fractional power spaces Xβ , β ∈ R, connected with the
domains of the operators Aβ (see also [4, 15]) and the semigroup {e−At : t ≥ 0} satisfies∥∥e−Atx

∥∥
X

≤ C0e
−at ∥x∥X , t ≥ 0,

∥∥e−Atx
∥∥
Xβ ≤ Cβt

−βe−at ∥x∥X , t > 0, x ∈ X, (2)

for any β > 0 with some a > 0 and C0, Cβ ≥ 1.

Following the formalism of Dan Henry, we introduce a local Xα solution of (1).

Definition 2.1 Let u0 ∈ Xα. A function u is called a local Xα solution of (1) if, for
some τ > 0, u belongs to C([0, τ);Xα)∩C((0, τ);X1)∩C1((0, τ);X), u(0) = u0 and the
first equation in (1) holds in X for all t ∈ (0, τ).
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Below we quote a general theorem devoted to the local in time solvability of abstract
Cauchy problems even for nonautonomous equations. This theorem is a straightforward
generalization of the well-known results from [15] or [4].

Theorem 2.1 Let A : X ⊃ D(A) → X satisfy (i) of Assumption 2.1. Assume also
that G : [t0, T0)×Xα → X, where −∞ < t0 < T0 ≤ ∞, is a continuous function satisfying
for compact sets K1 ⊂ [t0, T0), K2 ⊂ (t0, T0) and each bounded set B ⊂ Xα

∥G(s, w1)−G(s, w2)∥X ≤MK1,B ∥w1 − w2∥Xα , s ∈ K1, w1, w2 ∈ B,

∥G(s1, w1)−G(s2, w2)∥X ≤MK2,B

(
|s1 − s2|θ+∥w1 − w2∥Xα

)
, s1, s2 ∈ K2, w1, w2 ∈ B

with some positive MK1,B, MK2,B and 0 < θ ≤ 1. Then, for any w0 ∈ Xα, there exists
a unique local Xα solution of the problem

wt +Aw = G(t, w), t0 < t < T0, w(t0) = w0, (3)

i.e., w ∈ C([t0, τ);X
α) ∩ C((t0, τ);X

1) ∩ C1((t0, τ);X) and satisfies (3) in X on
[t0, τ). Under the above assumptions, this Xα solution is equivalently a function
w ∈ C([t0, τ);X

α) satisfying the variation of constants formula

w(t) = e−A(t−t0)w0 +

∫ t

t0

e−A(t−s)G(s, w(s))ds, t ∈ [t0, τ).

Moreover, the local Xα solution can be extended to the maximal interval of existence
[0, τw0

), which means that either τw0
= T0 or τw0

< T0 and lim supt→τ−
w0

∥w(t)∥Xα = ∞.

Henceforth, we understand a solution as an Xα solution defined on the maximal interval
of existence. If T0 = ∞ and the life time τw0 = ∞, then we call such a solution global.

For our problem (1), we thus have the following existence result.

Corollary 2.1 Under Assumption 2.1, for each u0 ∈ Xα, there exists a unique Xα

solution u = u(t, u0) of (1) defined on its maximal interval of existence [0, τu0
), i.e.,

either τu0
= ∞, or if τu0

<∞, then lim sup
t→τ−

u0

∥u(t, u0)∥Xα = ∞. (4)

According to the alternative (4), we define a partition of Xα into three disjoint parts,
which distinguish the behavior of a particular solution of (1).

Definition 2.2 We have Xα = Xα
D ∪Xα

G ∪Xα
B , where

• Xα
D denotes the set of initial data u0 in Xα corresponding to global in time and

globally bounded solutions for t ≥ 0, that is, τu0 = ∞ and the norm ∥u(t, u0)∥Xα stays
bounded as t→ ∞,

• Xα
G denotes the set of initial data u0 in Xα corresponding to global solutions which

are unbounded as t→ ∞, that is, τu0
= ∞ and lim sup

t→∞
∥u(t, u0)∥Xα = ∞,

• Xα
B denotes the set of initial data u0 ∈ Xα corresponding to solutions that blow up

in a finite time, that is, u(t, u0) exists for t > 0 near 0, but there exists τu0
> 0 such that

lim supt→τ−
u0

∥u(t, u0)∥Xα = ∞.

Thus, the solutions starting from u0 ∈ Xα
D are the global bounded solutions, the

solutions originating from u0 ∈ Xα
G are the grow-up solutions and those starting from

u0 ∈ Xα
B are called the blow-up solutions.
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Clearly, knowledge of interiors and boundaries of the above-introduced sets would be
vital for understanding the global dynamics of the problem under consideration on the
entire phase space. Unfortunately, for many models arising from the Applied Sciences,
global in time solvability is limited only to small initial data (see e.g. [17]).

In the last decades, we observed among scientists a kind of specialization in a specific
behavior of solutions. The group being focused on global bounded solutions treated
the other admissible behavior as non-existent and considered only equations for which
Xα = Xα

D. This approach concentrated on the theory of dissipative semigroups and
the description of asymptotic behavior of solutions using the notion of a global attractor
(see [4, 12,15,19,25,33] among many others). Let us recall these notions.

Definition 2.3 A semigroup {S(t) : t ≥ 0} on a metric space M is a continuous
mapping S : R+ ×M →M , which satisfies

S(0, u0) = u0, S(t+ s, u0) = S(t, S(s, u0)) for all t, s ≥ 0 and all u0 ∈M.

Henceforth, we will write S(t)u0 = S(t, u0).

Definition 2.4 Let {S(t) : t ≥ 0} be a semigroup on a metric space (M,d). We say
that a set A ⊂M attracts a set B ⊂M if for any ε > 0, there exists T > 0 such that

dist(S(t)B,A) := sup
u0∈B

inf
v∈A

d(S(t)u0, v) < ε whenever t ≥ T.

A nonempty compact set A ⊂ M is said to be a global attractor for {S(t) : t ≥ 0} if
it is invariant, i.e., S(t)A = A for all t ≥ 0, and it attracts each bounded subset of M .

Definition 2.5 A semigroup {S(t) : t ≥ 0} on a metric space M is called asymptot-
ically compact if for arbitrary sequences tn → ∞ and {un} ⊂ M bounded, the sequence
{S(tn)un} has a convergent subsequence in M . We say that {S(t) : t ≥ 0} is dissipative
if there exists a bounded set B0 ⊂M which attracts each bounded subset of M .

In the case of Xα = Xα
D, the solutions of (1) form a semigroup {S(t) : t ≥ 0} on Xα,

S(t)u0 = u(t, u0), t ≥ 0, u0 ∈ Xα.

If there exists a bounded absorbing set B0 ⊂ Xα for this semigroup, that is, for any
bounded subset B of Xα there exists tB > 0 such that S(t)B ⊂ B0 for t ≥ tB and
the semigroup is asymptotically compact (or asymptotically smooth in the sense of [12]),
then the semigroup is dissipative and it possesses a global attractor in Xα. This compact
maximal invariant setA attracting all bounded subsets ofXα determines then all possible
long-time dynamics of solutions (cp. e.g. [25, Proposition 10.14]). The global attractor
contains, in particular, all stationary solutions, all periodic solutions (if they exist) and
all bounded invariant complete orbits connecting them. Recently, much effort is put
to thoroughly describe the structure of a global attractor (see for instance [8, 9] and
references therein) for particular classes of equations.

Observe that the notion of a semigroup for (1) can be defined just on a subsetM ofXα

such that solutions originating from M exist globally in time and do not leave M . Such
a general approach was presented in the introductory part of the monograph [27, Sections
2.1-2.3]. For instance, one can take M = Xα

D ∪Xα
G or M = Xα

D. Note, however, that in
general, we do not know in advance whether M is a closed subset of Xα.

The case of a semigroup on M = Xα
D in the admissible presence of other behavior of

solutions was considered, e.g. in [6]. Besides Assumption 2.1, it was required there the
following.
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Assumption 2.2 The resolvent of the operator A is compact.

In this setting, it was shown in [6] that the semigroup on M = Xα
D ̸= ∅ is asymptotically

smooth. Hence the point dissipativity of {S(t) : t ≥ 0} onM implies that for any u0 ∈ Xα

the solution u(·, u0) of (1) either blows up in a finite time, or grows up, or approaches
a nonempty compact invariant set. Moreover, if all bounded complete orbits of points
are uniformly bounded in Xα, then the solutions that stay bounded approach a maximal
compact invariant set, which plays the role of the global attractor in this setting.

Note that the presence of grow-up solutions forbids that they approach a maximal
invariant set which is bounded in Xα. In [3], the authors introduced a concept of an
unbounded attractor, where the boundedness of the attractor was substituted by the
minimality property. The asymptotic behavior of grow-up solutions was studied, for
example, in [1,22,23] for ’slowly non-dissipative reaction-diffusion equations’ of the form{

ut = uxx + bu+ g(x, u, ux), x ∈ (0, π), t > 0,

ux(t, 0) = ux(t, π) = 0, t > 0, u(0, x) = u0(x), x ∈ (0, π),
(5)

with b > 0 and g being a C2 bounded function. Such a problem defines a semigroup
on Xα = Xα

D ∪ Xα
G with α ∈ ( 34 , 1) and with nonempty Xα

G. Then any solution to (5)
converges either to a bounded stationary solution or a certain object called an equilibrium
at infinity. For a characterization of the structure of a non-compact global attractor,
see [23].

As regards the blow-up solutions, there exists a vast literature investigating the rates
and the profiles of blow-up solutions to particular differential equations, but the notion,
which would encompass the dynamics of the problem and include blow-up solutions, has
not been formulated yet.

The aim of this paper is to emphasize that a typical situation is the coexistence of
various types of behavior of solutions, formulate common properties of solutions, char-
acterize their three classes, and indicate open problems connected with that partition.

3 Introductory Example

It is easy to find examples of systems allowing only for a limited set of behavior of
solutions. In particular, if there is a global attractor for the system in a phase space, then
all solutions need to exist globally and be bounded in the phase space. Many examples
of such systems coming from the Applied Sciences are available, see e.g. [4, 15,19,31].

It is also simple to find a system having only blow-up solutions. For instance, the
ODE problem

y′ = y2 + 1, y(0) = y0, (6)

has an explicit solution

y(t) = tan(t+ arctan(y0)) defined for t ∈
(
−π/2− arctan(y0), π/2− arctan(y0)

)
,

which blows up at the finite life time τy0
= π/2− arctan(y0) for each y0 ∈ R.

We will now present a fairly complete analysis of a 1-D scalar parabolic equation,
which exhibits the coexistence of all the three types of behavior: the blow-up solutions,
the grow-up solutions, the bounded solutions approaching a certain local attractor as
well as the bounded solutions being unstable equilibria.
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Consider a 1-D Neumann semilinear parabolic problem of the form{
ut = uxx + f(u), t > 0, x ∈ (0, π),

ux(t, 0) = ux(t, π) = 0, t > 0, u(0, x) = u0(x), x ∈ (0, π),
(7)

with the nonlinearity f given by

f(y) =
µ

2
(y3 − y) for y < 1 and f(y) = µ(y − 1) for y ≥ 1, (8)

with µ > 0. The polynomial occurring in the nonlinear term f in (−∞, 1) is opposite to
the well-known ’bi-stable nonlinearity’ as in the Chafee-Infante problem.

The existence of Xα solutions u to (7) as well as the subordination condition follow
from a more general Example 4.2 below.

Now we analyze an ordinary differential equation connected with the parabolic prob-
lem (7) satisfied by the x-independent solutions y = y(t) of (7), that means

y′ = f(y), t > 0, y(0) = y0. (9)

The equation in (9) is of separable variables and can be explicitly solved. Except for
three equilibria: the asymptotically stable y0 = 0, unstable y0 = −1 and y0 = 1, we have
other bounded globally defined solutions

y(t) = sgn(y0)
(
1−

(
1− y−2

0

)
eµt

)−1/2
, t ∈ R for y0 ∈ (−1, 0) ∪ (0, 1).

For y0 > 1, the solutions y(t) = (y0 − 1)eµt + 1 are also globally defined for t ∈ R, but
they are unbounded as t→ ∞. Finally, the solutions for y0 < −1 are given by

y(t) = −
(
1−

(
1− y−2

0

)
eµt

)−1/2
, t ∈

(
−∞,−µ−1 ln

(
1− y−2

0

))
,

and blow up in a finite time.
Using the explicit form of solutions of the ordinary differential equation (9), we are

able to give a description of solutions to (7) based on the Comparison Principle (see [28,
Theorem 10.1]). We recall that theorem for completeness.

Proposition 3.1 Consider a uniformly parabolic linear operator in divergence form
in a bounded domain Ω ⊂ RN with regular boundary ∂Ω:

Pu := ut −Au = ut −
N∑

i,j=1

(
aij(t, x)uxi

)
xj
, (t, x) ∈ (0, T )× Ω,

where {aij} is a symmetric matrix with bounded coefficients. Let g = g(t, x, u) be C1 in
u and Hölder continuous in t and x. Assume that u and v are C1 functions of t in [0, T ]
and C2 functions in x in Ω, which satisfy the following three inequalities:

Pu− g(t, x, u) ≥ Pv − g(t, x, v), (t, x) ∈ (0, T )× Ω,

u(0, x) ≥ v(0, x), x ∈ Ω,

∂u

∂ν
+ βu ≥ ∂v

∂ν
+ βv, (t, x) ∈ (0, T )× ∂Ω,

where β = β(t, x) ≥ 0 on (0, T ) × ∂Ω. Then u(t, x) ≥ v(t, x) for all (t, x) ∈ [0, T ] × Ω.
Moreover, if, in addition, u(0, x) > v(0, x) for x in an open subset Ω1 ⊂ Ω, then we have
u(t, x) > v(t, x) in [0, T ]× Ω1.
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Using Proposition 3.1, we will compare the solutions of (7) and (9), and knowing the
behavior of solutions to (9), we get the corresponding information for certain solutions
of the parabolic problem (7). More precisely, having solutions u of (7) and y of (9), we
see that ut − uxx − f(u) = 0 = y′ − f(y) as long as both solutions exist and x ∈ (0, π).
Moreover, ux(t, 0) = ux(t, π) = 0 and the same is true for the x-independent solution
y(t). Thus we can compare u with the solution y starting from y0 = min

x∈[0,π]
u0(x) or y0 =

max
x∈[0,π]

u0(x). We introduce the range of initial data

Ru0
=

[
min

x∈[0,π]
u0(x), max

x∈[0,π]
u0(x)

]
.

The following characterization is then a consequence of Proposition 3.1 (compare Theo-
rem 4.2 and Proposition 4.1 below to get the estimates of the life time of solution u).

(i) Whenever Ru0
⊂ (−∞,−1), the corresponding to u0 solution of (7) blows up in

a finite time τu0
. Moreover, τu0

is estimated from above by the blow-up time of the
solution to (9) with y0 = max

x∈[0,π]
u0(x), and estimated from below by the blow-up time of

the solution to (9) with initial data y0 = min
x∈[0,π]

u0(x).

(ii) If Ru0
⊂ (−1, 1), then the solution u(·, u0) of (7) tends to zero as t→ ∞.

(iii) Whenever Ru0
⊂ (1,∞), the corresponding solution grows up as t→ ∞.

Evidently, there are many initial data u0 outside of the above three classes; then the
situation is more delicate and requires further studies using more sophisticated tools.
Nevertheless, the three types of behavior of solutions are present among the solutions of
(7).

4 Life Time of Solutions

We have seen in problem (6) possessing only blow-up solutions that the life time was
a continuous function of the initial data. However, we show below that, in general, the
life time of a solution to a sectorial equation need not be upper semicontinuous, but
certainly is a lower semicontinuous function.

Theorem 4.1 Under Assumption 2.1, consider the Xα solution u(t, u0) of

ut +Au = F (u), t > 0, (10)

satisfying the initial condition u(0) = u0 ∈ Xα. Then the life time τu0 is a lower
semicontinuous function of u0. More precisely, we have

∀0<T<τu0
∃δ>0∀v0∈Xα ∥v0 − u0∥Xα < δ ⇒ τv0 > T,

where τv0 is the life time of the Xα solution of (10) starting from v0.
Moreover, the solutions depend continuously on the initial data; for 0 < T < τu0

,
there exists δ > 0 and L ≥ 1 such that if ∥v0 − u0∥Xα < δ, then we have

∥u(t, v0)− u(t, u0)∥Xα ≤ L ∥v0 − u0∥Xα , t ∈ [0, T ]. (11)

Proof. Let u(t) be the solution of (10) corresponding to the initial data u0 and let
v(t) be its ’perturbation’, that is, the solution of (10) corresponding to the initial data
v0 (eventually close to u0). Setting w(t) := v(t)− u(t), we see that w is a solution of

wt +Aw = F (w + u(t))− F (u(t)), 0 < t < τu0
, w(0) = w0, (12)
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with w0 = v0 − u0 ∈ Xα. Observe that

G(t, w) = F (w + u(t))− F (u(t)), (t, w) ∈ [0, τu0
)×Xα,

satisfies Theorem 2.1 with θ = 1 since ut ∈ C((0, τu0
), Xα) (see [4, Corollary 2.3.1]).

Thus, for any w0 ∈ Xα, we have a unique solution of (12) with the life time τw0
.

Let h : R → [0, 1] be of class C1 such that h(s) = 1 for s ≤ 1 and h(s) = 0 for s ≥ 2.
We fix an arbitrary T ∈ (0, τu0

). We define a function H(t, z) = G(t, zh(∥z∥Xα)),
(t, z) ∈ [0, T ] × Xα. Note that H is continuous, H(t, 0) = G(t, 0) = 0 and there exists
LH > 0 depending on F , T and u0 such that

∥H(t, z1)−H(t, z2)∥X ≤ LH ∥z1 − z2∥Xα , t ∈ [0, T ], z1, z2 ∈ Xα, (13)

since ∥zh(∥z∥Xα)∥Xα ≤ 2 for any z ∈ Xα.
Let E = C([0, T ], Xα) be equipped with equivalent Bielecki’s norm

∥z∥E = max{∥z(s)∥Xα e
−ξs : s ∈ [0, T ]},

where ξ > 0 is so large that CαLHΓ(1 − α) 1
(a+ξ)1−α < 1. Let z0 ∈ Xα and define the

transformation Φ: E → E by

Φ(z)(t) = e−Atz0 +

∫ t

0

e−A(t−s)H(s, z(s))ds, t ∈ [0, T ], z ∈ E.

Note that for z1, z2 ∈ E and t ∈ [0, T ], using estimates (2), we get

∥Φ(z1)(t)− Φ(z2)(t)∥Xα ≤ CαLH

∫ t

0

e−a(t−s)

(t− s)α
∥z1(s)− z2(s)∥Xα ds

≤ CαLH ∥z1 − z2∥E
∫ t

0

e−a(t−s)

(t− s)α
eξsds = CαLH ∥z1 − z2∥E

eξt

(a+ ξ)1−α

∫ (a+ξ)t

0

r−αe−rdr.

Thus we obtain

∥Φ(z1)− Φ(z2)∥E ≤ CαLHΓ(1− α)
1

(a+ ξ)1−α
∥z1 − z2∥E , z1, z2 ∈ E,

and Φ is a contraction on E. By the Banach Fixed Point Theorem, for any z0 ∈ Xα,
there exists a unique z ∈ C([0, T ], Xα), which satisfies

z(t) = e−Atz0 +

∫ t

0

e−A(t−s)H(s, z(s))ds, t ∈ [0, T ]. (14)

Take z1, z2 ∈ Xα and let z(t, z1), z(t, z2) be the corresponding solutions of (14) starting
from z1 and z2, respectively. Let y(t) = ∥z(t, z1)− z(t, z2)∥Xα for t ∈ [0, T ] and note
that by (2) and (13)

y(t) ≤ C0e
−at ∥z1 − z2∥Xα + CαLH

∫ t

0

e−a(t−s)

(t− s)α
y(s)ds, t ∈ [0, T ].

By the Volterra type inequality (see e.g. [4, Lemma 1.2.9]) there exists a constant L ≥ 1
such that the following Lipschitz condition holds:

∥z(t, z1)− z(t, z2)∥Xα ≤ L ∥z1 − z2∥Xα , t ∈ [0, T ]. (15)
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Since H(t, 0) = 0, t ∈ [0, T ], we also have z(t, 0) = 0, t ∈ [0, T ]. Take any w0 ∈ Xα such
that ∥w0∥Xα ≤ 1

L . By (15) we obtain ∥z(t, w0)∥ ≤ 1 for t ∈ [0, T ]. Since H(t, z) = G(t, z)
for t ∈ [0, T ] and z ∈ Xα such that ∥z∥Xα ≤ 1, we obtain from (14)

z(t, w0) = e−Atw0 +

∫ t

0

e−A(t−s)G(s, z(s, w0))ds, t ∈ [0, T ].

Thus z(t, w0) is an X
α solution of (12) on [0, T ]. By the uniqueness of solutions of (12),

we see that τw0
> T for w0 ∈ Xα such that ∥w0∥Xα ≤ 1

L . Set δ = 1
L and take v0 ∈ Xα

such that ∥v0 − u0∥Xα < δ. Then the solution w(t, w0) of (12) with w0 = v0 − u0 exists
at least on the interval [0, T ]. Hence w(t, w0) + u(t, u0), t ∈ [0, T ], is an Xα solution of
(10) on [0, T ] starting from v0, which shows that τv0 > T . Moreover, we have (11), which
ends the proof. □

In general, the life time τu0
need not be upper semicontinuous with respect to u0 as

the following example shows.

Example 4.1 Consider the planar system of ordinary differential equations{
x′ = 1,

y′ = ey sinx,
(16)

with the initial condition u(0) = (x(0), y(0)) = u0 ∈ R2. If u0 = (0,− ln 2), then
the solution u(t) = (x(t), y(t)) of (16) is u(t, u0) = (t,− ln(cos t + 1)) for t ∈ (−π, π), if
un = (0,− ln 2− 1

n ), n ∈ N, then the solution of (16) is u(t, un) = (t,− ln(cos t+2e
1
n −1))

for t ∈ R, whereas if ûn = (0,− ln 2 + 1
n ), n ∈ N, then the solution of (16) is

u(t, ûn) = (t,− ln(cos t+ 2e−
1
n − 1)), t ∈ (− arccos(1− 2e−

1
n ), arccos(1− 2e−

1
n )).

Observe that un → u0, ûn → u0 in R2 and τun = ∞, τûn = arccos(1− 2e−
1
n ) for n ∈ N.

Thus, using the lower semicontinuity of τu0
, we obtain in this case

π = τu0
= lim inf

v0→u0

τv0 < lim sup
v0→u0

τv0 = ∞.

It is of interest to estimate the life time τu0
of a solution u to (10). Note that it is

typical for mathematical models of phenomena in the Applied Sciences that certain nat-
ural a priori estimates of solutions are available, for example, energy decay, conservation
of mass, etc. Below we present a technique to estimate τu0

based on such an appropriate
a priori estimate combined with a subordination condition for the nonlinearity due to
Wolf von Wahl (see [32]). This condition (see (18) below) allows to translate, or sharpen,
that natural a priori estimate into a form suitable to control the nonlinear term.

Theorem 4.2 Assume that the following a priori estimate for the solution u(t) of
(10) satisfying u(0) = u0 ∈ Xα holds in a normed space Y ⊃ Xα, that is, there exists
a function c : [0, T ) → [0,∞), 0 < T ≤ ∞, bounded on compact intervals and such that

∥u(t)∥Y ≤ c(t), t ∈ (0,min{τu0 , T}), (17)

where τu0
denotes the life time of the solution. Furthermore, assume that the following

subordination condition holds for the nonlinearity, that is, there exist a nondecreasing
function g : [0,∞) → [0,∞) and a constant θ ∈ [0, 1) such that

∥F (u(t))∥X ≤ g(∥u(t)∥Y )
(
1 + ∥u(t)∥θXα

)
, t ∈ (0, τu0

). (18)

Then we have τu0
≥ T .
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Proof. On the contrary, suppose that τu0
< T . The variation of constants formula

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)F (u(s))ds, t ∈ (0, τu0),

the subordination condition (18) and the estimates (2) yield

∥u(t)∥Xα ≤ C0e
−at ∥u0∥Xα +

∫ t

0

Cα
e−a(t−s)

(t− s)α
g(∥u(s)∥Y )

(
1 + ∥u(s)∥θXα

)
ds.

Applying the a priori estimate (17), we obtain

∥u(t)∥Xα ≤ C0 ∥u0∥Xα + Cαg
(

sup
s∈[0,τu0 ]

c(s)
)(

1 +
(
sup

s∈[0,t]

∥u(s)∥Xα

)θ)
aα−1Γ(1− α).

Thus, setting

b(u0) = C0 ∥u0∥Xα + Cαa
α−1Γ(1− α)g

(
sup

s∈[0,τu0
]

c(s)
)
,

we get

sup
τ∈[0,t]

∥u(τ)∥Xα ≤ b(u0)
(
1 +

(
sup

τ∈[0,t]

∥u(τ)∥Xα

)θ)
, t ∈ [0, τu0).

Therefore, sup
τ∈[0,t]

∥u(τ)∥Xα is estimated above by the non-negative root z0(u0) of the

algebraic equation b(u0)(1 + zθ)− z = 0. Hence we obtain

∥u(t)∥Xα ≤ z0(u0), t ∈ [0, τu0
),

which contradicts the maximality of τu0
. □

Remark 4.1 If T = ∞ in the a priori estimate (17), then the solution of (10) exists
globally in time. Moreover, the argument of the above proof shows that if T = ∞ in (17)
and the function c(t) is bounded on [0,∞) by some constant ĉ, then the solution of (10)
exists globally in time and is bounded by the non-negative root ẑ0(u0) of the algebraic

equation b̂(u0)(1 + zθ)− z = 0 with

b̂(u0) = C0 ∥u0∥Xα + Cαa
α−1Γ(1− α)g(ĉ).

We also state a simple observation to estimate the life time τu0 from above.

Proposition 4.1 Let u(t) be a solution of (10) satisfying u(0) = u0 ∈ Xα with
the life time τu0

. Assume there exists a normed space Y such that Xα is continuously
embedded into Y , and a function c̄ : [0, T ) → [0,∞), 0 < T <∞, such that lim sup

t→T−
c̄(t) =

∞ and ∥u(t)∥Y ≥ c̄(t) for t ∈ (0,min{τu0
, T}). Then we have τu0

≤ T .

For other results based on this technique, including the existence of a semigroup
of global solutions of (10) with bounded orbits of bounded sets, dissipativity of this
semigroup and the existence of its global attractor, we refer the reader to [4, Chapters 3
and 4].
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Example 4.2 In a bounded domain Ω ⊂ RN of class C2 (if N ≥ 2) consider the
Neumann boundary value problem{

ut = ∆u+ f(u), t > 0, x ∈ Ω,
∂u
∂ν = 0, x ∈ ∂Ω, u(0, x) = u0(x), x ∈ Ω,

(19)

together with the corresponding to it ODE Cauchy problem (9). For f : R → R locally
Lipschitz continuous, working in a base space X = Lp(Ω), p > N , we consider the
sectorial operator A = −∆+ I with the domain D(A) = {ϕ ∈ W 2,p(Ω): ∂ϕ

∂ν = 0 at ∂Ω}
(compare [33, Chapter 16]). Then, for a bounded subset B of W 1,p(Ω), we have

∥f(u)− f(v)∥Lp(Ω) ≤ c∥f(u)− f(v)∥L∞(Ω) ≤ c(B)∥u− v∥W 1,p(Ω), u, v ∈ B.

By Corollary 2.1 local Xα solutions to (19) exist for any α ∈ [ 12 , 1) since X
1
2 = D(A

1
2 ) =

W 1,p(Ω) (see [33, Theorem 16.10]) and W 1,p(Ω) is continuously embedded into L∞(Ω).
Furthermore, we have

∥f(u)∥Lp(Ω) ≤ c∥f(u)∥L∞(Ω) ≤ g(∥u∥L∞(Ω))(1 + ∥u∥W 1,p(Ω))

with some nondecreasing function g : [0,∞) → [0,∞). For α ∈ ( 12 , 1) the moments
inequality

∥u∥
X

1
2
≤ c ∥u∥1−

1
2α

X ∥u∥
1
2α

Xα , u ∈ Xα,

and the embedding L∞(Ω) ⊂ Lp(Ω) = X imply the subordination condition (18).
This, together with an a priori estimate in L∞(Ω), allows to estimate the life time

τu0
of solutions or extend the local solution globally in time (see Theorem 4.2 and Re-

mark 4.1).

5 Grow-up Solutions

An interesting class of solutions that are global in time consists of the so-called grow-up
solutions. Although these solutions exist globally, they have unbounded norms (usually
the L∞−norm) when time t tends to infinity. As a prototype example of this type of
behavior, consider the following 1-D problem:{

ut = uxx + γu, t > 0, x ∈ (0, π),

u(t, 0) = u(t, π) = 0, t > 0, u(0, x) = u0(x), x ∈ [0, π],
(20)

with γ > 1. For u0(x) = sinx, the problem (20) has an explicit solution of the form

u(t, x) = sinxe(γ−1)t, (t, x) ∈ [0,∞)× [0, π],

which grows up. We extend the analysis of the problem (20). The key point is the
relation between the coefficient γ and the squares of natural numbers. Assume that
γ ∈ ((n − 1)2, n2) for some n ∈ N and consider explicit solutions of the above problem
corresponding to the initial data u0(x) = sin(kx), k ∈ N, having the form u(t, x) =

sin(kx)e(γ−k2)t. When k ≤ n− 1, these are the grow-up solutions. Conversely, if k ≥ n,
then these solutions will decay to zero as t → ∞. Therefore, for the problem (20) with
a large positive number γ, we have simultaneous existence of grow-up solutions and
solutions decaying to zero.
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Moreover, if we let γ = n2, n ∈ N, we have also a stationary solution u(t, x) = sin(nx).

The solutions which grow up seem not to form a very large subclass of all the solutions.
Anyway, generalizing the latter example, we return to the semilinear Neumann problem
(19) under the assumptions of Example 4.2 having local in time solutions corresponding
to the initial data u0 ∈ Xα ⊂ W 1,p(Ω) with α > 1

2 , p > N . Following the idea known
from the Hartman-Wintner theorem (see e.g. [11,14,16]), we are able to verify the global
existence of a solution of (19) due to the corresponding properties of solutions to (9).
The main assumption is the divergence of an integral∫ ∞

a

ds

f(s)
= ∞. (21)

Lemma 5.1 Let f : R → R be a locally Lipschitz function and assume that
f([a,∞)) ⊂ (0,∞) and condition (21) hold for some a ∈ R. Then all the local solu-
tions to (19), as described above, corresponding to the initial data u0 having values in
the interval [inf u0, supu0] ⊂ [a,∞), possess an a priori estimate in L∞(Ω) by the corre-
sponding solutions of (9). Moreover, each such solution u(t, u0) can be extended globally
in time and is a grow-up solution.

Proof. First, note that due to the assumption (21), solutions y(t) = y(t, y0) to the
ODE Cauchy problem (9) with y0 ≥ a exist for all t ≥ 0. Indeed, we have

t =

∫ y(t)

y0

ds

f(s)
as long as y(t) exists. (22)

Suppose contrary to the claim that y does not exist for all t ≥ 0. Thus there must be
a finite τ > 0 and a sequence tn → τ such that y(tn) → ∞ as n→ ∞. From (21) and (22),
we get τ = ∞, which gives a contradiction. For u0 such that [inf u0, supu0] ⊂ [a,∞),
a simple comparison argument of Proposition 3.1 and global existence of y yield

y(t, inf
x∈Ω

u0(x)) ≤ u(t, x) ≤ y(t, sup
x∈Ω

u0(x)), t ∈ [0, τu0
), x ∈ Ω. (23)

Since the left-hand side of (23) is increasing to ∞ and is greater than or equal to
inf
x∈Ω

u0(x) ≥ a and both sides are globally defined in time, it yields the L∞(Ω) a pri-

ori estimate for the solution of (19). Hence u is global in time by Theorem 4.2 via the
subordination condition. □

Remark 5.1 A result similar to Lemma 5.1 holds if f((−∞, a]) ⊂ (−∞, 0) and∫ a

−∞

ds

f(s)
= −∞

hold for some a ∈ R. Then all solutions u(t, u0) to (19) with the initial data u0 having
values in [inf u0, supu0] ⊂ (−∞, a] can be extended globally in time and are grow-up
solutions.

Remaining inside the framework of (19), following [1], consider the Neumann problem{
ut = ∆u+ bu+ g(u), t > 0, x ∈ Ω,
∂u
∂ν = 0 on ∂Ω, u(0, x) = u0(x),

(24)
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with b > 0 and g being a bounded C1 function (|g| ≤M). As a consequence of the con-
siderations of Example 4.2, local solutions to (24) exist in the phase space D((−∆N ,p)

α)
with α > 1

2 , p > N and p ≥ 2. Moreover, for the nonlinearity f(s) := bs+g(s), s ∈ R, the
condition (21) is satisfied with a = M+ε

b , ε > 0 and, consequently, all solutions fulfilling

the condition inf
x∈Ω

u0(x) ≥ M+ε
b are extended globally in time and are grow-up solutions.

Moreover, none of the solutions of (24) blows up.

We further observe that a faster than linear growth of nonlinearity does not exclude
the existence of the grow-up solutions. Consider, namely, problem (19) with the nonlin-
earity

f(s) = s ln s for s > 1 and f(s) = 0 for s ≤ 1. (25)

Evidently, condition (21) is now satisfied with a = e, the base of the natural logarithm.
Hence, whenever infx∈Ω u0(x) ≥ e, the corresponding solution of (19), (25) exists globally
in time and grows up. The phenomenon of grow-up is thus not limited to the equations
in which nonlinear terms are sub-linear.

It is easy to find more complicated parabolic equations (with gradient-dependent non-
linearity) having grow-up solutions. Consider, for example, the 1-D Neumann problem{

ut = uxx + u3x + 1 ≡ (uxx − u) + u+ u3x + 1, t > 0, x ∈ (0, 1),

ux = 0 for x = 0, 1, u(0, x) = u0(x), x ∈ [0, 1],
(26)

admitting, in particular, the x-independent solutions of the ODE z′(t) = 1.

We will consider problem (26) in the phase space H
3
2+ε

N (0, 1) with ε ∈ (0, 14 ). Indeed,

when noting the embeddings H
3
2 (0, 1) ⊂ W 1,6(0, 1) and H

3
2+ε(0, 1) ⊂ W 1,∞(0, 1), the

main component of the nonlinearity will satisfy

∥(ϕx)3∥L2(0,1) = ∥ϕx∥3L6(0,1) ≤ c∥ϕ∥3W 1,6(0,1) ≤ c′∥ϕ∥3
H

3
2
+ε(0,1)

,

∥(ϕx)3 − (ψx)
3∥L2(0,1) ≤ ∥((ϕx)− (ψx))(ϕ

2
x + ϕxψx + ψ2

x)∥L2(0,1)

≤ c′(∥ϕ∥
H

3
2
+ε(0,1)

, ∥ψ∥
H

3
2
+ε(0,1)

)∥ϕ− ψ∥
H

3
2
+ε(0,1)

,

and, consequently, the whole nonlinearity f(u) = (u+u3x+1) defines a Lipschitz continu-

ous on bounded sets Nemytskii operator acting from H
3
2+ε

N (0, 1) into L2(0, 1). Moreover,
note that the operator (−uxx + u) with a Neumann boundary condition is sectorial and
positive in L2(0, 1). Thus, Corollary 2.1 establishes the local existence of solutions.

Note also that after changing the unknown function to u(t, x) = u(t, x)− t, the new
unknown will satisfy the problem{

ut = uxx + u3x, t > 0, x ∈ (0, 1),

ux = 0 for x = 0, 1, u(0, x) = u0(x), x ∈ [0, 1].
(27)

Despite the violation of the sub-quadratic growth condition (see the Appendix) in
(26), the derivative v := ux is bounded and fulfills the maximum principle since it solves{

vt = vxx + 3v2vx, t > 0, x ∈ (0, 1)

v = 0 for x = 0, 1, v(0, x) = u0x(x), x ∈ [0, 1].
(28)
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We will justify shortly the last claim. Multiplying the first equation in (28) by
v2k−1, k = 1, 2, . . ., and integrating, we obtain

1

2k

d

dt

∫ 1

0

v2kdx = −2k − 1

k2

∫ 1

0

[(vk)x]
2dx ≤ −π2 2k − 1

k2

∫ 1

0

v2kdx,

where we used the fact that the function vk = (ux)
k, vanishing at x = 0, 1, fulfills the

Poincaré inequality. Solving the differential inequality and taking the 2k-roots, we get

∥ux(t, ·)∥L2k(0,1) ≤ ∥u0x∥L2k(0,1) exp
(
−π2 2k − 1

k2
t
)
.

Letting k → ∞, we obtain

∥ux(t, ·)∥L∞(0,1) ≤ ∥u0x∥L∞(0,1). (29)

Note that the sub-quadratic growth condition (cp. (41)) is not violated in the case of
equation (28) for the derivative ux. Having already the last estimate, we return to (26)
and multiply the first equation by u, obtaining

1

2

d

dt

∫ 1

0

u2dx = −
∫ 1

0

u2xdx+

∫ 1

0

(u3x + 1)udx ≤ (∥ux∥3L∞(0,1) + 1)∥u∥L2(0,1),

and, consequently,

∥u(t, ·)∥L2(0,1) ≤ ∥u0∥L2(0,1) + (∥u0x∥3L∞(0,1) + 1)t. (30)

As a result of the a priori estimates (29) and (30), the local solutions to (26) will be
extended globally in time due to the following subordination condition:

∥u+ u3x + 1∥L2(0,1) ≤ ∥u0∥L2(0,1) + (∥u0x∥3L∞(0,1) + 1)(t+ 1).

As a consequence of the above considerations, we get the existence of grow-up solu-
tions for at least one of the problems (26) or (27). Indeed, for the arbitrary initial data

u0 ∈ H
3
2+ε(0, 1) with ε > 0, there exist global in time solutions to both these problems.

But the difference of their global solutions, u(t, u0) and ū(t, u0), corresponding to the
initial data u0, is equal to t. Consequently, at least one of them must grow up as t→ ∞.

The phenomenon of solutions that grow up can be also viewed in another way. Un-
boundedness of a norm, as t → ∞, will be seen as a convergence ’to an equilibrium at
infinity’ (see e.g. [3]). The authors introduce there a modification of the notion of a global
attractor replacing it with their maximal attractor for a semigroup {S(t) : t ≥ 0} gener-
ated by the equation (10) on a Banach space E (cp. [3, Definition 1.2]).

Definition 5.1 A closed set U ⊂ E is called a maximal attractor if S(t)U = U for
all t ≥ 0, dist(S(t)K,U) → 0 as t → ∞, for any bounded set K ⊂ E, and there is no
proper closed subset U ′ ⊂ U having the above two properties.

Such maximal attractor can, however, be unbounded and not unique. Moreover, the
existence of the semigroup excludes the blow-up of solutions starting from E. Also, the
growth condition of the nonlinearity imposed there (in the case of the Hilbert space H) is
rather restrictive (see [3, Property IV, p. 89]): ∥F (u)∥H ≤ ε∥u∥H +C for some ε, C > 0.
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The non-compact global attractors for slowly non-dissipative scalar reaction-diffusion
equations of the form{

ut = uxx + bu+ g(x, u, ux), t > 0, x ∈ (0, π),

ux = 0 for x = 0, π, u(0, x) = u0(x),
(31)

were also investigated in [1, 22]. It turns out that a noncompact global attractor U can
be decomposed as

U = Ec ∪ E∞ ∪H,
where Ec denotes the set of bounded hyperbolic equilibria of (31), E∞ is the set of ’equilib-
ria at infinity’ and H consists of heteroclinic connections between equilibria. A thorough
study of this structure, using the zero number properties of solutions, was carried out
in [23], where we refer the reader for details.

6 Blow-up Solutions

The blow-up of solutions in a finite time is a frequent form of behavior for evolution
equations, taking its origins from the simple problem

y′(t) = y2(t), y(0) = y0,

with a stationary zero solution and other solutions of the explicit form y(t) = 1
y−1
0 −t

for y0 ̸= 0. Evidently, this fraction becomes unbounded in a finite time τy0
= y−1

0

provided that y0 > 0. Thus, when using the notation of Section 2, the phase space
Xα = R decomposes into open Xα

B = (0,∞), closed Xα
D = (−∞, 0] and empty Xα

G.
Detecting the blow-up solutions of more complicated equations and characterizing the
decomposition of the phase space is, in general, much harder. Without explicit formulas
for solutions, the best available tools are the comparison techniques, which eventually
provide us sufficient conditions for justifying the occurrence of blow-up. However, the
assumptions on nonlinear terms allowing to use the comparison techniques are limited
to particular equations only and cannot be applied to most cases.

A similar type of behavior is observed for semilinear parabolic equations of the form

ut = ∆u+ f(u,∇u), (32)

though in that case there are more reasons for the finite life time of solutions. A simpler
possibility is that the L∞(Ω)−norm of the solution grows to infinity in a finite time
(cp. Proposition 4.1). We can also face the phenomenon of the gradient blow-up. Recall
that a gradient blow-up occurs when the solution u stays L∞ bounded but it does not
exist globally in time because some of the derivatives of u blow-up in a finite time. Let
us shed some more light on the background of this case.

It is not easy to formulate a sufficient condition for the blow-up of the gradient of
a solution; see, however, [7, 24, 29] and Proposition 6.1. Easier is to find hypotheses
allowing to limit its growth. In a bounded domain Ω ⊂ RN with ∂Ω ∈ C2, consider the
homogeneous Dirichlet boundary value problem for (32), assuming that f(0,∇u) = 0

and
∣∣∣∂f∂u ∣∣∣ ≤ L1,

∣∣∣ ∂f
∂uxi

∣∣∣ ≤ L∇, with certain positive constants L1, L∇.

Multiplying equation (32) by ∆u and integrating over Ω, we obtain

− 1

2

d

dt

∫
Ω

|∇u|2dx =

∫
Ω

(∆u)2dx+

∫
Ω

f(u,∇u)∆udx, (33)
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and further∫
Ω

f(u,∇u)∆udx =

∫
∂Ω

f(u,∇u)∂u
∂ν
dS −

∫
Ω

∑
i

(∂f
∂u
uxi

+
∑
j

∂f

∂uxj

uxixj

)
uxi

dx,

where the boundary integral vanishes due to the assumption f(0,∇u) = 0. Then the
boundedness of the derivatives of f and the Cauchy inequality imply that∣∣∣∣∫

Ω

f(u,∇u)∆udx
∣∣∣∣ ≤ L1

∫
Ω

|∇u|2dx+ L∇

∫
Ω

∑
i,j

(
ε|uxixj

|2 + 1

4ε
|uxi |2

)
dx (34)

with an arbitrary ε > 0. Note that
∑
i,j

∥ϕxixj
∥2L2(Ω) = ∥∆ϕ∥2L2(Ω) for ϕ ∈ H2

0 (Ω) (see

e.g. [10, (9.34)]). Combining (33) and (34), we choose a sufficiently small ε > 0 to obtain

d

dt

∫
Ω

|∇u|2dx ≤ C(L1, L∇)

∫
Ω

|∇u|2dx

and, consequently, an exponential bound for the spatial gradient of the solution.
As we discuss in the Appendix, for L∞ bounded solutions, even the sub-quadratic

growth of f(u,∇u) with respect to the gradient is allowed, not leading to their blow-up.
But a higher than quadratic growth of f(u,∇u) with respect to ∇u leads, in general,
to the blow-up of the spatial derivatives of the solution. Using the technique of sub-
solutions, such form of behavior was studied in [7], where several examples of equations
allowing the gradient blow-up were constructed. Different methods were used in [29] to
formulate a sufficient condition for the gradient blow-up for a model Dirichlet problem{

ut = ∆u+ |∇u|p, t > 0, x ∈ Ω,

u(t, x) = g(t, x), t > 0, x ∈ ∂Ω, u(0, x) = u0(x), x ∈ Ω,
(35)

with g ∈ C([0, T ] × ∂Ω) for all T > 0, and u0 ∈ C1(Ω) fulfilling the compatibility
condition u0(x) = g(0, x) on ∂Ω.

Denoting by λ1 > 0 the first positive eigenvalue of −∆ in H1
0 (Ω), with the corre-

sponding normalized eigenfunction ϕ1 > 0, we recall (see [29, Theorem 2.1]) the following
result.

Proposition 6.1 When p > 2, then there exists a positive k0 = k0(Ω, p, g) such that

if
∫
Ω
u0(x)ϕ1(x)dx > k0, then the gradient blow-up for solution of (35) occurs.

Certain generalizations of the above-mentioned result can be found in [29, Theorem 2.2].
There exists quite a large literature devoted to the occurrence of blow-up (see e.g.

[24], [26] for more references). Several properties including blow-up sets, blow-up rates
and profiles characterizing closer this phenomenon have already been investigated, at
least for the basic model problem{

ut −∆u = λu+ u|u|p−1, t > 0, x ∈ Ω,

u = 0 on ∂Ω, u(0, x) = u0(x), x ∈ Ω,

with p > 1 and λ ∈ R, in a bounded regular domain Ω ⊂ RN . Popular are also the
studies of a more general problem (see [30]){

ut −∆u = up + g(t, x, u,∇u), t > 0, x ∈ Ω ⊂ RN ,

u = 0 on ∂Ω, u(0, x) = u0(x), x ∈ Ω,
(36)
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with C1 nonlinearity g satisfying g(t, x, 0, 0) ≥ 0, the latter requirement being connected
with the non-negativity of solutions. The solutions of (36) are searched in the set

X := {0 ≤ ϕ ∈ C1(Ω): ϕ,∇ϕ ∈ L∞(Ω), ϕ = 0 on ∂Ω}

subject to the norm ∥ϕ∥X = ∥ϕ∥L∞(Ω) + ∥∇ϕ∥L∞(Ω). Further developments concerning
the blow-up of solutions can be found in the recent monograph [24].

7 Local Attractors and Lyapunov Functions

As regards the solutions which exist globally in time, it is interesting to investigate their
long-time behavior. For solutions which stay bounded, one may try to find out sets
they approach. Conversely, having a given subset of the phase space, one may look for
solutions which are attracted by this set. This inspires the introduction of the following
notion.

Definition 7.1 Let {S(t) : t ≥ 0} be a semigroup on a metric space (M,d). The
basin of attraction of a set A ⊂M is defined as

Ω(A) = {u0 ∈M : lim
t→∞

dist(S(t)u0, A) = 0},

where dist(S(t)u0, A) = infv∈A d(S(t)u0, v).

Remark 7.1 It is easy to see that the basins of attraction of the two disjoint compact
sets need to be disjoint. In particular, the basins of attraction of two separate stationary
points are disjoint. Indeed, let A1 and A2, A1 ∩ A2 = ∅, be two disjoint compact
sets with their basins of attraction Ω(A1) and Ω(A2), respectively, and suppose that
u0 ∈ Ω(A1)∩Ω(A2). Then, taking successive subsequences, we find v ∈ A1, w ∈ A2, and
a sequence tn → ∞ such that S(tn)u0 → v and S(tn)u0 → w. Consequently, v = w by
the uniqueness of the limit, which is not possible.

A special role in dynamical systems is played by compact invariant subsets of the
phase space. The simplest ones are stationary points or periodic orbits. Some of them
may attract their neighborhoods.

Definition 7.2 A compact set A ⊂M is said to be an attractor (or a local attractor)
for a semigroup {S(t) : t ≥ 0} on M if it is invariant and attracts an open neighborhood
U of itself.

Note that if A is an attractor, then Ω(A) ⊃ U and A becomes a global attractor
provided that it attracts each bounded subset of M . Moreover, if A is an attractor, then
its basin of attraction Ω(A) is an open subset of M . We recall next a sufficient condition
for the existence of an attractor, the result being taken from [27, Section 2.3.5].

Proposition 7.1 Let {S(t) : t ≥ 0} be a semigroup on M ⊂ X, where X is a com-
plete metric space. Assume there are a compact set K ⊂ M and a neighborhood U of
K in M having the property that K attracts all bounded sets in U . Then the semigroup
{S(t) : t ≥ 0} has an attractor A = ω(K) ⊂ K, where ω(K) is the ω−limit set of K.

The following result justifies the existence of an attractor for asymptotically compact
semigroups (cp. Definition 2.5).
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Proposition 7.2 Assume that there exists a bounded closed set A ⊂M that attracts
a neighborhood of itself. If the semigroup {S(t) : t ≥ 0} on M is asymptotically compact,
then there exists an attractor A ⊂ A.

Remark 7.2 It is easy to observe that a finite sum of attractors is an attractor itself.
Indeed, if A1,A2 are two attractors, then their sum is evidently compact and invariant.
Moreover, the sum of the neighborhoods of A1 and A2 will be attracted by A1 ∪ A2.

Consequently, if there is a finite number of attractors in the system, we can always
consider only their sum as a common attractor.

Solutions of some parabolic equations have a natural tendency to approach a station-
ary solution (see e.g. [13,21,34]), which is the simplest local attractor. Below we observe
that if a global solution to a semilinear sectorial equation is convergent, then it must
tend to an equilibrium.

Proposition 7.3 Let Assumption 2.1 hold and assume that u(t, u0) is a global Xα

solution of (1) and there exists v ∈ Xα such that lim
t→∞

u(t, u0) = v in Xα. Then v is

a stationary solution of (1), that is, v ∈ X1 ⊂ Xα and Av = F (v).

Proof. By (11), for any 0 < T < τv, we have u(T, u(t, u0)) → u(T, v) as t→ ∞. On
the other hand, by assumption, u(T, u(t, u0)) = u(T + t, u0) converges to v as t → ∞.
Thus u(T, v) = v for any 0 < T < τv, so v is a stationary solution of (1). □

Therefore, under Assumption 2.1, the following alternative holds: either the solution
u of (1) converges to a single stationary solution v or the solution u is not convergent
in Xα as t → ∞. In the second case, other forms of behavior are possible: the solution
may grow up, blow up in a finite time, or eventually approach an attractor having more
complicated structure (not reduced to a single equilibrium).

In literature, a common description of the behavior of dynamical systems generated
by parabolic equations or systems was given using the notion of the Lyapunov function,
see e.g. [12, 18, 34]. In the last two references, the semilinear and even fully nonlinear
problems in one space dimension were analyzed within that approach. In Chapter 5
of [2], the connection of the existence of a global attractor and the Lyapunov function
was described in the case of the so-called gradient semigroups.

Definition 7.3 A semigroup {S(t) : t ≥ 0} on a metric space (M,d) is called gradient
if there exists a continuous function V : M → R such that V (S(t)u0) is non-increasing
along the trajectories of u0 ∈M and, whenever V (S(t)u0) = V (u0) for all t ≥ 0, u0 must
be an equilibrium.

Note that in the above definition we do not require that V is bounded from below.

Remark 7.3 A semigroup {S(t) : t ≥ 0} on a metric space (M,d) is gradient if there
exists a continuous function V : M → R such that

V̇ (v) := lim sup
t→0+

V (S(t)v)− V (v)

t
≤ 0, v ∈M,

and for any u0 ∈ M if V (v) = V (u0), v ∈ γ+(u0), then u0 ∈ E , where γ+(u0) =
{S(t)u0 : t ≥ 0} and E denotes the set of equilibria in M . A function V having these
properties or, equivalently, those from Definition 7.3, is called a Lyapunov function.
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The following LaSalle’s Invariance Principle holds, for the proof, see [15, Theorem 4.3.4].

Theorem 7.1 Let {S(t) : t ≥ 0} be a gradient semigroup on a metric space M . If
the positive orbit γ+(u0) = {S(t)u0 : t ≥ 0} of u0 ∈ M is a subset of a compact set K
contained in M , then ω(u0) ⊂ E is a nonempty compact invariant subset of M , which
attracts u0, and dist(S(t)u0,S) → 0 as t→ ∞, where S is the maximal invariant subset
of {v ∈M : V̇ (v) = 0}.

We apply LaSalle’s Invariance Principle to the sectorial equation (1) (see [6]).

Corollary 7.1 Consider the problem (1) under Assumptions 2.1 and 2.2 and let
{S(t) : t ≥ 0} be the semigroup of Xα solutions on M = Xα

D ∪Xα
G, where we assume Xα

D

to be nonempty (see Definition 2.2). Assume also that there exists a continuous function
V : Xα

D → R such that

V̇ (v) := lim sup
t→0+

V (S(t)v)− V (v)

t
≤ 0, v ∈ Xα

D,

and for any u0 ∈ Xα
D if V (v) = V (u0), v ∈ γ+(u0), then u0 ∈ E. Then, for any u0 ∈ Xα

D,
the set clXα γ+(u0) is a compact subset of Xα

D and, by LaSalle’s Invariance Principle,
we obtain ω(u0) ⊂ E. Thus the solutions u(t, u0) of (1) starting from u0 ∈ Xα

D approach
the set of equilibria E of (1).

Proof. Since Xα
D is positively invariant under the semigroup {S(t) : t ≥ 0}, we may

consider it only in the metric space Xα
D (with a metric inherited from Xα).

We first show that clXα γ+(u0) is a subset of Xα
D for any u0 ∈ Xα

D. Indeed, note that
B = γ+(u0) is a bounded subset of Xα

D. Let v ∈ clXα γ+(u0). Then there exists tn ≥ 0
such that S(tn)u0 → v in Xα. Since ∥u(t, S(tn)u0)∥Xα = ∥u(t+ tn, u0)∥Xα ≤ RB for all
t ≥ 0 and u(t, S(tn)u0) → u(t, v) in Xα for all t ∈ [0, τv) (see Theorem 4.1), it follows
that the solution starting from v has an Xα norm bounded by RB , hence v ∈ Xα

D.
Observe also that the boundedness of B in Xα implies that S(t)B with t > 0 is

bounded in Xα+ε for α + ε < 1. By Assumption 2.2, Xα+ε is compactly embedded in
Xα, which yields the compactness of clXα S(t)γ+(u0) for any t > 0. Finally, we have

clXα γ+(u0) = clXα

⋃
s∈[0,1]

S(s)u0 ∪ clXα S(1)γ+(u0),

which proves the compactness of clXα γ+(u0). □

Remark 7.4 A particularly complete description of Lyapunov functions is possible
in one space dimension (see [18,34,35]). For a general quasi-linear problem of the type{

ut = a(x, u, ux)uxx + b(x, u, ux),

αiux(t, i) + ψi(u(t, i)) = 0, t > 0, i = 0, 1, u(0, x) = u0(x),

considered for (t, x) ∈ [0,∞)× [0, 1] with a, b, ψi ∈ C3, one constructs a pair of functions
ρ,Φ(x, ξ, η) as in [35, Chapter 2, Theorem 1.1]. Then, after multiplying the first equation
by ρ(u, u, ux)ut, they generate a Lyapunov function V through the relations

d

dt

∫ 1

0

Φ(x, u, ux)dx = −
∫ 1

0

ρ(x, u, ux)u
2
tdx, V (u) =

∫ 1

0

Φ(x, u, ux)dx.
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It is especially easy to indicate a Lyapunov function for the problem (24). Namely,

V (u) =

∫
Ω

(|∇u|2 − bu2 − 2G(u))dx with G(u) =

∫ u

0

g(s)dx,

is a Lyapunov function for (24) on Xα = D((−∆N ,p)
α) with α > 1

2 and p > N and
p ≥ 2. Considering constant functions un ≡ n, n ∈ N, we see that V (un) → −∞ as
n → ∞. Hence V is not bounded from below. For (24), we have Xα = Xα

D ∪ Xα
G and

the resolvent of −∆N ,p is compact for a sufficiently regular domain Ω. Thus, if the set
of equilibria E of (24) is nonempty, then by Corollary 7.1, for any u0 ∈ Xα

D we have
ω(u0) ⊂ E , whereas for u0 ∈ Xα

G the solutions become unbounded in an infinite time.

8 Concluding Remarks

In summary, the picture sketched in this paper in the case of a semilinear parabolic prob-
lem, or even its generalization in the form of the abstract sectorial Cauchy problem (1)
under Assumption 2.1, reveals that, typically, we have three potential forms of behavior
of solutions as specified in Definition 2.2.

Considering a particular example of an abstract semilinear Cauchy problem (1), we
first need to check which a priori estimates are available for its solutions in order to use
them eventually in the subordination condition (see Theorem 4.2). More precisely, we
shall find the strongest a priori estimate. In case this a priori estimate is too weak to
guarantee the global in time extendibility of the local solutions, via the subordination
condition (18), we need to find regions of the phase space (e.g. for small initial data) in
which the existing a priori estimates are sufficient to extend solutions globally.

Furthermore, the stationary, time independent solutions should be detected and their
(linearized) stability be determined. Local attractors will be next constructed for the
stable stationary points, together with their basins of attraction.

For many dissipative equations, we can show the existence of a global attractor, that
is, a compact maximal invariant subset of the phase space which attracts all bounded
subsets. In the ideal situation, we will be even able to determine the structure of this
object. However, generally, we should expect that some solutions run away to infinity.
Some of them may grow up still being defined globally in time, whereas the rest of the
phase space will be occupied by locally existing solutions, which blow up in a finite time.

The coexistence of at least two behavior types of solutions leads to the corresponding
separation of the phase space, which is hard to be characterized in general. Moreover,
most of the above procedures, while formally possible, still remain rather only theoretical
for many practical problems arising from the Applied Sciences since, for instance, we
cannot precisely locate all the stationary points or periodic solutions.

Nevertheless, the questions raised above should be addressed. In particular situations,
they have already gained positive feedback. For example, the asymptotics of equations
possessing grow-up solutions was described in terms of non-compact attractors for slowly
non-dissipative reaction-diffusion equations. For specific equations, the profiles of blow-
up solutions were determined via comparison techniques. We have also shown that the
existence of a Lyapunov function for a general semilinear evolution equation with a main
sectorial operator having compact resolvent guarantees the attraction of each bounded
solution by the set of stationary solutions.
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A Reaction-Diffusion Neumann Boundary Problem

We place here some auxiliary results that are connected with the applications presented
in the paper, but do not belong to its main topic. They concern the existence of smooth
solutions and their global extendibility in time to the reaction-diffusion Neumann bound-
ary problem with gradient-dependent nonlinearity of the form{

ut = ∆u+ f(u,∇u), t > 0, x ∈ Ω,
∂u
∂ν = 0 on ∂Ω, u(0, x) = u0(x), x ∈ Ω.

(37)

We start with sketching out the proof of existence of a smooth solution having bounded
first derivatives ∇u. We will construct a local mild solution to (37) in the sense of [4,15]

in the base space D((−∆N ,p)
1
2 ) ⊂W 1,p(Ω) with p > N (here ∆N ,p denotes the Neumann

Laplacian in Lp(Ω)). The following proposition extends the result from [33, Section 11.10
(5)].

Proposition A.1 Assume that f : R×RN → R is a C1 function and let p > N and
Ω be a bounded domain in RN with the boundary ∂Ω of class C1 if N ≥ 2. Then the
Nemytskii operator u 7→ f(u,∇u) acts from W 2,p(Ω) into W 1,p(Ω), and

∥f(u,∇u)∥W 1,p(Ω) ≤ q(∥u∥W 2,p(Ω)), u ∈W 2,p(Ω), (38)

with some non-decreasing function q. Moreover, if f is a C2 function, then that Nemytskii
operator is Lipschitz continuous on the bounded subsets B of W 2,p(Ω), i.e.,

∥f(u,∇u)− f(v,∇v)∥W 1,p(Ω) ≤ C(B)∥u− v∥W 2,p(Ω), u, v ∈ B.

Proof. The key point for the first claim is the inclusion W 2,p(Ω) ⊂ C1(Ω), which
holds since p > N . To shorten the calculation, we will show the estimate for one compo-
nent of the W 1,p(Ω) norm only. We note that the argument (u,∇u) of f and its partial
derivatives is varying in a compact subset of RN+1, provided that ∥u∥W 2,p(Ω) is bounded.

Also, the norms ∥ ∂u
∂xj

∥L∞(Ω) are bounded, so that we have an estimate

∥ ∂

∂xj
f(u,∇u)∥Lp(Ω) ≤ c(∥u∥W 2,p(Ω)).

The proof of the second statement follows from (38) for the first derivatives of f and the
fact that W 1,p(Ω) is a Banach algebra. □

The above proposition almost immediately translates into the local existence result;
we only need to verify that the composite function f(u,∇u) ∈ D((−∆N ,p)

1
2 ) whenever

u varies in D(−∆N ,p), p > N . To this end, let us recall the characterization of the
fractional power spaces connected with the Neumann Laplacian considered on Lp(Ω).
Considering fractional powers up to the exponent θ = 1, we will assume that ∂Ω ∈ C2 if
N ≥ 2. Using the description in [33, pp. 474, 554], for 1 < p <∞, we have

D((−∆N ,p)
θ) =

{
W 2θ,p(Ω) for 0 ≤ θ < 1

2 + 1
2p ,

W 2θ,p
N (Ω) if 1

2 + 1
2p < θ < 3

2 + 1
2p ,

where we denote W s,p
N (Ω) := {ϕ ∈ W s,p(Ω): ∂ϕ

∂ν = 0 at ∂Ω}. Proposition A.1 together
with the above characterization imply that the Nemytskii operator u 7→ f(u,∇u) from

D(−∆N ,p) into D((−∆N ,p)
1
2 ) is a Lipschitz continuous mapping on the bounded subsets

of D(−∆N ,p). By the semigroup approach (see [4, 5, 15]), we obtain the local solutions.
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Proposition A.2 Let u0 ∈ D(−∆N ,p) and f : R×RN → R be C2. Then there exists
a unique local in time mild solution u to (37) having the following regularity properties:

u ∈ C([0, τ);D(−∆N ,p)) ∩ C((0, τ);D((−∆N ,p)
3
2 ), ut ∈ C((0, τ);D((−∆N ,p)

3
2−ε)),

with arbitrary ε > 0.

Following [20], we will now recall an a priori estimate of solutions to (37) leading to
the global in time extendibility of the local solutions. Consider the Neumann semilinear
problem (37) in a bounded domain Ω ⊂ RN with ∂Ω of class C2 if N ≥ 2, where the
function f : R× RN → R is C2 and satisfies the following growth restriction:

f(v, q)v ≤ c0|q|2 + c1v
2 + c2, v ∈ R, q ∈ RN (39)

with non-negative constants c0, c1, c2. Then, for classical solutions of (37) having con-
tinuous in [0, T ] × Ω spatial derivatives ∇u, the following a priori estimate in L∞(Ω) is
valid:

max
(t,x)∈[0,T ]×Ω

|u(t, x)| ≤ κeλT max{
√
c2; max

x∈Ω
|u0(x)|}, (40)

where κ, λ > 0 are constants dependent only on c0, c1 and the domain Ω. The proof of
that estimate can be found in [20, Ch. V, Theorem 7.3].

Having an a priori L∞(Ω) estimate as in (40) for all classical solutions to (37) under
the assumption (39), we can thus eliminate the possibility of the blow-up in that case
whenever f grows less than quadratically with respect to ∇u. Indeed, assume that the
sub-quadratic growth condition with respect to the gradient is satisfied (compare [20,
Chapter I, (3.31)]):

|f(u,∇u)| ≤ c(|u|)(1 + |∇u|2−ε), |D1f(u,∇u)| ≤ c(|u|)(1 + |∇u|2−ε),

|Di+1f(u,∇u)| ≤ c(|u|)(1 + |∇u|1−ε), i = 1, ..., N,
(41)

where c : R+ → R+ is a non-decreasing function and ε ∈ (0, 1).

Note first that whenever (2−ε)p−N
(2−δ)p−N < θ(2 − ε), where 0 < δ < ε and 0 < θ < 1, the

Nirenberg-Gagliardo type estimate

∥ϕ∥W 1,(2−ε)p(Ω) ≤ c∥ϕ∥θW 2−δ,p(Ω)∥ϕ∥
1−θ
L∞(Ω)

holds. Further, since (2−ε)p−N
(2−δ)p−N < 1, we can also assume that θ(2− ε) < 1. Thus we get

∥f(u,∇u)∥Lp(Ω) ≤ c(∥u∥L∞(Ω))∥1 + |∇u|2−ε∥Lp(Ω)

≤ c(∥u∥L∞(Ω))
(
|Ω|+ ∥u∥2−ε

W 1,(2−ε)p(Ω)

)
≤ c′(∥u∥L∞(Ω))

(
1 + ∥u∥θ(2−ε)

W 2,p(Ω)

)
.

We further consider the components of the norm ∥f(u,∇u)∥W 1,p(Ω):

∥ ∂

∂xj
f(u,∇u)∥Lp(Ω) ≤ ∥D1f

∂u

∂xj
∥Lp(Ω) +

N∑
i=1

∥Di+1f
∂2u

∂xj∂xi
∥Lp(Ω). (42)

We will estimate the second component in (42), the first one can be treated analogously.
Using the Hölder inequality (with 1

r + 1
s = 1) and (41), we obtain

∥Di+1f
∂2u

∂xj∂xi
∥Lp(Ω) ≤ ∥Di+1f(u,∇u)∥Lpr(Ω)∥

∂2u

∂xj∂xi
∥Lps(Ω)

≤ c′(∥u∥L∞(Ω))
(
1 + ∥∇u∥1−ε

L(1−ε)pr(Ω)

)
∥u∥W 2,ps(Ω).
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The last estimate, by the Nirenberg-Gagliardo type inequalities

∥ϕ∥W 1,(1−ε)pr(Ω) ≤ c∥ϕ∥θW 3−δ,p(Ω)∥ϕ∥
1−θ
L∞(Ω), ∥ϕ∥W 2,ps(Ω) ≤ c̄∥ϕ∥θW 3−δ,p(Ω)∥ϕ∥

1−θ
L∞(Ω),

extends to

∥Di+1f
∂2u

∂xj∂xi
∥Lp(Ω) ≤ C(∥u∥L∞(Ω))

(
1 + ∥u∥θ+(1−ε)θ

W 3−δ,p(Ω)
),

where we need to fulfill two conditions

1− N

(1− ε)pr
< θ

(
3− δ − N

p

)
and 2− N

ps
< θ

(
3− δ − N

p

)
,

or, jointly, 3− ε− N
p <

(
θ + (1− ε)θ

)(
3− δ − N

p

)
. Note that, for a given ε ∈ (0, 1) and

0 < δ < ε, the sum (θ + (1 − ε)θ) will be made strictly less than 1. We thus obtained
a subordination type condition

∥f(u,∇u)∥W 1,p(Ω) ≤ c(∥u∥L∞(Ω))
(
1 + ∥u∥θ+(1−ε)θ

W 3−δ,p(Ω)

)
allowing to extend a local solution to (37), varying in the phase spaceW 3−δ,p

N (Ω) globally
in time (see Theorem 4.2 and [4, Section 4.3] for details).
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Abstract: This paper investigates geometrical properties for relative operator en-
tropies acting on positive definite matrices by the use of the log-determinant metric.
Particularly, we prove that both entropies Sp(A|B) and Tp(A|B) lie inside the sphere
centered at the geometric mean of A and B with the radius equal to half the log-
determinant distance between A and B.
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1 Introduction

Let Mn be the algebra of n× n matrices over R, and Pn denote the cone of symmetric
positive definite elements of Mn. The identity matrix will be denoted by I. We recall
that for any two matrices A and B from Pn, we set A ≤ B to mean that B − A ≥ 0,
i.e., B −A is a positive semi-definite matrix. This order, known in the literature by the
Löwner order, is partial.

Kamei and Fujii introduced in [7, 8] the relative operator entropy S(A|B) for two
positive definite matrices A and B, by the following formula:

S(A|B) = A
1
2 log

(
A

−1
2 BA

−1
2

)
A

1
2 , (1)

which represents an extension of the operator entropy defined by Nakamura and Umegaki
[18] and of the relative operator entropy introduced by Umegaki [21]. Later, a generalized
parametric extension of the relative operator entropy was stated by Furuta in [10] as

Sp(A|B) = A
1
2

(
A

−1
2 BA

−1
2

)p
log(A

−1
2 BA

−1
2

)
A

1
2 , p ∈ R. (2)
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The last generalization is to be understood as follows:

lim
p→0

Sp(A|B) = S0(A|B) = S(A|B).

Applying the concept of the Tsallis relative entropy for matrices, Yanagi, Kuriyama and
Furuichi presented in [20] another parametric extension of relative operator entropy as
follows:

Tp(A|B) =
A♯pB −A

p
, p ∈ [−1, 1] \ {0}, (3)

where A♯pB := A
1
2

(
A

−1
2 BA

−1
2

)p
A

1
2 for all p ∈ R is the p-weighted geometric mean of

A and B, which coincides, when taking p = 1/2, with the well known geometric mean
that will be simply denoted in the sequel by A♯B. The last extension is justified by the
following result proved in [8]:

lim
p→0

Tp(A|B) = S(A|B).

Some algebraic properties and inequalities involving the two parametric extensions of the
relative operator entropy can be found, for instance, in [6, 9, 15, 16]. The representation
of the Tsallis relative operator by means has allowed to derive some inequalities related
to this operator.

Following the Kubo-Ando theory [12], it is known that for the representing function
fσ(x) = 1σx for an operator mean σ acting on positive matrices, the scalar inequality
fσ1(x) ≤ fσ2(x), (x > 0) is equivalent to the operator one Aσ1B ≤ Aσ2B, for all positive
definite matrices A and B. It is also worth recalling that for any non-negative monotone
function f on (0,+∞), the binary map defined for two positive matrices A and B by

AσB = A
1
2 f
(
A

−1
2 BA

−1
2

)
A

1
2 is a Kubo-Ando mean in the sense stated in [12].

The concept of entropy is widely used in estimating uncertainty existing in the state
of a dynamic system and in measuring the degree of chaos in a deterministic system.
Further details and approaches related to these notions can be found in [3, 11, 19], for
example. Another very interesting topic in this field is the measure of the distance
between the states of a dynamic system. It represents an essential tool to describe the
evolution of quantum systems. Intensive studies have been carried out in the last few
years concerning this point, see [1, 13,14] for instance.

There are many definitions of the distance between states. Among those, we recall the
log-determinant metric dl, widely used in machine learning and quantum information,
and defined for any matrices A and B from Pn as follows [17]:

dl(A,B) = log det (A∇B)− 1

2
log det(AB), (4)

where A∇B :=
A+B

2
denotes the arithmetic mean of A and B. We recall the following

property [17] that holds true for every three matrices A, B and C from Pn:

dl(C AC,C B C) = dl(A,B). (5)

Recently, many authors employ this metric in developing various concepts and establish-
ing interesting properties concerning some parametric means. For details, we refer the
reader to [2, 4, 5] and the references therein.
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In this paper, by the use of the log-determinant metric, we estimate some distances
involving the relative operator entropies recalled in (1), (2) and (3). The present paper
is organized in the following manner. In the second section, we present some preliminary
tools and in the third one, we focus on stating our main results with respect to the log-
determinant metric. The findings presented in this paper have geometric interpretations.

2 Preliminaries

In this section, we set out some preliminary results that will be needed in the sequel.
We begin by presenting some results about some real functions that will be used as
ingredients for our main results.

Lemma 2.1 We have the following results:

i) ∀t > 0 , 1− 1

t
≤ log t ≤ t− 1.

ii) The function p 7−→ xp − 1

p
is increasing on (0, 1] for each x > 0.

iii) The function p 7−→ (1 + p)
1
p is decreasing on (0, 1] and sup

p∈(0,1]

(1 + p)
1
p = e.

Proof. These statements are routine exercises in mathematical real analysis.
The following proposition will give an efficient tool in determining some results for

the Tsallis relative operator entropy with respect to the log-determinant metric.

Proposition 2.1 Let C be a positive definite matrix. If e I ≤ C, then the map
defined by

p 7−→
(
Cp − I

p

)1/2

∇
(
Cp − I

p

)−1/2

is increasing on (0, 1].

Proof. Let x ≥ e. The functions t
h7−→ t1/2∇t−1/2 and p

k7−→ xp − 1

p
are both

increasing on [1,∞) and (0, 1], respectively. Since x ≥ e and using the third assertion in
Lemma 2.1, we can set x ≥ (p+ 1)1/p for every p in (0, 1].

So, for all p ∈ (0, 1], we get
xp − 1

p
≥ 1. By taking the appropriate composition of

the functions h and k, we deduce that the function

p 7−→
(
xp − 1

p

)1/2

∇
(
xp − 1

p

)−1/2

is increasing on (0, 1].
Finally, if the condition C ≥ e I is satisfied, then the map p 7−→(

Cp − I

p

)1/2

∇
(
Cp − I

p

)−1/2

is increasing on (0, 1], thanks to the connection well

known in the theory of Kubo-Ando between the inequalities satisfied by the representing
functions and associate means operators. (For simplicity, this detail will be omitted in
the following proofs.)

The main goal of the next three lemmas is to characterize some constants which will
be needed in establishing appropriate conditions for our main results.
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Lemma 2.2 The function f defined on (1,∞) by f(x) = x
1
2 + x

−1
2 − (log x)

1
2 −

(log x)
−1
2 is strictly increasing. Moreover, there exists a unique α satisfying f(α) = 0

and 1, 76 < α < 1, 77.

Proof. For all x > 1, we have

f ′(x) =
(x− 1)

√
log x log x+

√
x(1− log x)

2x
√
x
√
log x log x

.

For 1 < x ≤ e, the inequality (x− 1)
√
log x log x+

√
x(1− log x) ≥ 0 is simple to deduce.

If x > e, then we have

(x− 1)
√

log x log x+
√
x(1− log x) > (x− 1) log x+

√
x(1− log x)

= (x−
√
x) log x+

√
x− log x.

One can easily check that (x −
√
x) log x > 0 and

√
x − log x > 0. This implies that

f increases strictly on (1,∞). In addition, since f is continuous on (1,∞), there is
a bijection from (1,∞) onto (lim

x↓1
f(x), lim

x→+∞
f(x)) = (−∞,+∞). This confirms the

existence and uniqueness of α. Finally, by checking that f(1, 76) < 0 < f(1, 77), the
proof is ended.

Lemma 2.3 The function g defined on [1,∞) by g(x) = log x− 1 +
1

x+ 1
is strictly

increasing and there exists a unique β > 1 such that g(β) = 0. Moreover, 1, 93 < β <
1, 94.

Proof. It suffices to study the variations of the function g on [1,∞) and to deduce
the results in a similar way as in the proof of Lemma 2.2.

Lemma 2.4 The function h defined on (1,∞) by h(x) = x+
1

x
−x

1
2 log x− (log x)−1

is strictly increasing and there exists a unique σ > 1 satisfying h(σ) = 0. Moreover,
1, 91 < σ < 1, 92.

Proof. For all x > 1, we have

h′(x) =
2
√
x− log x− 2

2
√
x

+
1

x(log x)2
− 1

x2
.

By simple computations, one can check that

2
√
x− log x− 2

2
√
x

≥ 0 and
1

x(log x)2
− 1

x2
≥ 0.

So h increases strictly on (1,∞). On the other hand, h is continuous on (1,∞), so it
establishes a bijection from (1,∞) onto

(
lim
x↓1

h(x), lim
x→∞

h(x)
)
= (−∞,∞). This proves

the existence and the uniqueness of σ. To end the proof, it suffices to note that h(1, 91) <
0 < h(1, 92).

Now we are in a position to state our findings, and hereafter, for any given two positive
definite matrices A and B, we will constantly set C = A−1/2 BA−1/2.
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3 Statement of Findings

In this section, we aim to establish inequalities for the relative operator entropy and its
generalizations with respect to the log-determinant metric.

Theorem 3.1 Let A,B ∈ Pn be two positive definite matrices such that αA ≤ B.
We have the following inequality:

dl
(
A,S(A|B)

)
≤ dl(A,B), (6)

where α is the fixed real number defined in Lemma 2.2.

Proof. Using Lemma 2.2, for every x ≥ α, we have

(log x)
1
2 + (log x)

−1
2 ≤ x

1
2 + x

−1
2 .

So, if αA ≤ B, then α I ≤ C and we get

(logC)
1
2 + (logC)

−1
2 ≤ C

1
2 + C

−1
2 .

The last inequality combined with the monotonicity of the logarithm and the determinant
gives

log det

(
1

2

(
(logC)

1
2 + (logC)

−1
2

))
≤ log det

(
1

2

(
C

1
2 + C

−1
2

))
,

that is,
dl(I, logC) ≤ dl(I, C),

or
dl
(
A,S(A|B)

)
≤ dl(A,B).

By this, the proof is concluded.
Now we will deal with the generalization of the last result for any operator Sp(A|B)

with p ∈ (0, 1
2 ].

Theorem 3.2 Let A and B be two positive definite matrices such that σA ≤ B. The
following inequality holds true:

dl(A,Sp(A|B)) ≤ dl(A,B) (7)

for all p ∈ (0, 1
2 ]. σ denotes the constant number in Lemma 2.4.

Proof. By the condition σA ≤ B and for all 0 < p ≤ 1

2
, we have

logC ≤ Cp logC ≤ C
1
2 logC,

so
(Cp logC)−1 ≤ (logC)−1.

Hence
Cp logC + (Cp logC)−1 ≤ C

1
2 logC + (logC)−1.

Since C ≥ σ I, thanks to Lemma 2.4 we obtain the following inequalities:

Cp logC + (Cp logC)−1 ≤ C
1
2 logC + (logC)−1 ≤ C + C−1,
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and we can deduce that

(Cp logC) + (Cp logC)−1 + 2I ≤ C + C−1 + 2I,

or equivalently,

(Cp logC)
1
2 + (Cp logC)

−1
2

2
≤ C

1
2 + C

−1
2

2
.

Thus,

log det

((
Cp logC

) 1
2 +

(
Cp logC

)−1
2

2

)
≤ log det

(
C

1
2 + C

−1
2

2

)
,

that is,
dl(I, C

p logC) ≤ dl(I, C).

The last inequality is equivalent to (2.4).

Remark 3.1 The proof of Theorem 3.2 is also valid for p = 0. So, it gives
dl
(
A,S(A|B)

)
≤ dl(A,B) for two definite positive matrices A and B when σ A ≤ B.

But since σ > α, the result given by Theorem 3.1 is better than the one given in Theo-
rem 3.2 for this case.

Theorem 3.3 Let A and B be two positive definite matrices such that eA ≤ B. For
all two positive numbers p, q ∈ [0, 1] such that p ≤ q, we have

dl
(
A,Sp(A|B)

)
≤ dl

(
A,Sq(A|B)

)
. (8)

Proof. One can easily check that for a given x ≥ e, the function p 7−→
(
xp(log x)

) 1
2 +(

xp(log x)
)−1

2 is increasing on [0, 1]. So, if eA ≤ B, then for all p, q ∈ [0, 1] such that
p ≤ q, we have(

Cp(logC)
) 1

2 +
(
Cp(logC)

)−1
2

2
≤
(
Cq(logC)

) 1
2 +

(
Cq(logC)

)−1
2

2
.

Thus,

log det

((
Cp(logC)

) 1
2 +

(
Cp(logC)

)−1
2

2

)
≤ log det

((
Cq(logC)

) 1
2 +

(
Cq(logC)

)−1
2

2

)
,

which means that the following inequalities hold:

dl
(
I, Cp(logC)

)
≤ dl

(
I, Cq(logC)

)
,

or equivalently,
dl
(
A,Sp(A|B)

)
≤ dl

(
A,Sq(A|B)

)
.

Remark 3.2 If the conditions stated in Theorems 3.1, 3.2 and 3.3 are not fulfilled
by the matrices A and B, then the inequalities (6), (7) and (8) are no longer valid. This
fact can be highlighted by the following counter-example.

Let us consider the following two positive definite matrices:

A =

(
4 1
1 4

)
and B =

(
5 1
1 5

)
.

Computing with Matlab software, we find the following values:
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• dl(A,B) = 0, 0145 < dl(A,S(A|B)) = 0, 5080.

• dl(A,B) < dl
(
A,S1/2(A|B)

)
= 0.4391 < dl

(
A,S1/4(A|B)

)
= 0, 4729.

Theorem 3.4 Let A and B be two positive definite matrices such that β A ≤ B. The
following inequality holds for any 0 < p ≤ 1:

dl
(
A, Tp(A|B)

)
≤ dl(A,B) (9)

with β being the constant defined in Lemma 2.3.

Proof. Inequality (9) is equivalent to the following:

log det


(Cp − I

p

) 1
2 +

(Cp − I

p

)−1
2

2

 ≤ log det

(
C

1
2 + C

−1
2

2

)
. (10)

So, let us prove that we have, for any x ≥ β,(
xp − 1

p

) 1
2

+

(
xp − 1

p

)−1
2

≤ x
1
2 + x

−1
2 , (11)

or equivalently,
xp − 1

p
+
(xp − 1

p

)−1 ≤ x+
1

x
.

For any x ≥ β, we have log x ≤ xp − 1

p
≤ x− 1 and, consequently, we get

xp − 1

p
+

(
xp − 1

p

)−1

≤ x− 1 + (log x)−1.

Furthermore, according to Lemma 2.3, we have

x− 1 + (log x)−1 ≤ x+
1

x
.

So, if β A ≤ B, then β I ≤ C and, consequently, the inequality (11) is established. This
ends the proof.

Theorem 3.5 Let A and B be two matrices from Pn. If eA ≤ B, then the following
inequality

dl(A, Tp(A|B)) ≤ dl(A, Tq(A|B)) (12)

holds true if 0 < p ≤ q ≤ 1.

Proof. If eA ≤ B, then e I ≤ C. Employing Proposition 2.1, we get(
Cp − I

p

)1/2

∇
(
Cp − I

p

)−1/2

≤
(
Cq − I

p

)1/2

∇
(
Cq − I

p

)−1/2
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for every p, q ∈ (0, 1] and p ≤ q. So,

log det

[(
Cp − I

p

)1/2

∇
(
Cp − I

p

)−1/2
]
≤ log det

[(
Cq − I

q

)1/2

∇
(
Cq − I

q

)−1/2
]
.

After some minor computations the last inequality implies

dl

(
I,

Cp − I

p

)
≤ dl

(
I,

Cq − I

q

)
which is equivalent to the desired one (12).

In what follows we focus on estimating the log-determinant distance between the
geometric mean and different relative entropy operators.

Theorem 3.6 Let A and B be two positive definite matrices such that eA ≤ B. We
have the following inequality:

dl(A♯B, S(A|B)) ≤ 1

2
dl(A,B). (13)

Proof. The inequality

dl(A♯B, S(A|B)) ≤ 1

2
dl(A,B)

is equivalent to

log det

((
C

−1
4 (logC)C

−1
4

) 1
2 +

(
C

−1
4 (logC)C

−1
4

)−1
2

2

)
≤ log det

(
C

1
2 + C

−1
2

2

) 1
2

.

So, let us prove that if C ≥ e I, then we have(
C

−1
4 (logC)C

−1
4

) 1
2 +

(
C

−1
4 (logC)C

−1
4

)−1
2

2
≤
(
C

1
2 + C

−1
2

2

) 1
2

,

or equivalently,

C
−1
4 (logC)C

−1
4 +

(
C

−1
4 (logC)C

−1
4

)−1
+ 2I ≤ 2(C

1
2 + C

−1
2 ). (14)

Let us set for x ≥ e, φ(x) = 2x
1
2 + 2x

−1
2 − x

−1
2 log x−

(
x

−1
2 log x

)−1 − 2.
One can simply check that

φ′(x) =
2(x− log2 x) + (log x− 1) log2 x+ (x− 1) log2 x+ x log x (log x− 1)

2x
√
x(log x)2

.

It is clear that for x ≥ e one has φ′(x) ≥ 0. So φ is increasing on [e,∞) and this implies
that

φ(x) ≥ φ(e) ≥ 0.

Thus we get the inequality(
x

−1
2 log x

)
+
(
x

−1
2 (log x)

)−1
+ 2 ≤ 2(x

1
2 + x

−1
2 ),

which can be rephrased as follows:

x
−1
4 (log x)x

−1
4 +

(
x

−1
4 (log x)x

−1
4

)−1
+ 2 ≤ 2(x

1
2 + x

−1
2 ).

By this, the inequality (14) is established and the proof of the desired result is ended.
A generalization of this result will be recited in the following theorem.
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Theorem 3.7 Let A and B be two positive definite matrices such that µA ≤ B. If
µ ≥ 3, 3, then we have for all p ∈ (0, 1

2 ] the following inequality:

dl(A♯B, Sp(A|B)) ≤ 1

2
dl(A,B). (15)

Proof. We consider the function l defined on [3,∞[ by

l(x) = 2x
1
2 + 2x

−1
2 − log x−

(
x

−1
2 log x

)−1 − 2.

Let x ≥ 3, 3. We have

l′(x) =
2(x− log2 x) +

√
x log x[ 2(

√
x− 1) log x−

√
x ]

2x
√
x(log x)2

.

We can by routine computations show that x− log2 x ≥ 0 and 2(
√
x− 1) log x−

√
x ≥ 0.

So, the function l is increasing on [µ,∞). Consequently, for all x ≥ µ, we get

2x
1
2 + 2x

−1
2 ≥ log x+

(
x

−1
2 log x

)−1
+ 2. (16)

On the other hand, since the map p 7→ xp is increasing on (0, 1
2 ], we have for any x ≥ µ

that (
xp− 1

4 (log x)x
−1
4

)
≤
(
x

1
4 (log x)x

−1
4

)
≤ log x.

These inequalities added to the following ones:(
xp− 1

4 (log x)x
−1
4

)−1 ≤
(
x

−1
4 (log x)x

−1
4

)−1 ≤
(
x

−1
2 log x

)−1
,

enable us via (16) to deduce that(
xp− 1

4 (log x)x
−1
4

)
+
(
xp− 1

4 (log x)x
−1
4

)−1
+ 2 ≤ 2(x

1
2 + x

−1
2 ).

So, if we suppose that µA ≤ B, then we can deduce from the last inequality that(
Cp− 1

4 (logC)C
−1
4

)
+
(
Cp− 1

4 (logC)C
−1
4

)−1
+ 2I ≤ 2

(
C

1
2 + C

−1
2

)
,

which is equivalent to(
Cp− 1

4 (logC)C
−1
4

) 1
2 +

(
Cp− 1

4 (logC)C
−1
4

)−1
2

2
≤
(
C

1
2 + C

−1
2

2

) 1
2

.

So, this yields

log det

((
Cp− 1

4 (logC)C
−1
4

) 1
2 +

(
Cp− 1

4 (logC)C
−1
4

)−1
2

2

)
≤ log det

(
C

1
2 + C

−1
2

2

) 1
2

,

that is,

dl(A♯B, Sp(A|B)) ≤ 1

2
dl(A,B).

Now, to estimate the distance dl(A♯B, Tp(A|B)), we need the result quoted in the
following lemma.
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Lemma 3.1 The function v defined by

v(x) = x
1
2 + 3x

−1
2 −

(
x

−1
2 log x

)−1 − 2

is strictly increasing on [3,∞) and there exists a unique λ ≥ 3 satisfying v(λ) = 0.
Moreover, 3, 61 < λ < 3, 62.

Proof. For every x ∈ (3,∞), we have v′(x) =
w(x)

2x
√
x(log x)2

, where

t ∈ [3,∞) 7−→ w(t) := 2t− t log t+ (t− 3)(log t)2.

Computing the first derivative of w on (3,∞), we find

w′(x) = log2 x− log x+ 1 +
2(x− 3)

x
log x > 0.

So, w(x) ≥ w(3) > 0 and we can deduce that u is strictly increasing on [3,∞).
This fact added to the continuity of v implies that there exists a unique λ ≥ 3 satisfying
v(λ) = 0. The boundedness of λ is easy to check.

Theorem 3.8 Let A and B be two positive definite matrices such that λA ≤ B. We
have for all p ∈ (0, 1] the following inequality:

dl(A♯B, Tp(A|B)) ≤ 1

2
dl(A,B), (17)

where λ is the constant defined in Lemma 3.1.

Proof. The inequality

dl(A♯B, Tp(A|B)) ≤ 1

2
dl(A,B)

is equivalent to

log det

((Cp− 1
2 − C

−1
2

p

) 1
2

+

(
Cp− 1

2 − C
−1
2

p

)−1
2

2

)
≤ log det

(
C

1
2 + C

−1
2

2

) 1
2

.

So, let us prove that if C ≥ λ I, then we have(
Cp− 1

2 − C
−1
2

p

) 1
2

+

(
Cp− 1

2 − C
−1
2

p

)−1
2

2
≤
(
C

1
2 + C

−1
2

2

) 1
2

,

which is equivalent to the inequality

(Cp− 1
2 − C

−1
2

p

)
+
(Cp− 1

2 − C
−1
2

p

)−1
+ 2I

4
≤ C

1
2 + C

−1
2

2
,

or (
Cp− 1

2 − C
−1
2

p

)
+

(
Cp− 1

2 − C
−1
2

p

)−1

+ 2I ≤ 2.
(
C

1
2 + C

−1
2

)
. (18)
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Using i) in Lemma 2.1 and since the map p 7→ xp − 1

p
is increasing on (0, 1], we have for

any x ≥ λ that

log x ≤ xp − 1

p
≤ x− 1,

and we deduce

x
−1
2 log x ≤ xp− 1

2 − x
−1
2

p
≤ x

1
2 − x

−1
2 . (19)

So, by taking into account the result of Lemma 3.1, we get the following inequalities:(
xp− 1

2 − x
−1
2

p

)−1

≤
(
x

−1
2 log x

)−1 ≤ x
1
2 + 3x

−1
2 − 2. (20)

From (19) and (20), we can deduce

xp− 1
2 − x

−1
2

p
+

(
xp− 1

2 − x
−1
2

p

)−1

+ 2 ≤ 2(x
1
2 + x

−1
2 ).

Finally, we can confirm that if λA ≤ B, which means that λI ≤ C, the desired inequality
(18) is satisfied. With this, the proof is achieved.

We end this paper by stating the following remark.

Remark 3.3 i) Thanks to Theorems 3.7 and 3.8, we deduce that for convenient val-
ues of the parameter p, the operators Sp(A|B) and Tp(A|B) lie inside the sphere centered
at the geometric mean of A and B with the radius equal to half the log-determinant dis-
tance between A and B.
ii) If the conditions stated for the matrices A and B from Theorem 3.4 to Theorem
3.8 are not fulfilled, then the related results are no longer true. This fact is ensured by
counterexamples, that we omit here for this paper not to become heavier.

4 Conclusion

In this work, we established some properties of some classes of operator entropies by
employing the log-determinant distance. In particular, some geometrical aspects have
been highlighted such as the localization of the entropies of two positive matrices with
respect to their geometric mean.
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Abstract: The question of the equivalence of various Lorenz-like systems has been
recently discussed, it has been found that with the help of various transformations it
is possible to reduce such systems to the same form. In this paper, we show that the
Lorenz system and the Li system are topologically equivalent. However, in a recent
work it was shown that there is a homothetic transformation which converts the Li
system into the Lorenz system and, therefore, all the dynamical behavior exhibited
by the Li system is also present in the Lorenz system. Consequently, the results
obtained in the papers devoted to the study of the Li system unnecessarily duplicate
the scientific literature, while it can be trivially derived from the corresponding results
on the Lorenz system.
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alence.
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1 Introduction

In 1963, E.N. Lorenz [9] discovered chaos in a simple system of three autonomous ordinary
differential equations  X ′ = σ(Y −X),

Y ′ = ρX − Y −XZ,
Z ′ = −βZ +XY,

(1)

where σ, ρ and β are real parameters, the system is chaotic on a small subset {σ, ρ, β} =

{10, 28, 8
3
}. The Lorenz system is the first mathematical and physical model of chaos.

Since the introduction of the Lorenz system, which attracted much attention from re-
search teams, many other chaotic systems (generally called Lorenz-like systems) have
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been analyzed (see, for instance, [13–18]). Among them, we mainly focus on the au-
tonomous chaotic system proposed by X.F. Li et al. [15], which has been the subject of
some study (see, for example, [20–22]).

For several years great effort has been devoted to the study of the question of the
equivalence of various Lorenz-like systems, as discussed in [1–8], thus, with the help of
various transformations, it is possible to reduce such systems to the same form. However,
Algaba et al. showed that the Chen and the Lü systems are a special case of the Lorenz
system [1,2].

The purpose of this paper is to show that the Lorenz system and the Li system
are topologically equivalent. Moreover, in [8] it was shown that there is a homothetic
transformation which converts the Li system into the Lorenz system.

The Li system has the following form [15]: x′ = −ax+ ay,
y′ = −y + xz,

z′ = b− cz − xy,
(2)

where a, b and c are positive real parameters. With the following transformation:

x = X, y = Y, z = −Z +
b

c
, (c ̸= 0) , (3)

the system (2) becomes 
X ′ = a (Y −X) ,

Y ′ = b
cX − Y −XZ,

Z ′ = −cZ +XY.
(4)

Note that system (4) corresponds to the Lorenz system with parameters

σ = a, ρ =
b

c
, β = c. (5)

Therefore, if c ̸= 0, the Li system is equivalent to the Lorenz system. Thus, for each
Lorenz system, there are infinitely many Li systems, parameterized by c. In this case,
the two systems are homothetic copies, i.e., all the dynamics found in the Li system with
c ̸= 0 is also present in the Lorenz system.

Moreover, if c = 0 and a ̸= 0 (for a = 0, the Li system is linear and then trivially
solvable), with the linear scaling

x = aX, y = aY, z = −aZ, τ = at,

the Li system is transformed into the system
X ′ = −X + Y,

Y ′ = − 1
aY −XZ,

Z ′ = − b
a2 +XY.

(6)

Consequently, the system (6) is a particular case of a system, which has been proposed
and analysed by Pehlivan and Uyaroğlu [19].

2 Dynamics Found in the Lorenz and the Li Systems

In this section, we give some examples to illustrate how we can trivially deduce the
dynamics that appears in the Li system from the dynamics found in the Lorenz system.
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2.1 Equilibria and local bifurcations

It is clear that the Lorenz system has three equilibrium points if β(ρ− 1) > 0, i.e.,

P1(0, 0, 0), P2(−
√

β(ρ− 1),−
√
β(ρ− 1), ρ− 1),

P3(
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1).

Simply use equations (3) and (5) to obtain that the corresponding equilibrium points
of the Li system are

Q1(0, 0, b/c), Q2(
√
b− c,

√
b− c, 1),

Q3(−
√
b− c,−

√
b− c, 1),

when b− c > 0.
Denote the vector fields on the right-hand sides of (1) and (2) by

−→
U (X,Y, Z) and

−→
V (x, y, z), respectively. It is clear that the Jacobian of (1) is

D
−→
U (X,Y, Z) =

 −σ σ 0
ρ− Z −1 −X
Y X −β

 .

Simply use equations (3) and (5) to obtain that the corresponding Jacobian of the system
(2) is

D
−→
V (x, y, z) =

 −a a 0
z −1 −x
y x −c

 .

For ρ > 1, the origin is unstable. A pitchfork bifurcation of equilibria in the Lorenz
system appears for β(ρ − 1) = 0, and, consequently, a pitchfork bifurcation in the Li
system occurs when b = c. The Hopf bifurcation of the nontrivial equilibria occurs in the
Lorenz system at

ρ =
σ(σ + β + 3)

σ − β − 1
≡ ρh > 1, σ − β − 1 > 0, (7)

using equations (5), that corresponds to the Hopf bifurcation of the nontrivial equilibria
in the Li system [15]

bh =
ac(a+ c+ 3)

a− c− 1
, a > c+ 1.

In [15], the following statement appears: “If we fix c = 1 and vary a and b, we can
observe a continuous Hopf bifurcation, as shown in Fig.1. It is similar to that of the
Lorenz and Chen systems, all of them have quadratic functions of parameter a”. This
fact is very easy to obtain in the dynamic of the Lorenz system: if we use equations (5)
in the expression (7) with β = 1.

2.2 Invariant algebraic surfaces

Invariant algebraic surfaces in the Lorenz system were discussed in [10–12]. From the in-
variant algebraic surfaces of the Lorenz system, using equations (3) and (5), the invariant
algebraic surfaces of the Li system for c ̸= 0 are trivially obtained.
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The Lorenz system, when β = 2σ, has the invariant algebraic surface

X2 − 2σZ,

using equations (3) and (5) we get, when c = 2a, the invariant algebraic surface of the
Li system is written as

2ax2 + 4a2z − 2ab.

The Lorenz system, when β = 6σ− 2 and ρ = 2σ− 1, has the invariant algebraic surface

X4 − 4σX2Z − 4σ2Y 2 + 8ρσXY + 4ρ2X2,

using equations (3) and (5) we get, when c = 6a − 2 and b = 2ac − c, the invariant
algebraic surface of the Li system is written as

c2x4 + 4ac2x2z +
(
4b2 − 4abc

)
x2 − 4a2c2y2 + 8abcxy.

The Lorenz system, when β = 1 and ρ = 0, has the invariant algebraic surface

Y 2 + Z2,

using equations (3) and (5) we get, when b = 0 and c = 1, the Li system has the invariant
algebraic surface

y2 + z2.

The Lorenz system, when β = 4 and σ = 1, has the invariant algebraic surface

X4 − 4X2Z − 4Y 2 − 8XY + 4ρX2 − 16 (1− ρ)Z,

using equations (3) and (5) we get, when c = 4 and a = 1, the Li system has the invariant
algebraic surface

x4 + 4x2z − 4y2 − 8xy − (4− b) (−4z + b).

The Lorenz system, when β = 1 and σ = 1, has the invariant algebraic surface
 

 

Figure 1: A chaotic attractor that exists in the Li system for a = 5, b = 16, c = 1.
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Figure 2: A chaotic attractor that exists in the Lorenz system for σ = 5, ρ = 16, β = 1.

 

Figure 3: Projections onto two coordinate planes of a chaotic attractor that exists in the Li
system for a = 5, b = 115, c = 1.

Y 2 + Z2 − ρX2,

using equations (3) and (5) we get, when c = 1 and a = 1, the Li system has the invariant
algebraic surface

y2 + z2 − bx2 − 2bz + b2.

The case when β = 0 and σ = 1
3 has no companion case in the Li system, is the case

when c = 0.

2.3 Chaotic attractors

The celebrated method developed by Tucker to demonstrate the existence of Lorenz’s
attractor can also be used to prove the existence of Li’s attractor. We illustrate now
the equivalence between both dynamical systems drawing a chaotic attractor. Thus, in
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Figure 4: Projections onto two coordinate planes of a chaotic attractor that exists in the Lorenz
system for σ = 5, ρ = 115, β = 1.

 

 

Figure 5: Projections onto two coordinate planes of a chaotic attractor that exists in the Li
system for a = 5, b = 167, c = 1.

Figure 1, the chaotic attractor of the Li system is shown for the typical values a = 5, b =
16, c = 1 (Fig.2, [15]), in Figure 2, the companion chaotic attractor is presented that
exists in the Lorenz system for σ = 5, ρ = 16, β = 1.

In Figure 3, we have a projection of the chaotic attractors of the Li system for the
parameter values a = 5, b = 115, c = 1 (Fig.4(c), [15]), Figure 4, demonstrates the
projections onto two coordinate planes of the companion chaotic attractor that exists
in the Lorenz system for the parameter values σ = 5, ρ = 16, β = 1. In Figure 5,
we have a projection of the chaotic attractors of the Li system for the parameter values
a = 5, b = 167, c = 1 (Fig.4(h), [15]), Figure 6, displays the projections onto two
coordinate planes of the companion chaotic attractor that exists in the Lorenz system
for the parameter values σ = 5, ρ = 167, β = 1.
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Figure 6: Projections onto two coordinate planes of a chaotic attractor that exists in the Lorenz
system for σ = 5, ρ = 167, β = 1.

3 Conclusion

In conclusion, this study has shown with the help of a coordinate transform that the Li
system is only a particular case of the Lorenz system from the dynamical point of view.
Therefore, all the dynamical behavior exhibited by the Li system is present in the Lorenz
system. From this, we conclude that most results obtained in the previous studies of
the Li system (equilibria, bifurcations, periodic orbits, chaotic attractors, etc.) are a
duplicate of the corresponding literatures on the Lorenz system.
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Abstract: In this paper, the dynamic behaviour of all the Lorenz related systems
is examined in a previously unexplored region of parameter space. The Lorenz, hid-
den chaotic, Chen and broken butterfly attractors can be generated at any desired
size, with different equilibria. We focus on the attractors smaller or larger than the
original one, we call them mini and maxi, and study their global dynamic behaviour
to demonstrate that they are similar or equivalent to the original chaotic attractor.
We finally examine their phase portraits, bifurcation diagrams, the largest Lyapunov
exponents and their multiscale entropy MSE1D. The analysis results show that the
mini, original and maxi Lorenz related attractors have the same MSE1D values and
are independent of the scale factor. We can conclude that the MSE1D analysis can
be used successfully to quantify the complexity of the dynamic response.

Keywords: attractors; bifucation; equilibria; Lyapunov; entropy.

Mathematics Subject Classification (2010): 37M22, 65P30, 70K42, 93D05,
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1 Introduction

Since the Lorenz system was discovered, chaos and many phenomena in nonlinear dy-
namic systems have been developed and studied. This allowed to explore more chaotic
systems and to discover new chaotic systems with a more complex dynamic behaviour.
Chen and Lü [1] found a similar but not equivalent chaotic attractor, the dual of the
Lorenz system. After that, Lü [2] reported a new chaotic system which is the transi-
tion between the Lorenz and Chen systems. [3] presented a comparative analysis of the
Lorenz and Chen systems in order to understand better what distinguishes them. It is
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notable that for certain values of the parameters, the classical Lorenz butterfly attractor
is broken into a symmetric pair of strange attractors [4].

Several complex dynamic systems, called multistable systems, are characterized by
the existence of many coexisting attractors. In this kind of systems, the trajectory will
eventually end in an attractor strongly influenced by the initial conditions. [5] introduced
a new category of chaotic systems with a line of equilibria. The basin of attraction may
intersect with the line of equilibria, in some sections. There are many examples of
chaotic systems with no equilibrium [6], one stable equilibrium [7], a single unstable
equilibrium [8], many equilibria, a line equilibrium [5], a surfaces of equilibria [9].

Most of the known chaotic attractors (like the Lorenz, Chua or Van der Pol ones)
are located in the neighbourhood of unstable fixed points. Such attractors are called
self-excited and their basins of attraction touch unstable equilibrium. The transient
trajectory of the attractor starts in the neighbourhood of this unstable equilibrium,
oscillates around and then traces it. The concept of hidden attractors has been suggested
by the discovery of unexpected attractor in Chua’s circuit. Recently, it has been shown
that multistability is connected with the occurrence of hidden attractors. In multistable
systems, particularly in the case of the existence of attractors with very small basins like
in [9], the switching from one attractor to another unexpected attractor can be observed.
Hidden attractors are important in engineering applications [10] because many physical
structures can have disastrous responses to perturbations, as the crash of aircraft YF-22
Boeing in 1992. Other applications of chaos theory such as synchronization [11], [12] and
chaos control of hyperchaotic financial model have become topics for research.

The Chen system, butterfly attractor broken into a symmetric pair and hidden at-
tractor are named the Lorenz related systems because they are derived from the Lorenz
system. We introduce a parameter γ in (2) describing these systems and study the in-
fluence of a variation of γ on the occurrence of such chaotic attractors and on their size.
In this paper, we find that the chaotic attractors occurred are mini and maxi attractors.
By changing the parameter γ, all the quantitative properties of the Chen, Lorenz, hidden
and broken butterfly attractors are preserved. This is why, the Lorenz related systems
are essentially the one-parameter systems.

The irregularity of time series can be studied through several measures, e.g., sample
entropy (SampEn1D), which improves the understanding of the nonlinear behaviour of
complex systems. SampEn1D is the measure of the degree of irregularity and disor-
der of finite length time series; it evaluates the probability of finding similar patterns.
SampEn1D is precisely the negative natural logarithm of the conditional probability that
two sequences similar for m points remain similar at the next point, where self-matches
are not included in the computation of the probability [13]. A lower value of SampEn1D

indicates many similarities in time-series. However, SampEn1D is not adapted for struc-
tures at the multiple time scale. This is why the multiscale entropy MSE1D has been
proposed to extend the computation of SampEn1D over a range of time scales. The
concept of multi-scale entropy is used to characterize the complexity of different research
fields [14]. Serving as a quantification parameter, MSE1D is based on the coarse-graining
procedure that uses a coarse-grained time series, as an average of the original data points
within not overlapping windows by increasing the scale factor τ .

In this paper, the dynamic behaviour of the Lorenz related systems is examined in
a previously unexplored region of parameter space. By simulation, the attractors can
be generated at different equilibria in the function of γ. Furthermore, the generated
attractors (smaller than the original attractor called mini and bigger called maxi) are



68 C. MOREL, R. C. VLAD AND J. -Y. MOREL

similar to it but are not identical because of their chaotic behaviour. According to the
Jacobian matrix of the nonlinear system, the local stability of the generated attractors is
studied. In order to study the global dynamic behaviour, firstly, bifurcation diagrams and
Lyapunov exponents are used to investigate the presence of chaos in the Chen system.
The simulations reveal the same value of the largest Lyapunov exponent of the attractor’s
size. Secondly, multiscale entropy MSE1D is proposed to evaluate the complexity of
these mini, original and maxi chaotic attractors. MSE1D is applied to different time
series of the chaotic attractors to determine their irregularity over a range of temporal
scales. The results show that the mini, original and maxi chaotic attractors have the
same irregularity values for all time scales (i.e., the same complexity of the time series).
More precisely, all the quantitative properties are preserved.

2 The Lorenz Related Systems

The Lorenz related systems are described by the following set of differential equations:
ẋ = σ(y − x),

ẏ = ρx− αy − xz,

ż = xy − βz.

(1)

Lorenz found the first canonical chaotic attractor in a three-dimensional autonomous
system. The usual values of the classical Lorenz system parameters are σ = 10, ρ =
28, α = 1, β = 8/3; this produces a chaotic attractor with a butterfly shape. Then, a
similar looking but nonequivalent chaotic attractor was found out, which is the dual of
the Lorenz system. Moreover, both attractors occur for different values of the parameters
(σ = 35, ρ = -7, α = -28, β = 3). The work of Lü [2] introduced a unified chaotic system
(Lü system) which bridges the gap between the Lorenz system and the Chen system. A
hidden chaotic attractor was illustrated in the classical Lorenz system depending on the
values of both system parameters and initial conditions (σ = 4, ρ = 29, α = 1, β = 2).
For some values of the parameters (σ = 0.12, ρ = 0, α = 1, β = -0.6), Li and Sprott [4]
broke the classical butterfly attractor into a symmetric pair of strange attractors. In this
paper, we introduce the parameter γ in (1)

ẋ = σ(y − x),

ẏ = ρx− αy − γxz,

ż = xy − βz.

(2)

Special sides of the system (2) are then pointed out: the attractor’s size depends on the
variation of the parameter γ in system (2). γ ∈(0,1) leads to a chaotic attractor (called
maxi) with a larger size than the original chaotic attractor of system (1) (i.e., for γ =
1). Similarly, γ > 1 leads to a chaotic attractor (called mini) with a smaller size than
the chaotic attractor of (1).

3 MSE1D Algorithm

Complexity measures are important to understand and analyze systems with one dimen-
sional data. One of the most well-known complexity measures is the multiscale sample
entropy MSE1D. For the time series, the computation of MSE1D is defined as the
following two steps:
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– The first step is the coarse-graining (average) procedure, which consists in deriving
a set of time series of the system dynamics on different time scales. Given a discrete time
series of the form x = {x1, x2, . . ., xi, . . ., xN}, the coarse-grained time series {y(τ)}, at
the scale τ , is

y
(τ)
j =

1

τ

iτ∑
i=(j−1)τ+1

xi, (3)

where 1 ≤ j ≤ ⌊N/τ⌋ and τ is the scale factor. If the scale factor τ is equal to one, the
coarse-grained time series y(1) corresponds to the original time series x.

– The second step computes the sample entropy for each coarse-grained time series
as the negative of the natural logarithm of the conditional probability that the sequences
for m consecutive data points remain close to each other when one more point is added

to each sequence SampEn1D(x,m, r) = − ln Am(r)
Bm(r) , where Am(r) is the probability that

two sequences will match for m + 1 points, whereas Bm(r) is the probability that two
sequences will match for m points. They are computed as

Am(r) =
1

N −m

N−m∑
i=1

Am
i (r) and Bm(r) =

1

N −m

N−m∑
i=1

Bm
i (r). (4)

Am
i (r) is 1

N−m−1 times the number of vectors xm+1(j) within r of xm+1(i), where j goes

from 1 to N −m and j ̸= i to exclude self-matches. Bm
i (r) is 1

N−m−1 times the number
of vectors xm(j) within r of xm(i), where j goes from 1 to N − m and j ̸= i for the
same reason as above. The distance d between two vectors is defined as the maximum
absolute difference of their corresponding scalar components. MSE1D can be written

as MSE1D(x, τ,m, r) = − ln
Am

τ (r)
Bm

τ (r) , where Am
τ (r) and Bm

τ (r) are calculated from the

coarse-grained time series at the scale factor τ .

4 Equilibria and Stability

The system equilibria (2) can be found by solving the equations ẋ = ẏ = ż = 0. This
leads to 

x− y = 0,

ρx− αy − γxz = 0,

xy − βz = 0.

(5)

The first equation of the system (5) yields immediately x = y, so that the third one
gives z = x2/β. Therefore, the second equation leads to z = (ρ− α)/γ. There are three
equilibria: X0 = (0, 0, 0),

X∗
+ =

(
+

√
(ρ− α)β

γ
,+

√
(ρ− α)β

γ
,
ρ− α

γ

)
, (6)

X∗
− =

(
−

√
(ρ− α)β

γ
,−

√
(ρ− α)β

γ
,
ρ− α

γ

)
. (7)

The three equilibrium points are indicated in Table 1, Table 2 and Table 3. The equilib-
rium points X∗ depend on γ. For a variation of this parameter γ, they take place in the
plane x = y and on the precise curve z = x2/β at (ρ− α)/γ.
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Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3) (4, 29, 1, 2) (0.12, 0, 1, -0.6) (35, -7, -28, 3)

X0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
X∗

+ (8.48, 8.48, 27) (7.48, 7.48, 28) (0.77, 0.77, -1) (7.94, 7.94, 21)
X∗

− (-8.48, -8.48, 27) (-7.48, -7.48, 28) (-0.77, -0.77, -1) (-7.94, -7.94, 21)

Table 1: Three equilibrium points of the Lorenz related systems (σ, ρ, α, β, γ = 1).

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3) (4, 29, 1, 2) (0.12, 0, 1, -0.6) (35, -7, -28, 3)

X0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
X∗

+ (4.24, 4.24, 6.75) (3.74, 3.74, 7) (0.4, 0.4, -0.25) (3.97, 3.97, 5.2)
X∗

− (-4.24, -4.24, 6.75) (-3.74, -3.74, 7) (-0.4, -0.4, -0.25) (-3.97, -3.97, 5.2)

Table 2: Three equilibrium points of the Lorenz related systems (σ, ρ, α, β, γ = 4).

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3) (4, 29, 1, 2) (0.12, 0, 1, -0.6) (35, -7, -28, 3)

X0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
X∗

+ (13.4, 13.4, 67.5) (11.8, 11.8, 70) (1.2, 1.2, -2.5) (12.5, 12.5, 52.5)
X∗

− (-13.4, -13.4, 67.5) (-11.8, -11.8, 70) (-1.2, -1.2, -2.5) (-12.5, -12.5, 52.5)

Table 3: Three equilibrium points of the Lorenz related systems (σ, ρ, α, β, γ = 0.4).

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3, 1) (4, 29, 1, 2, 1) (0.12, 0, 1, -0.6, 1) (35, -7, -28, 3, 1)

λ1 -8/3 -2 0.6 -3
λ2 1.4462 8.3743 -0.12 23.836
λ3 -12.4462 -13.3743 -1 -30.835

Table 4: Three eigenvalues of the Lorenz related systems (σ, ρ, α, β, γ) for X0.

Linearizing (1) around X0 provides an eigenvalue λ1 = −β along with the following
characteristic equation: λ2 + (α + σ) · λ + σ · (α − ρ) = 0. The two eigenvalues of this
equation are indicated in Table 4, for the usual values of σ, ρ, α, β, γ. At the equilibrium
point X0, there are one positive real eigenvalue and two negative real eigenvalues. X0

is therefore an unstable saddle point for the classical Lorenz, hidden, Chen and broken
attractors. In order to study the stability of X∗, the Jacobian JX∗ is computed:

JX∗ =

 −σ σ 0
ρ− γz∗ −α −γx∗

y∗ x∗ −β

 . (8)
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Linearizing (1) around X∗ yields the following characteristic equation:

λI − JX∗ =

 λ+ σ −σ 0

−α λ+ α ±
√
(ρ− α)βγ

∓
√

(ρ−α)β
γ ∓

√
(ρ−α)β

γ λ+ β

 (9)

with the characteristic polynomial P (λ) = λ3+(α+β+σ)λ2+(ρ+σ)βλ+2βσ(ρ−α). This
characteristic polynomial is equivalent to P (λ) = λ3+Aλ2+Bλ+C, where A = α+β+σ,
B = (ρ + σ)β, C = 2βσ(ρ − α). The exact values of the eigenvalues λ1, λ2, λ3 can
be determined by setting λ = −A/3 + Λ. This yields P (Λ) = Λ3 + pΛ + q, where
p = −A2/3 +B and q = (2A3/27)− (AB/3) + C. This third order polynomial in Λ can
be solved using Cardan’s formula, thus giving the unique real eigenvalue

λ1 = −A

3
+ ΛR = −A

3
+

(
−q

2
+

√
q2

4
+

p3

27

)1/3

+

(
−q

2
−
√

q2

4
+

p3

27

)1/3

, (10)

along with two complex conjugate eigenvalues

λ2,3 = −A

3
− ΛR

2
± i

2

√
4p+ 3(ΛR)2. (11)

The three eigenvalues of equilibrium points X∗ of the classical Lorenz, Chen and broken
attractors are indicated in Table 5. Since the pair of complex conjugate eigenvalues has
a positive real part, the equilibrium points X∗

± are unstable. For the equilibrium points
X∗

± of the hidden attractor, λ1 is real and λ2,3 are complex conjugates, all with negative
real parts. Therefore, the equilibrium points X∗

± are stable focus-node points.

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3, 1) (4, 29, 1, 2, 1) (0.12, 0, 1, -0.6, 1) (35, -7, -28, 3, 1)

λ1 -13.8546 -6.8764 -0.8212 -18.4280
λ2 0.094 + i · 10.19 −0.062 + i · 8.07 0.1506 + i · 0.39 4.214 + i · 14.88
λ3 0.094− i · 10.19 −0.062− i · 8.07 0.1506− i · 0.39 4.214− i · 14.88

Table 5: Three eigenvalues of the Lorenz related systems (σ, ρ, α, β, γ) for X∗
±.

5 Numerical Simulations

5.1 One-parameter Lorenz related systems

Let study the Lorenz related systems, described by (2), where σ, ρ, α, β, γ are real
parameters. Typically, when σ = 10, ρ = 28, α = 1; β = 8/3 and γ = 1, the system
is chaotic. Figure 1(a) is a graphical representation of the unique attractor on the
x − y plane using the Matlab plot(x, y) function. The magnitudes of x, y and z are
xm = max(x) − min(x), ym = max(y) − min(y), zm = max(z) − min(z). Now, let us
consider the following transformation of variables:

x̄ =
x

k
, ȳ =

y

k
, z̄ =

z

k
. (12)
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The Lorenz related system (2) can be reformulated via (12) as
˙̄x = σ(ȳ − x̄),

˙̄y = ρx̄− αȳ − (kγ)x̄z̄,

˙̄z = kx̄ȳ − βz̄.

(13)

After redefining x, y and z, the resulting system is identical to (2), but with the first
term of the third equation multiplied by k. The Lorenz attractor is represented in Figure
1(b) on the x − y plane with γ = 1, k = 0.4 (Matlab plot(x̄, ȳ)). It can be observed
that the x − y representations of the systems (2) and (13) differ only by a scale factor.
Furthermore, there is no scale difference with plot(kx̄, kȳ): the representation of the
Lorenz attractor on x−y is also identical (visual aspect and scale). Let us take again the
system (2), where γ takes the value k. The unique attractor is represented graphically
in Figure 1(c) on the x − y plane using plot(x, y). The magnitudes of x, y and z are
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Figure 1: The Lorenz attractor of system (2) with σ = 10, ρ = 28, α = 1, β = 8/3. (a) γ =
1, (b) γ = 1 and k = 0.4, (c) γ = 0.4.

xm2 = max(x) − min(x), ym2 = max(y) − min(y), zm2 = max(z) − min(z). The x − y
representation of system (2) with γ = 1 and γ = 0.4 is identical, except for a scale factor.
If the variables x, y and z are multiplied by xm, ym and zm and divided by xm2, ym2

and zm2 with plot(x · xm/xm2, y · ym/ym2), there is no more a scale difference. The two
representations of the Lorenz attractor on x−y and y−z are also identical (visual aspect
and scale).

5.2 Lorenz attractors

Figure 2(a) shows the original Lorenz attractor (grey) on the space x − y − z with the
initial conditions (x0, x0, 3 ∗ x0 ∗ x0/8) = (1,1,3/8) and γ = 1. The result is the self-
excited chaotic attractor. With a variation of γ, a mini and a maxi self-excited chaotic
attractors appear in a similar manner as the well-known Lorenz attractor, but their sizes
are different (Figure 2(a)). For γ ∈(0,1), a maxi self-excited chaotic red attractor is
generated and if γ > 1, a mini self-excited chaotic blue attractor is generated. All three
attractors, mini, original and maxi self-excited chaotic attractors, have two unstable
equilibria X∗ on the green curve z = x2/β. With the parameter γ, the height of the
attractors is selected on this curve, as well as their size. The positive Lyapunov exponent
in Table 6 for the mini and maxi self-excited chaotic attractors confirms their chaoticity.
The mini and maxi chaotic attractors have different sizes and their magnitudes depend on
the parameter γ. The mini and maxi chaotic attractors are not identical with the original
chaotic attractor because their chaotic behaviour differs. In order to prove the similarity
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and the equivalence with the original chaotic attractor, the use of multiscale entropy
MSE1D is proposed. Additionally, MSE1D is sensitive to signal amplitude changes. A
common practice to address this issue is to normalize the signal amplitude. The time
series x(t) is rescaled along the signal amplitude axis with a factor, thus normalising
the magnitude of the mini and maxi Lorenz attractors to the original Lorenz attractor.
MSE1D is applied to different time series of the chaotic attractors to determine their
entropy over a range of temporal scales from 1 to 20. The results show (Figure 2(b))
that the MSE1D increases with the variation of the scale factor for the mini, original
and maxi chaotic attractors and that they have the same MSE1D value. This indicates
that the complexity of these attractors is at the same level.

(a) Projection of phase portrait on space x− y − z.
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(b) MSE1D.

Figure 2: (a) The mini (γ = 4, blue), original (γ = 1, gray) and maxi (γ = 0.4, red) Lorenz
attractors with σ = 10, ρ = 28, α = 1, β = 8/3; (b) MSE1D of the time series of Lorenz
attractors for different scales.

Classical Lorenz at. Hidden attractor Broken attractor Chen attractor
(10, 28, 1, 8/3) (4, 29, 1, 2) (0.12, 0, 1, -0.6) (35, -7, -28, 3)

0.8878 0.6537 0.0497 2.0499
γ = 0.4 0.0029 0.0001 0.0009 0.0078

-14.5538 -7.6539 -0.57064 -12.0535
0.8904 0.6516 0.037 2.0684

γ = 1 0.0018 0.0005 -0.0025 0.0015
-14.555 -7.6522 -0.5545 -12.0657
0.8835 0.6691 0.0548 2.0243

γ = 4 -0.00498 0.00004 0.0005 0.0002
-14.5513 -7.6691 -0.668 -12.021

Table 6: The Lyapunov exponents of the Lorenz related systems (σ, ρ, α, β).

5.3 Hidden chaotic attractors

Figure 3(a) illustrates a hidden chaotic attractor in grey on the space x− y− z using the
initial conditions (x0, y0, z0) = (5,5,5) and γ = 1. This attractor has the equilibria X∗
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on the green curve z = x2/β. As in the previous case, the variation of γ can generate a
mini and a maxi hidden chaotic attractors. For γ ∈(0,1), a maxi hidden chaotic attractor
is generated and if γ > 1, a mini hidden chaotic attractor is generated. The mini and
maxi hidden attractors can be generated at any height on the z axis in the function of γ.
As the parameter γ varies, an attractor appears with a periodic motion around the stable
equilibrium points X∗. In this case, the rise of γ is accompanied by transformations of
the attractors’size. The higher γ, the smaller the attractor (Figure 5). As we can see
in Table 6, the Lyapunov exponents of the mini and maxi hidden chaotic attractors are
positive. MSE1D is now applied to different time series of the hidden chaotic attractor

(a) Projection of phase portrait on space x− y − z.
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(b) MSE1D.

Figure 3: (a) The mini (γ = 4, blue), original (γ = 1, gray) and maxi (γ = 0.4, red) hidden
chaotic attractors with σ = 4, ρ = 29, α = 1, β = 2, with (x0, y0, z0) = (5,5,5); (b) MSE1D of
the time series of hidden chaotic attractors for different scales τ .

and of the one point attractor to qualify entropy over a range of temporal scales for τ =
1 to 20. The mini, original and maxi chaotic attractors have the same MSE1D values
for the small time scales (Figure 3(b)); very small differences appear for the large time
scales. MSE1D values of the mini, original and maxi one point attractors are identical at
the begining of the scale, and with small differences in the end of the scale, as in Figure
3(b). The complexity of the chaotic sequences tends to be uniform, independently of γ.

5.4 Broken butterfly attractors

Figure 4(a) illustrates the broken butterfly attractors in grey on the space x−y, where two
strange attractors coexist ((x0, y0, z0) = (-0.8,3,0), (x0, y0, z0) = (0.8,-3,0) and γ = 1).
Starting from the same initial conditions, for γ = 0.4, two strange maxi broken butterfly
chaotic attractors are generated. If γ = 4, two other strange mini broken butterfly chaotic
attractors are also generated. The positive Lyapunov exponents of the mini and maxi
self-excited chaotic butterfly attractors confirm their chaoticity. The magnitudes of the
broken butterfly chaotic attractors of the mini (γ = 4), original (γ = 1) and maxi (γ =
0.4) are different: they vary from 1 for the mini broken butterfly attractor to 4 for the
maxi broken butterfly attractor on the x-axis. The irregularity values MSE1D of the
three broken butterfly attractors are identical for the small time scales, while very small
differences appear for the large time scales, as shown in Figure 4(b).
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(a) Coexisting strange attractors on the x−y plane
for γ = 0.4, 1, 4 and two symmetric initial condi-
tions (∓0.8, ±3, 0).
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(b) MSE1D of the time series of broken attractors
for different scales τ .

Figure 4: Broken attractors with σ = 0.12, ρ = 0, α = 1, β = -0.6.

5.5 Chen chaotic attractors

Figure 5(b) illustrates the Chen attractor in grey on tri-dimensional space with γ =
1. For γ = 0.4, a maxi Chen red attractor is generated (Figure 5(a)) and if γ = 4, a
mini Chen blue attractor is generated (Figure 5(c)). A graphical comparison is given in
Figures 5(a), (b), (c), where the maxi, original and mini Chen attractors are represented
on the y−z plane. The mini and maxi Chen attractors are visually similar to the original
Chen attractor (Figure 5(b)), but not identical. The chaotic behaviour of all attractors
is proved by the positive Lyapunov exponents in Table 6.

(a) Maxi attractor γ = 0.4. (b) Original attractor γ = 1. (c) Mini attractor γ = 4.

Figure 5: The Chen chaotic attractor for σ = 4, ρ = 29, α = 1, β = 2 with (x0, y0, z0) = (0.1,
0, 0).

As shown in Figures 5(c), (b), (a), the magnitudes of the Chen attractors of the mini
(γ = 4), original (γ = 1) and maxi (γ = 0.4) attractors are different. The magnitude
of the original attractor is 40 (Figure 6 (a)), but for the mini and maxi attractors, the
magnitudes are 10 and 100, respectively. The multiscale entropy MSE1D is employed
to quantify the complexity of the time series of mini and maxi Chen attractors over the
same scales for τ = 1 to 20 with the original Chen attractor: the mini, original and maxi
chaotic attractors have the same MSE1D (Figure 6(b)).
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(a) Time series of x(t) for γ = 1.
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(b) MSE1D of the time series of the Chen at-
tractors for different scales.

Figure 6: The Chen attractors with the parameters σ = 35, ρ = -7, α = -28, β = 3.

6 Bifurcation Diagrams, Lyapunov Exponents and Multiscale Entropy
MSE1D Analysis of Chen Attractors

In the previous section, three chaotic Chen attractors were presented for a unique value
of the parameter β = 3. In this section, we are interested in the dynamic behaviour of
Chen system for a large variation of this parameter β changing gradually from the lower
to the upper values of β = [1, 7]. This system can generate chaotic dynamic behaviours
in a wide region of β. Figures 7, 8 and 9 show the bifurcation diagrams and the largest
Lyapunov exponent of the Chen system (with the parameters σ = 35, ρ = -7, α = -28)
for γ = 0.4, 1 and 4. In order to prove the similarity and the equivalence of different size
Chen attractors (γ > 1 or γ < 1) with the original Chen attractor (γ = 1), the MSE1D

is applied to different time series of the chaotic attractors to measure their degree of
irregularity and disorder. It evaluates the probability of finding similar patterns.

Using the Poincaré map method, the bifurcation values are computed from the time
series x(t), against the bifurcation parameter β. The three bifurcation diagrams have
an almost identical structure apart from a scale dimensioning on the ordered axis. The
maxi, original and mini Chen chaotic attractors depend on the amplitude of the variables
x(t), y(t) and z(t), where x(t) is involved in the bifurcation diagrams. The attractors
have a higher size at a greater amplitude of bifurcation diagrams. The largest Lyapunov
exponent is calculated to analyze the dynamic Chen system for x(t). It can be observed
that the largest Lyapunov exponent values (Figures 7(b), 8(b) and 9(b)) properly reflect
the behaviour of the Chen system presented in the bifurcation diagrams (Figures 7(a),
8(a) and 9(a)). Furthermore, these figures show the same bifurcation scenario and the
same Lyapunov exponents for the same values of β and independently of γ.

Additionally, MSE1D is sensitive to the signal amplitude changes. A common prac-
tice to address this issue is to normalize the signal amplitude. The time series x(t) is
rescaled along the signal amplitude axis with a factor, thus normalising the magnitude
of the mini and maxi Chen attractors to the original Chen attractor. The MSE1D is
applied to determine their entropy over a scale τ from 1 to 20. The complexity of the
Chen system is analyzed by varying the system parameter β from 1 to 7 with a 0.01
step. The results show (Fig. 10) that the mini, original and maxi chaotic attractors have
almost the same MSE1D values for all time scales. For the region β ∈ [5, 7], the Chen
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Figure 7: (a) The bifurcation diagram and (b) the largest Lyapunov exponent plotted against
the bifurcation parameter β with σ = 35, α = 28 and γ = 0.4.
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Figure 8: (a) The bifurcation diagram and (b) the largest Lyapunov exponent plotted against
the bifurcation parameter β with σ = 35, α = 28 and γ = 1.

(a)

1 2 3 4 5 6 7

Parameter 

-2

-1

0

1

2

3

4

5

E
x
p

o
s
a

n
t 

L
y
a

p
u

n
o

v

(b)

Figure 9: (a) The bifurcation diagram and (b) the largest Lyapunov exponent plotted against
the bifurcation parameter β with σ = 35, α = 28 and γ = 4.
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system behaves as a limit cycle attractor, with a simplest behaviour of x. However,
when the largest Lyapunov exponent of the system is approximately equal to zero, it
corresponds to the oscillations before the first bifurcation point. More specifically, the
MSE1D values of the mini, original and maxi periodic attractors are zero (Fig. 10), which
indicates a lower complexity. However, the MSE1D surface begins to contain nonzero
values after the first bifurcation point. In the range, after the first bifurcation point and
before the second bifurcation, the system has an irregular behaviour. After this second
bifurcation, the complexity of the oscillations continues to rise. It should be pointed out
that for β ∈ [3.69, 3.8], the Chen system has an abundant dynamic behaviour. For this
tight interval of β, the original attractor sometimes has the same behaviour as the mini
attractor or the maxi attractor or, occasionally, both. For β = 3.73, Fig. 11 shows the
phase portraits of three attractors for γ = 0.4, 1 and 4. There is a similarity between
the two first orbits, but not with the last one. An interesting observation is that the
doubling-period bifurcations depend on the parameter γ. Decreasing more β = 3.72, the
periodic orbit of Fig. 11 (a), (b) evolves into the behaviour shown in Fig. 12 (a), (b). In-
deed, the Chen system represents the transition from one behaviour to another when the
parameter β is slowly varied. Furthermore, the generated mini and maxi attractors are
similar to the original attractor, but they have different sizes. The qualitative properties
are preserved independently of γ. As shown in Figs. 7, 8 and 9, the Chen system can
evolve into the chaotic attractors when β ∈ [1, 3.69]. The positive Lyapunov exponents
for the mini, original and maxi Chen attractors confirm their chaoticity. Compared with
the Lyapunov exponents and bifurcation diagrams, the MSE1D complexities are con-
sistent, which means that complexity can also reflect the chaotic characteristics of the
Chen system. MSE1D has small values for the periodic behaviour and increases when
the attractor moves from a period to chaos, as in Figure 10. According to the above
analysis, the complexity of different attractors has the same level independently of γ and
their sizes (the same maximum Lyapunov exponent values, the same MSE1D values).
The complexity of the mini (γ = 4) and maxi (γ = 0.4) attractors is similar to that of
the original attractors (γ = 1). Moreover, Fig. 13 shows that the complexity decreases
with β in the sense of the MSE1D values. To improve the understanding of the Chen
attractor behaviour for small values of β < 3 and for a scale factor τ = 1 (Figure 13),
the relative error of MSE1D is calculated. It is very useful to compare attractors of
different size to the reference one (the original attractor). This alternative is also used to
measure the complexity of attractors that visually look like the original attractor. The
accuracy of attractors of different size determines how far this one is from the original
attractor. It is often helpful to present numbers as percentages as this gives a sense of
proportion. The relative error of MSE1D of the mini and maxi Chen attrators reported
to the original Chen attractor is based on the absolute error of the MSE1D. Figure 14
(a) shows the absolute error of the MSE1D of the Chen system with γ = 0.4 compared
to the MSE1D of the original Chen system with γ = 1. A similar figure (Fig. 14(b))
is obtained from the difference between the MSE1D of the Chen system with γ = 4
and the MSE1D of the original Chen system with γ = 1. Figure 14 shows a very small
absolute error of 0.005 for the chaotic behaviour and 0 for the periodic behaviour. The
mean value of the absolute error of MSE1D is zero for the periodic attractor (β > 4)
and increases to 0.0027, respectively, 0.0023, when the system is in the route to chaos (β
<3). Figure 15 (a), (b) shows the relative error of MSE1D for the Chen attractors with
γ = 0.4, γ = 4 compared to the MSE1D of the Chen attractor with γ = 1. The MSE1D

mean relative error is zero for the periodic attractor (β > 4) and increases to 6.65 %,
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(a) γ = 0.4 (b) γ = 1 (c) γ = 4

Figure 10: MSE1D of x(t) for different scales and for σ = 35, α = 28, β = 3.

(a) γ = 0.4 (b) γ = 1 (c) γ = 4

Figure 11: The phase portraits of the chaotic attractors for σ = 35, α = 28, β = 3.73.

respectively, 5.73 %, when the system is in the route to chaos (β <3), as in Figure 15
(a), respectively, (b). In fact, the rise of complexity is significant to MSE1D for τ > 1
and not for τ = 1. Quantitatively, the relative error of MSE1D for the Chen attractors
with γ = 0.4 and γ = 4 compared to the MSE1D for the original Chen attractor with γ
= 1 is very small, almost insignificant. We can finally conclude that the MSE1D values
depict that the complexity of chaotic systems is independent of the size of attractors and
matches well with the largest Lyapunov exponent and the bifurcation diagram.

7 Conclusions

In this paper, the dynamic behaviour of the Lorenz system is examined in a previously
unexplored region of the parameter γ. The variation of this parameter reveals that
the chaotic Lorenz related systems can generate strange attractors of different sizes.
The use of bifurcation diagrams and the Lyapunov exponents is proposed to study the
global dynamic behaviour of the Chen attractor. Through the theoretical analysis and
mathematical simulations, the multiscale entropy MSE1D of different time series under
the γ variation parameter is calculated, qualifying the chaotic attractors’ irregularity.
The complexity of the chaotic sequences tends to be uniform, independent of the γ
variation. It is noticeable that all their quantitative properties are preserved for any value
of γ. Finally, throught the MSE1D, the complexity of chaotic systems is independent
of the size of attractors and matches well with the largest Lyapunov exponents and
bifurcation diagrams.
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(a) γ = 0.4 (b) γ = 1 (c) γ = 4

Figure 12: The phase portraits of the chaotic attractors for σ = 35, α = 28, β = 3.72.
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(b) γ = 1
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(c) γ = 4

Figure 13: MSE1D of x(t) of the Chen attractor for τ = 1, σ = 35, α = 28.
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(b) γ = 4

Figure 14: (a) The absolute error of MSE1D for the Chen attractor with γ = 0.4 and γ = 4
compared to the MSE1D with γ = 1.
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(a) γ = 0.4
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(b) γ = 4

Figure 15: The relative error of MSE1D for the Chen attractor with γ = 0.4 and γ = 4
compared to the MSE1D with γ = 1.
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Abstract: In this paper, we introduce a simplified model of the novel coronavirus
pandemic (Covid-19), which appeared for the first time at Wuhan city in China.
We compute the reproduction number R, an epidemiologic index used to describe
whether the disease spreads or ends. We study the model from a mathematical point
of view, focusing on the local and global stability of the dynamical system by using
Lyapunov functionals. We proof that for R < 1, the disease dies and for R > 1, the
disease persists.
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1 Introduction

Pandemics are large-scale outbreaks of infectious disease that can cause sudden,
widespread morbidity and mortality over a wide geographic area and cause significant
economic, social, and political disruption. Throughout history, there have been a lot of
pandemics of diseases such as smallpox and tuberculosis. One of the most devastating
pandemics was the Black Death, which killed an estimated 75−200 million people in the
14th century. Other notable pandemics include the 1918 influenza pandemic (Spanish
flu), the 2003 severe acute respiratory syndrome (SARS) pandemic, the 2009 influenza
pandemic (H1N1), and the pandemic of human immunodeficiency virus/acquired im-
mune deficiency syndrome, current HIV/AIDS. Over the past century, evidence suggests
that the likelihood of pandemics has increased because of increased global travel, inte-
gration, urbanization and greater exploitation of the natural environment. These trends
are likely to continue and intensify around the world with the appearance in 2019-2020
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of the current coronavirus pandemic. The origin of most diseases occurs through the
”zoonotic” transmission of pathogens from animals to humans, on 31 December 2019,
the World Health Organization (WHO), China Country Office, was informed of cases of
the novel coronavirus (2019-nCoV) detected in Wuhan city. It is reported that the virus
might have a bat origin, and the transmission of the virus might be related to the Huanan
Seafood Wholesale Market in the same city [2]. Exported internationally via commer-
cial and air travel, the virus reaches several countries around the world. There are now
many times more cases outside of China than there were inside of it at the height of the
outbreak. There are large outbreaks of the disease in multiple places, including Italy,
Spain, France and the United States, which currently has the worst outbreak compared
to any country in the world.

Populations, as with individuals, have unique patterns of disease. The science of
epidemiology, which straddles biology, mathematical modeling, and dynamical systems,
seeks to describe, understand, and utilize these patterns to improve population health.
Therefore, several researches are focusing on mathematical modelling of Covid-19 to
estimate the transmissibility and dynamic of the transmission of the virus [2]. These
researches are focused on calculating the basic reproduction number R.

In this study, we developed and analysed a mathematical model introduced in [2]
and references therein, to describe the transmission of the virus from bats to people
via the reservoir seafood market. We calculated the basic reproduction number R. We
study the basic and global properties of the model. By using Lyapunov functions and
LaSalle’s invariance principle, we have established the global stability of the equilibria of
the model.

This paper is organized as follows. In Section 2, we propose the model and study its
basic properties. In Section 3, the local stability of equilibria is established. Section 4 is
offered to study the global stability of equilibria. In Section 5, we present some numerical
examples to illustrate the obtained results.

2 Mathematical Model and Its Properties

We used a modelling framework similar to that by Chen et al. [2]. The variables of the
model are introduced as follows: W denotes the SARS-CoV-2 in the reservoir (the seafood
market). The population was divided into five compartments: susceptible individuals (S),
exposed individuals (E), symptomatic infected individuals (I), asymptomatic infected
individuals (A) and removed individuals (R) including recovered and dead individuals.
The model parameters are given as follows: N represents the rate of the recruitment of
susceptible (birth rate + rate of people travelling into Wuhan), c is the rate of individuals
travelling out from the city. βw is the transmission rate of the infection of individuals
S from a sufficient contact with W , and β is the contagion rate due to the contact with
infected people I. 1/ω denotes the incubation period of human infection and 1/γ denotes
the same infectious period of I and A. 1/ε describes the lifetime of the virus in W . The
proportion of asymptomatic infection was defined as σ. θ denotes the multiple of the
transmissibility of A to that of I (see Figure 1). The population is assumed constant,
i.e., the births and natural deaths have the same value, due to the rapid disease spread.
We assumed also that the transmissibility rate θ ∈ [0, 1].

The diagram (Figure 1) describes the dynamics of the reservoir-people (seafood mar-
ket) transmission network model, and will be useful in the formulation of model equa-
tions. Based on the previous researches [1–4, 7–12, 15, 16] and using some assumptions,
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Figure 1: Flow diagram of the reservoir-people transmission network model.

the proposed mathematical model is given as follows:

Ṡ = N − cS − βS(I + θA)− βwSW,

Ė = βS(I + θA) + βwSW − (ω + c)E,

İ = (1− σ)ωE − (γ + c)I,

Ȧ = σωE − (γ + c)A,

Ṙ = γ(I +A)− cR,

Ẇ = ε(I + θA−W ).

(1)

It is subject to the conditions

S(0) > 0, E(0) > 0, I(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0. (2)

For epidemiological reasons, all model parameters are assumed to be positive. Next, we
investigate the basic properties of model (1). Start by giving a result of boundedness
and positivity of solutions.

Proposition 2.1 1. All solutions of the model (1) with initial conditions (2) are
bounded and non-negative.

2. The region Ω = {(S,E, I, A,R,W ) ∈ R6
+ / S + E + I + A + R + W ≤ N

c̄
} is a

positively invariant attractor for system (1), where c̄ = min(c− ε, ε).

Proof. 1. The solution is positive due to the fact below. Since S = 0, one has Ṡ =
N > 0; if E = 0, then Ė = βS(I+θA)+βwSW > 0; once I = 0, then İ = (1−σ)ωE > 0;
if A = 0, then Ȧ = σωE > 0; if R = 0, then Ṙ = γ(I + A) > 0; and if W = 0, then
Ẇ = ε(I + θA) > 0.

The boundedness of solutions of system (1) can be proved by summing up all equations

of system (1), and denoting T = S + E + I + A + R + W − N

c̄
, then one obtains the
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following equation for the totality of individuals:

Ṫ = Ṡ + Ė + İ + Ȧ+ Ṙ+ Ẇ
= N − cS − cE − (c− ε)I − (c− εθ)A− cR− εW

≤ c̄(
N

c̄
− S − E − I −A−R−W )

= −c̄T.

Then

S + E + I +A+R+W ≤ N

c̄
+
(
S(0) + E(0) + I(0) +A(0) +R(0) +W (0)− N

c̄

)
e−c̄t.

(3)

Then the boundedness of the solution of system (1) holds since all compartments of T
are positive.

2. One can easily deduce from equality (3) that the set Ω is a positively invariant
attractor for system (1).

3 Stability of the Equilibria of the System

The equilibria are obtained by putting all the equations of the system (1) to zero, as
given below.

1. Disease-free equilibrium: E0 = (
N

c
, 0, 0, 0, 0, 0).

2. Endemic or positive equilibrium: E⋆ = (S⋆, E⋆, I⋆, A⋆,W ⋆).

To investigate the stability behavior of the equilibria, we need to compute the basic
reproduction number R using the generation matrix method proposed by Diekmann, et
al. [5] and elaborated by van den Driessche and Watmough [6] for an ODE compartmental
model. Let

ẋ = F (x)− V (x),

where x = (E, I,A,W ), F (x) is the matrix of new infection term, and V (x) is the matrix
of transfer terms into compartments and out of compartments. In our case, the Jacobian
matrices of F (x) and V (x) at E0 are given by

F =


0

βN

c
θ
βN

c

βwN

c
0 0 0 0
0 0 0 0
0 0 0 0

 , and V =


ω + c 0 0 0

−(1− σ)ω γ + c 0 0
−σω 0 γ + c 0
0 −ε −εθ ε

 .

Now,

V −1 =


1

ω+c 0 0 0

A 1
γ+c 0 0

B 0 1
γ+c 0

D E G 1
ε

 ,
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where 

A =
(1− σ)ω

(ω + c)(γ + c)
,

B =
σω

(ω + c)(γ + c)
,

D =
(1− σ)ω + σωθ

(ω + c)(γ + c)
,

E =
1

ω + c
,

G =
θ

γ + c
,

(4)

and then

FV −1 =


0

βN

c
θ
βN

c
βw

N

c
0 0 0 0
0 0 0 0
0 0 0 0





1

ω + c
0 0 0

A
1

γ + c
0 0

B 0
1

γ + c
0

D E G
1

ε



=


A
βN

c
+Bθ

βN

c
+Dβw

N

c

βN

c(ω + c)
+ Eβw

N

c
θ

βN

c(γ + c)
+Gβw

N

c
βw

N

cε
0 0 0 0
0 0 0 0
0 0 0 0

 .

Then the basic reproduction number for model (1) is given by R = ρ(FV −1), where
ρ denotes the spectral radius of the next-generation matrix FV −1. Therefore, the basic
reproduction number R for our model is

R =
N(β + βw)

(
(1− σ)ω + σωθ

)
c(ω + c)(γ + c)

= R1 +R2, (5)

where R1 =
Nβ
(
(1− σ)ω + σωθ

)
c(ω + c)(γ + c)

and R2 =
Nβw

(
(1− σ)ω + σωθ

)
c(ω + c)(γ + c)

.

Next, the local stability of equilibria was discussed with respect to the basic repro-
duction number R.

3.1 Analysis of the local stability for E0

The local stability of the disease-free equilibrium of the system (1) is given in the following
theorem.

Theorem 3.1 The disease-free equilibrium E0 is locally asymptotically stable when
the basic reproduction number R is less than one and unstable when R is greater than
one.
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Proof. The Jacobian matrix of (1) evaluated at E0 = (
N

c
, 0, 0, 0, 0, 0) is given by

J0 =



−c 0 −βN

c
−θ

βN

c
0 −βw

N

c

0 −(ω + c)
βN

c
θ
βN

c
0 βw

N

c
0 (1− σ)ω −(γ + c) 0 0 0
0 σω 0 −(γ + c) 0 0
0 0 γ γ −c 0
0 0 ε εθ 0 −ε


.

The characteristic equation of the matrix J0 is

P 0(λ) =(λ+ γ + c)(λ+ c)2
(
(λ+ ω + c)(λ+ γ + c)(λ+ ε)− (ω + c)(γ +m)R1λ

− ε(ω + c)(γ + c)R
)
.

Obviously, −c and −γ − c are eigenvalues of J0. To determine the other eigenvalues of
J0, let p(λ) = (λ+ γ + c)(λ+ c)2p3(λ), therefore

P3(λ) =λ3 + (ω + c+ γ + c+ ε)λ2 +
(
ε(ω + c+ γ + c) + (ω + c)(γ + c)(1−R1)

)
λ

+ ε(ω + c)(γ + c)(1−R).

We rewrite p3(λ) as p3(λ) = λ3+A1λ
2+A2λ+A3. The Routh-Hurwitz stability criterion

ensures that Re(λ) < 0 under the conditions A1, A3 > 0 and A1A2−A3 > 0 for a monic
polynomial of degree 3, then we have

A1 =ω + c+ γ + c+ ε > 0,

A2 =ε(ω + c+ γ + c) + (ω + c)(γ + c)(1−R1) > 0 for R1 < R < 1,

A3 =ε(ω + c)(γ + c)(1−R) > 0 for R < 1.

Now we compute the term A1A2 −A3:

A1A2 −A3 =(ω + c+ γ + c+ ε)
(
ε(ω + c+ γ + c) + (ω + c)(γ + c)(1−R1)

)
− ε(ω + c)(γ + c)(1−R)

=(ω + c+ γ + c)
(
ε(ω + c+ γ + c) + (ω + c)(γ + c)(1−R1)

)
+ ε2(ω + c+ γ + c) + ε(ω + c)(γ + c)(R−R1) > 0 for R < 1.

This completes the proof.

3.2 Existence and analysis of the local stability for E⋆

In this section, the conditions for the existence of the endemic equilibrium E⋆ =
(S⋆, E⋆, I⋆, A⋆, R⋆,W ⋆) are investigated and the local stability of the endemic equilib-
rium E⋆ is discussed. The endemic equilibrium E⋆ is obtained by putting all equations
of the system (1) to zero as given below:

N = cS⋆ + βS⋆(I⋆ + θA⋆) + βwS
⋆W ⋆,

βS⋆(I⋆ + θA⋆) + βwS
⋆W ⋆ = (ω + c)E⋆,

(1− σ)ωE⋆ = (γ + c)I⋆,
σωE⋆ = (γ + c)A⋆,
γ(I⋆ +A⋆) = cR⋆,
I⋆ + θA⋆ = W ⋆.

(6)
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Now we get

E⋆ =
( (ω + c)(γ + c)

(β + βw)
(
(1− σ)ω + σωθ

) , N − cS⋆

ω + c
,
(1− σ)ω

γ + c
E⋆,

σω

γ + c
E⋆,

1

c(γ + c)
γE⋆,

(1− σ)ω + σωθ

γ + c
E⋆
)
.

Using the definition of reproduction number R in (5), we obtain

S⋆ =
N

cR
,

E⋆ =
N

ω + c
(1− 1

R ),

I⋆ =
(1− σ)ωN

(ω + c)(γ + c)
(1− 1

R ),

A⋆ =
σωN

(ω + c)(γ + c)
(1− 1

R ),

R⋆ =
1

c(ω + c)(γ + c)
(1− 1

R ),

W ⋆ =
(1− σ)ω + σωθ

(ω + c)(γ + c)
N(1− 1

R ).

(7)

Next, we study the local stability of system (1) around the endemic equilibrium E⋆.

Theorem 3.2 The endemic equilibrium E⋆ exists and is locally asymptotically stable
when the basic reproduction number R is less than one.

Proof. The matrix J is evaluated at E⋆ = (S⋆, E⋆, I⋆, A⋆, R⋆,W ⋆) and is given by

J⋆ =


−c− β(I⋆ + θA⋆)− βwW

⋆ 0 −βS⋆ −βθS⋆ 0 −βwS
⋆

β(I⋆ + θA⋆) + βwW
⋆ −ω − c βS⋆ βθS⋆ 0 βwS

⋆

0 (1− σ)ω −(γ + c) 0 0 0
0 σω 0 −(γ + c) 0 0
0 0 γ γ −c 0
0 0 ε εθ 0 −ε

 .

Note that, by using (7), we have −c− β(I⋆ + θA⋆)− βwW
⋆ = −cR and β(I⋆ + θA⋆) +

βwW
⋆ = c(R− 1). The characteristic polynomial of the Jacobian matrix J⋆ is given by

p⋆(λ) =(λ+ c)(λ+ γ + c)

[
(λ+ cR)(λ+ ε)(λ+ γ + c)(λ+ ω + c)

− (λ+ c)S⋆

(
(1− σ)ω

(
εβw + β(λ+ ε)

)
+ σω

(
βwεθ + βθ(λ+ ε)

))]
.

Clearly, the two roots of p⋆, λ1 = −c and λ2 = −γ − c are negative. The remaining
roots can be determined by setting p⋆(λ) = (λ + c)(λ + γ + c)p4(λ), with p4(λ) =
λ4 +B1λ

3 +B2λ
2 +B3λ+B4.
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We get

p4(λ) =λ4 +
(
ω + c+ γ + c+ ε+ cR

)
λ3

+
(
εcR+ (ω + c)(γ + c) + (ε+ cR)(ω + c+ γ + c)− βS⋆

(
(1− σ)ω + σωθ

))
λ2

+
(
εcR(ω + c+ γ + c) + (ε+ cR)(ω + c)(γ + c)− S⋆

(
(1− σ)ω + σωθ

)
×(

βc+ ε(β + βw)
))

λ+
(
εcR(ω + c)(γ + c)− εcS⋆

(
(1− σ)ω + σωθ

)
(β + βw)

)
.

Now we show, by a direct calculation, that all coefficients Bi, i = 1, · · · , 4, of the
polynomial p4 are nonnegative, more precisely,

B1 =ω + c+ γ + c+ ε+ cR > 0,

B2 =εcR+ (ω + c)(γ + c) + (ε+ cR)(ω + c+ γ + c)− βS⋆
(
(1− σ)ω + σωθ

)
=εcR+ (ω + c)(γ + c) + (ε+ cR)(ω + c+ γ + c)− (ω + c)(γ + c)

R1

R

=εcR+ (ε+ cR)(ω + c+ γ + c) + (ω + c)(γ + c)(1− R1

R
) > 0,

B3 =εcR(ω + c+ γ + c) + (ε+ cR)(ω + c)(γ + c)

− S⋆
(
(1− σ)ω + σωθ

)(
βc+ ε(β + βw)

)
=εcR(ω + c+ γ + c) + (ε+ cR)(ω + c)(γ + c)− c(ω + c)(γ + c)

R1

R
− ε(ω + c)(γ + c)

=εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
) > 0 for R > 1,

and

B4 =εcR(ω + c)(γ + c)− εcS⋆
(
(1− σ)ω + σωθ

)
(β + βw)

=εcR(ω + c)(γ + c)− εc(ω + c)(γ + c)

=εc(ω + c)(γ + c)(R− 1) > 0.

It follows, by using the Routh-Hurwitz criteria, that all the eigenvalues associated to J⋆

have negative real parts iff Bi > 0, i = 1, 3, 4, and B1(B2B3 −B1B4)−B2
3 > 0.

Now, calculating B := B2B3 −B1B4, and after simplifying negative terms, we get

B =
(
cR(ω + c+ γ + c) + (ω + c)(γ + c)(1− R1

R
)
)
×(

εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
)
)

+ εc(cR+ ω + c)
(
εR(ω + c+ γ + c) + (ω + c)(γ + c)(1− R1

R
)
)

+ εc(γ + c)2
(
εR+ (ω + c)(1− R1

R
)
)
+ ε2c(γ + c)(ω + c).
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Let B′ = B1(B2B3 −B1B4)−B2
3 = B1B −B2

3 , after simplifying, we obtain

B′ =(γ + c+ cR)
(
cR(ω + c) + cR(γ + c) + (ω + c)(γ + c)(1− R1

R
)
)
×(

εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
)
)

+ (ω + c)
(
cR(ω + c) + (ω + c)(γ + c)(1− R1

R
)
)
×(

εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
)
)

+ ε(ω + c)(γ + c)(1− R1

R
)
(
εcR(ω + c+ γ + c) + cR(ω + c)(γ + c)(1− R1

R2
)
)

+ εc(cR+ ω + c)(ω + c+ γ + c+ ε+ cR)
(
εR(ω + c+ γ + c) + (ω + c)(γ + c)(1− R1

R
)
)

+ εc(γ + c)2(ω + c+ γ + c+ ε+ cR)
(
εR+ (ω + c)(1− R1

R
)
)

+ ε2c(γ + c)(ω + c)(ω + c+ γ + c+ ε+ cR) + c2R2(ω + c)2(γ + c)2(1− R1

R2
)
R1

R2

+ εc2R2(ω + c+ γ + c)(ω + c)(γ + c)
R1

R2
.

Since the compartments 1 − R1

R and 1 − R1

R2 are nonnegative for R > 1, we get B′ > 0.
This ends the proof.

4 Global Stability Analysis of Both Equilibria of the System

In what follows, we investigate the global attractivity of both disease-free equilibria E0

and E⋆ .

Lemma 4.1 The set Ω2 = {(S,E, I, A,R,W ) ∈ R6
+ / S + E + I + A + R + W ≤

N

c̄
;S ≤ N

c
,W ≤ I + θA} is a positively invariant attractor for system (1), where c̄ =

min(c− ε, ε).

Proof. It is proved in Proposition 2.1 that Ω1 is a positive invariant attractor set of

all solution of system (1). Now, since Ṡ(t) < 0 for S(t) >
N

c
, one has lim inf S(t) ≤ N

c
.

Similarly, since Ẇ (t) < 0 for W (t) > I(t) + θA(t), one has lim infW (t) ≤ I(t) + θA(t).
This completes the proof.

Theorem 4.1 If R ≤ 1, then the disease-free equilibrium E0 is globally asymptoti-
cally stable (GAS). If R > 1, then the disease-free equilibrium E0 is unstable.

Proof. Construct the following Lyapunov function L(S,E, I, A,R,W ) as:

L = ω(1− σ + σθ)E + (ω + c)(I + θA).
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Along the trajectory of the solution of system (1), we have

L̇ =ω(1− σ + σθ)Ė + (ω + c)(İ + θȦ)

=ω(1− σ + σθ)
(
βS(I + θA) + βwSW − (ω + c)E

)
+ (ω + c)

(
(1− σ)ωE − (γ + c)I + σθωE − (γ + c)θA

)
=ω(1− σ + σθ)

(
βS(I + θA) + βwSW − (ω + c)E

)
+ (ω + c)

(
(1− σ + σθ)ωE − (γ + c)I − (γ + c)θA

)
=ω(1− σ + σθ)

(
βS(I + θA) + βwSW

)
− (ω + c)(γ + c)(I + θA)

≤(1− σ + σθ)
ωN

c

(
β(I + θA) + βw(I + θA)

)
− (ω + c)(γ + c)(I + θA)

(since S ≤ N

c
,W ≤ I + θA)

=
[
(1− σ + σθ)

ωN

c
(β + βw)− (ω + c)(γ + c)

]
(I + θA)

=(ω + c)(γ + c)
[ (1− σ + σθ)

(ω + c)(γ + c)

ωN

c
(β + βw)− 1

]
(I + θA)

=(ω + c)(γ + c)(R− 1)(I + θA), ∀(S,E, I, A,R,W ) ∈ Ω2.

Since all parameters of the model are non-negative, it follows that L̇ ≤ 0 for R ≤ 1
with L̇ = 0 only if I = A = 0. Hence, L is a Lyapunov function on Ω2. Further, by
Lemma 4.1, Ω2 is a compact, absorbing subset of R6

+, and the largest compact invariant

set in {(S,E, I, A,R,W ) ∈ Ω2 : L̇ = 0} is the singleton {E0}. Therefore, by Lasalle’s
invariance principle (see, for instance, [13, Theorem 3.1]), every solution of system (1)
with initial conditions in R6

+ converges to E0 as t → +∞.

The global stability of the disease-persistence (endemic) equilibrium E⋆ is given in
the following theorem.

Theorem 4.2 If R > 1, then the disease-persistence equilibrium E⋆ =
(S⋆, E⋆, I⋆, A⋆, R⋆,W ⋆) is GAS. If R ≤ 1, then the disease-persistence equilibrium E⋆ is
unstable.

Proof. Introduce the following Lyapunov function:

H =
(
S − S⋆ ln(

S

S⋆
)
)
+
(
E − E⋆ ln(

E

E⋆
)
)
+

ω + c

(1− σ)ω + σωθ

(
I + θA− (I⋆ + θA⋆)×

ln(
I + θA

I⋆ + θA⋆
)
)
+

βwS
⋆

ε

(
W −W ⋆ ln(

W

W ⋆
)
)
.

The equilibrium E⋆ is the only internal stationary point of system (1). The function H(t)

admits its minimum value Hmin = S⋆ + E⋆ +
ω + c

(1− σ)ω + σωθ
(I⋆ + θA⋆) +

βw

ε
S⋆W ⋆

when S = S⋆, E = E⋆, I = I⋆, A = A⋆,W = W ⋆, and H(t) → +∞ at the boundary of
the positive quadrant. Therefore, E⋆ is the global minimum point, and the function is
bounded from below.
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Now we compute the derivative of H(t) along the solutions of system (1) as follows:

Ḣ =(1− S⋆

S
)Ṡ + (1− E⋆

E
)Ė +

ω + c

(1− σ)ω + σωθ
(1− I⋆ + θA⋆

I + θA
)(İ + θȦ)

+
βw

ε
S⋆(1− W ⋆

W
)Ẇ

=(1− S⋆

S
)
(
N − cS − βS(I + θA)− βwSW

)
+ (1− E⋆

E
)
(
βS(I + θA) + βwSW − (ω + c)E

)
+

ω + c

(1− σ)ω + σωθ

(
1− I⋆ + θA⋆

I + θA

)(
((1− σ)ω + θσω)E − (γ + c)(I + θA)

)
+ βwS

⋆(1− W ⋆

W
)(I + θA−W )

=(1− S⋆

S
)
(
c(S⋆ − S) + βS⋆(I⋆ + θA⋆)− βS(I + θA) + βwS

⋆W ⋆ − βwSW
)

+ βS(I + θA) + βwSW − (ω + c)E − E⋆

E
βS(I + θA)− E⋆

E
βwSW + (ω + c)E⋆

+
(
1− I⋆ + θA⋆

I + θA

)(
(ω + c)E − (ω + c)(γ + c)

(1− σ)ω + σωθ
(I + θA)

)
+ βwS

⋆(I + θA)− βwS
⋆W − βwS

⋆W
⋆

W
(I + θA) + βwS

⋆W ⋆.

Using the fact that (S⋆, E⋆, I⋆, R⋆,W ⋆) is a solution of system (6), (7) and (5), we get

W ⋆ =(I⋆ + θA⋆), N = cS⋆ + S⋆(β + βw)(I
⋆ + θA⋆), (ω + c)E⋆ = βS⋆W ⋆ + βwS

⋆W ⋆

(ω + c)E =
E

E⋆
βS⋆W ⋆ +

E

E⋆
βwS

⋆W ⋆ and
(ω + c)(γ + c)

(1− σ)ω + σωθ
= S⋆β + S⋆βw.

We obtain

Ḣ =− c
(S − S⋆)2

S
+ βS⋆(I⋆ + θA⋆)− βS(I + θA) + βwS

⋆W ⋆ − βwSW

− βS⋆(I⋆ + θA⋆)
S⋆

S
+ βS⋆(I + θA)− βw

(S⋆)2

S
W ⋆ + βwS

⋆W + βS(I + θA)

+ βwSW − (ω + c)E − E⋆

E
βS(I + θA)− E⋆

E
βwSW + (ω + c)E⋆ + (ω + c)E

− S⋆(β + βw)(I + θA)− I⋆ + θA⋆

I + θA
(ω + c)E + S⋆(β + βw)W

⋆ + βwS
⋆(I + θA)

− βwS
⋆W − βwS

⋆W
⋆

W
(I + θA) + βwS

⋆W ⋆.
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Therefore the expression of Ḣ reduces to

Ḣ =− c
(S − S⋆)2

S
+ βS⋆W ⋆ + βwS

⋆W ⋆ − βS⋆W ⋆S
⋆

S
− βw

(S⋆)2

S
W ⋆

− E⋆

E
βS(I + θA)− E⋆

E
βwSW + βS⋆W ⋆ + βwS

⋆W ⋆

− I⋆ + θA⋆

I + θA

( E
E⋆

βS⋆W ⋆ +
E

E⋆
βwS

⋆W ⋆
)
+ S⋆βW ⋆ + S⋆βwW

⋆

− βwS
⋆W

⋆

W
(I + θA) + βwS

⋆W ⋆.

More simply,

Ḣ =− c
(S − S⋆)2

S
+ βS⋆W ⋆

(
3− S⋆

S
− E⋆

E

S

S⋆

I + θA

I⋆ + θA⋆
− I⋆ + θA⋆

I + θA

E

E⋆

)
+ βwS

⋆W ⋆

(
4− S⋆

S
− E⋆

E

S

S⋆

W

W ⋆
− I⋆ + θA⋆

I + θA

E

E⋆
− I + θA

W

)
.

Note that
S⋆

S

E⋆

E

S

S⋆

I + θA

I⋆ + θA⋆

I⋆ + θA⋆

I + θA

E

E⋆
= 1,

and
S⋆

S

E⋆

E

S

S⋆

W

W ⋆

I⋆ + θA⋆

I + θA

E

E⋆

I + θA

W
= 1.

We recall also the following inequality:

n
√
x1x2x3 · · ·xn ≤ x1 + x2 + x3 + · · ·+ xn

n
, x1, x2, x3, · · · , xn ≥ 0. (8)

Since the geometric mean of nonnegative real numbers is less than the arithmetical one,
we obtain the inequalities

3− S⋆

S
− E⋆

E

S

S⋆

I + θA

I⋆ + θA⋆
− I⋆ + θA⋆

I + θA

E

E⋆
≤ 0,

4− S⋆

S
− E⋆

E

S

S⋆

W

W ⋆
− I⋆ + θA⋆

I + θA

E

E⋆
− I + θA

W
≤ 0.

Therefore Ḣ ≤ 0, and one deduces that E⋆ = (S⋆, E⋆, I⋆, A⋆,W ⋆) is stable in the sense
of Lyapunov.

Now, to show the asymptotic stability of E⋆ = (S⋆, E⋆, I⋆, A⋆,W ⋆), we will use the
Lasalle invariance principle cited, for instance, in Theorem 3.1 in [13]. To do this, let us
define

s2 =− c
(S − S⋆)2

S
,

s3 =3− S⋆

S
− E⋆

E

S

S⋆

I + θA

I⋆ + θA⋆
− I⋆ + θA⋆

I + θA

E

E⋆
,

s4 =4− S⋆

S
− E⋆

E

S

S⋆

W

W ⋆
− I⋆ + θA⋆

I + θA

E

E⋆
− I + θA

W
.

Then one has
Ḣ(S,E, I, A,W ) = 0 ⇐⇒ s2 = s3 = s4 = 0.
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Using the above relations, we obtain the following implications:

s2 = 0 =⇒ S = S⋆,
(S = S⋆, s3 = 0) =⇒ E⋆(I + θA) = E(I⋆ + θA⋆),
(S = S⋆, E⋆(I + θA) = E(I⋆ + θA⋆), s4 = 0) =⇒ E⋆W = EW ⋆.

Finally, we obtain

Ḣ(S,E, I, A,W ) = 0 ⇐⇒ S = S⋆, E⋆(I + θA) = E(I⋆ + θA⋆), E⋆W = EW ⋆. (9)

Let r =
E

E⋆
=

I + θA

I⋆ + θA⋆
=

W

W ⋆
, then E = rE⋆, W = rW ⋆ and I + θA = r(I⋆ + θA⋆) =

rW ⋆.
For S = S⋆, the first equation of system (1) gives

Ṡ = Ṡ⋆ = N − cS⋆ − βS⋆(I + θA)− βwS
⋆W = 0.

Replacing I + θA,W in the above equation by their values given by (9) yields

N − cS⋆ − rβS⋆(I⋆ + θA⋆)− rβwS
⋆W ⋆ = 0.

By comparing with the first equation of system (6), we deduce that r = 1 and therefore
E = E⋆,W = W ⋆ and I + θA = I⋆ + θA⋆ ∀θ > 0. Finally,

Ḣ(S,E, I, A,W ) = 0 ⇐⇒ (S = S⋆, E = E⋆, I = I⋆, A = A⋆,W = W ⋆).

Thus {E⋆ = (S⋆, E⋆, I⋆, A⋆,W ⋆)} is the largest invariant set contained in
{(S,E, I, A,W )

∣∣Ḣ = 0}. Then the global stability of the equilibrium E⋆ =
(S⋆, E⋆, I⋆, A⋆,W ⋆) holds according to the Lasalle invariance principle [14].

5 Numerical Examples

The parameters used in the implementation of the model (1) are given by c = 1, β =
0.5, βw = 0.3, ω = 3, γ = 5, ε = 0.3, σ = 0.75, θ = 0.25.
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Figure 2: (S(t), E(t), I(t), A(t), R(t),W (t)) behaviours for N = 1(left), then R = 0.044 ≤ 1,
and for N = 10(right), then R = 0.438 ≤ 1.

Four tests were considered. Two of them (Figure 2) confirming the global stability
of the disease-free equilibrium E0 when R ≤ 1. We note that the solution of system (1)
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converges asymptotically to E0 and only susceptible compartment persists and the other
compartments vanish.

The other two tests (Figure 3) confirm the global stability of the disease-persistence
equilibrium E⋆ when R > 1. We observe that the solution of system (1) converges
asymptotically to E⋆ and all compartments persist.
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Figure 3: (S(t), E(t), I(t), A(t), R(t),W (t)) behaviours for N = 100(left), then R = 4.375 > 1,
and for N = 1000(right), then R = 43.75 > 1.

6 Concluding Remarks

In this paper, we have considered an epidemic model for the Covid-19 coronavirus, in
which we have divided the total population into five compartments, namely, susceptible,
exposed, symptomatic infected, asymptomatic infected and recovered, and we investi-
gated the dynamical behavior of this model. Here, we have found that

R =
N(β + βw)

(
(1− σ)ω + σωθ

)
c(ω + c)(γ + c)

is the basic reproduction number of system (1), which helps us to determine the dynamical
behavior of the system. We showed, for system (1), that the disease-free equilibrium E0

is globally asymptotically stable when R < 1. However, when R > 1, the endemic
equilibrium E⋆ is both locally and globally stable. These results have been verified
numerically for some parameters of the model.
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Abstract: This research is devoted to demonstrating a numerical solution that
adopts the cubic Hermite finite element method for a strongly reaction-diffusion sys-
tem. L2 and L∞ error norms computed at varying time points are employed to draw
comparisons between the numerical solutions attained by virtue of the presented tech-
nique and both the exact solutions and the analogous numerical ones already available
in the literature. Evaluating the accuracy and efficacy of the technique utilized in
this study, a perfect agreement with the exact solution is concluded.
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1 Introduction

The reaction diffusion system occurs in multifarious physical, biological and chemical
problems. Numerous numerical techniques such as a cubic B-spline method [1], lin-
earized finite difference scheme based upon the order reduction method [2], exponential
cubic B-spline collocation algorithms [3], and trigonometric quintic B-spline collocation
method [4] have been used to solve the strongly reaction-diffusion system. On the other
hand, global solutions for this system have been addressed in [5]– [9]. The finite element
method is one of the most accurate, flexible, and powerful techniques for approximat-
ing the solution to a wide range of linear and nonlinear partial differential equations.
Examples of its implementation include: the Rosenau-RLW equation by Atouani and
Omrani [10], fourth order parabolic equation by Chai et al. [11], biharmonic equation by
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Mu et al. [12], Cahn-Hilliard equation by Wang et al. [13], coupled bulk-surface prob-
lems by Burman et al. [14], fracture model in porous media by Capatina et al. [15],
Stokes-Darcy coupling by Camano et al. [16], Cahn-Hilliard-Navier-Stokes-Darcy phase
field model by Gao et al. [17], and Navier-Stokes/Darcy coupled problem by Discacciati
and Oyarza [18], nonlinear nonstandard Volterra integral equations by Khumalo and
Dlamini [19], and higher order fractional boundary value problems by Darweesh and
Al-Khaled [20]. This paper is organized as follows: In Section 2, the application of the
finite element method to the strongly reaction-diffusion system is presented; in Section 3,
numerical results are illustrated and discussed. Finally, the paper ends with conclusions
in Section 4.

2 Finite Element Solution to the Strongly Reaction-Diffusion System

Consider the strongly reaction-diffusion system as follows:

ut = uxx + (2π2 − 1)u− 2π2v , 0 < x < 1, 0 < t < T, (1)

vt = uxx + vxx − v , 0 < x < 1, 0 < t < T (2)

with the following boundary and initial conditions:

ux(0, t) = 0 , ux(1, t) = 0 , vx(0, t) = 0 , vx(1, t) = 0 , 0 < t < T, (3)

u(x, 0) = sin2πx, v(x, 0) = cos2πx, 0 < x < 1 , (4)

where u = u(x, t) and v = v(x, t) are two substances of interacting concentrations. The
exact solution of the system is [2]

u(x, t) = e−tsin2πx, v(x, t) = e−tcos2πx .

Multiplying equations (1) and (2) by a test function, w ∈ W (Ω), where Ω = (a, b),
a, b ∈ ℜ, and conducting integration over the finite element (xe, xe+1) with the length h,
we obtain the following equations:∫ xe+1

xe

(wut − wuxx + (1− 2π2)wu+ 2π2wv)dx = 0, (5)∫ xe+1

xe

(wvt − wuxx − wvxx + wv)dx = 0 , (6)

which give ∫ xe+1

xe

(wut + wxux + (1− 2π2)wu+ 2π2wv)dx = 0, (7)∫ xe+1

xe

(wvt + wxux + wxvx + wv)dx = 0 . (8)

Owing to the test function w, which satisfies the essential boundary condition, the bound-
ary terms vanish when performing integration by parts. Then the acquired solution that
is an approximation to the exact solution can be written as

u(x, t) =

ne∑
s=1

us(t)Hs(x) ,

v(x, t) =

ne∑
s=1

vs(t)Hs(x) ,

w(x) = Hi(x) , i = 1, ..., ne.

(9)
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Here, us(t) and vs(t), s = 1, ..., ne, are undetermined time dependent quantities and
Hs(x) are the interpolation functions. By substituting (9) into (7) and (8), we obtain

ne∑
s=1

∫ h

0

(HiHsu̇s +H ′
iH

′
sus + (1− 2π2)HiHsus + 2π2HiHsvs)dx = 0, (10)

ne∑
s=1

∫ h

0

(HiHsv̇s +H ′
iH

′
sus +H ′

iH
′
svs +HiHsvs)dx = 0 , (11)

where · denotes the derivative with respect to time. Rewriting the equations (10) and
(11) in a matrix form, we get

Aeu̇e + (Be + (1− 2π2)Ae)ue + 2π2Aeve = 0, (12)

Aev̇e +Beue + (Be +Ae)ve = 0 . (13)

For the cubic Hermite element, the matrices Ae
is and Be

is are given as follows:

Ae
is =

∫ h

0

HiHsdx =


13h
35 − 11h2

210
9h
70

13h2

420

− 11h2

210
h3

105 − 13h2

420 − h3

140
9h
70 − 13h2

420
13h
35

11h2

210
13h2

420 − h3

140
11h2

210
h3

105

 ,

Be
is =

∫ h

0

H ′
iH

′
sdx =


6
5h − 1

10 − 6
5h − 1

10

− 1
10

2h
15

1
10 − h

30
− 6

5h
1
10

6
5h

1
10

− 1
10 − h

30
1
10

2h
15

 .

The global matrix equation resulted in assembling the element matrices for every included
element is formulated by

Au̇+ (B + (1− 2π2)A)u+ 2π2Av = 0, (14)

Av̇ +Bu+ (B +A)v = 0 . (15)

For the cubic Hermite elements, let v2k−1 = vx(xk−1), u2k−1 = ux(xk−1), k = 1, ..., n,
v2k = v(xk), u2k = u(xk), k = 1, ..., n− 1, v2n = vx(xn), u2n = ux(xn). Afterwards, the
formula of the forward finite difference and the Crank-Nicolson scheme are employed to
discretize time derivatives u̇, v̇ and the time dependent quantities u(t), v(t) in equations
(14) and (15), respectively:

u̇ =
uj+1 − uj

△t
, v̇ =

vj+1 − vj

△t
, u =

uj+1 + uj

2
, v =

vj+1 + vj

2
.

This leads to[(
1 +

k

2
− kπ2

)
A+

k

2
B

]
un+1+kπ2Avn+1 =

[(
1− k

2
+ kπ2

)
A− k

2
B

]
un−kπ2Avn,

[(
1 +

k

2

)
A+

k

2
B

]
vn+1 +

k

2
Bun+1 =

[(
1− k

2

)
A− k

2
B

]
vn − k

2
Bun,

where k = △t, {u} = {ux(x0), ux(x1), ux(x2), ..., ux(xn−1), u(xn−1), ux(xn)}T , and simi-
larity holds for {v}.
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3 Numerical Results

Aiming at computing a numerical solution for a strongly reaction-diffusion system with
the initial conditions (4) and boundary conditions (3), the proposed finite element solu-
tion with the cubic Hermite element is applied. Both the L2 and L∞ error norms defined
by

L2 = ∥uexact − unum∥2 =

√√√√h

n∑
j=0

|uexact
j − unum

j |2,

L∞ = max
j

|uexact
j − unum

j |

are used as tools to measure the accuracy of the method under consideration. In Table
1 and Table 2, L2 and L∞ and error norms at different time levels and different number
of partitions have been computed and compared with the errors obtained by [1]. The
absolute errors of the proposed numerical solution at some points with t = 1 are evaluated
and compared with the errors obtained by [1] and [2] and are reported in Tables 3 and 4. It
can be seen from Tables 1 and 2 that the error norms obtained from the numerical results
reduce with the increasing number of partitions. This indicates that the convergence
towards the exact solution increases with the increasing number of partitions for different
time levels. It is noted that the convergence towards the exact solution is achieved when
t = 1 and with different values of x, as shown in Tables 3 and 4. From Tables 1 – 4, we
observe that our technique has yielded results that are very close to the exact solution.
Moreover, in Figs. 1 and 2, the numerical solutions for u(x, t) and v(x, t) have been
plotted with the exact solutions at different times. We notice that the plots of those
solutions are indistinguishable.

4 Conclusions

A numerical scheme that involves the finite element method with the cubic Hermite ele-
ment for solving the strongly reaction-diffusion system has been described. The accuracy
and performance of the method has been measured using the L2 and L∞ error norms. We
have illustrated that our numerical results are of higher accuracy than those produced by
other methods [1, 2]. Furthermore, the proposed method shows perfect agreement with
the exact solution for different values of time and step size. Here, we point out that the
proposed method for dealing with this system is relatively new and more efficient than
other methods that were used recently. Therefore, we recommend using this technique
to solve different types of partial differential equations.
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Figure 1: Comparison between numerical and exact solutions for u(x, t) at different time levels .
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Table 1: Errors at different times and different number of partition for u(x, t) at △t = 0.001 .

Table 2: Errors at different times and different number of partition for v(x, t) at △t = 0.001 .
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Table 3: The absolute errors between numerical and exact solution of u(x, t) at t = 1 .

Table 4: The absolute errors between numerical and exact solution of v(x, t) at t = 1 .
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1 Introduction

In various fields, studies on nonlinear dynamics of systems include the behavior and sta-
bility of the systems, both local and global stability, for example, see [1], [2], and [3].
The dynamics of population is one of interesting objects of research in the field of math-
ematical ecology. Interaction between some populations such as predation, competition,
and mutualism has ecological consequences. Population as a useful stock also has social
and economics consequences. The study of dynamical behavior of population becomes
complex and comprehensive because population as a stock should be managed well to
protect the population from extinction, besides, the population also gives more benefits
for a certain span of time.

Modeling in predator and prey populations involves many factors such as harvesting,
tax, migration, diffusion, and stage structure, which have been widely studied by many
researchers. Some of them considered the dynamics of one predator with two preys or
two predators with one prey in the population behavior. The authors in [4] studied the
dynamics of population with a reserve area and imposed tax to control the overexploita-
tion of the populations. In [5], the authors also studied the dynamics of populations in
the reserve area with harvesting and considered the problem on maximizing the present
value. The behavior of the stage structure of predator and prey model in the two areas
of environment with harvesting in the free area of capture was discussed in [6] and a
certain condition was obtained to get an optimal value of harvesting.

The effect of selective harvesting in predator and prey populations has been observed
in some purposes. Some researchers have examined only the prey being harvested, see
for instance [4], [7], and [8]. The studies of predator and prey models when only the
predator is harvested, can be seen in [9], [10], [11], and [12]. Some other researchers
have studied predator prey models by considering both populations being harvested, the
examples can be seen in [10] and [13]. Predator and prey models with exploitation were
often associated with the economic point of view including maximum profit and present
value problems, some examples can be found in [4], [5], and [13].

In Malili Lake Complex, South Sulawesi, Indonesia, butani fish (Glossogobius
matanansis) which lives at the bottom of the lakes and its predator nile tilapia fish (Ore-
ochromis nilotichus) are sources of food for the surrounding community. The dynamics
of butani fish as an endemic and its predator must be managed properly to prevent the
fish from the extinction. Based on the findings of the researchers above and as a strategy
to manage the endemic butani fish and its predator, we consider the dynamical behaviors
of both predator and prey populations, where the prey lives in two areas, one of which is
a free area of capture and another area is a forbidden area of capture. The economically
valuable predator and prey in the free area are exploited with fixed efforts. We study
the presence of an interior fixed point and its local and global stability.

2 The Dynamical Behavior of Predator and Prey Populations

We consider predator and prey populations in an environment involving two areas,
namely, forbidden and free areas of capture, when no fishing is allowed in the forbid-
den area. Both areas are considered to have the same conditions. The prey population
can move in these areas freely. The prey populations grow in both areas when no preda-
tors are assumed to follow the logistic equation. The predator population is assumed
to only eat the prey in the free area of capture. The behavior of predator and prey
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populations are stated in the form of the equations system as follows:

dx

dt
= rx

(
1− x

K

)
− τ1x+ τ2y −

axz

a+ x
, (1)

dy

dt
= sy

(
1− y

L

)
+ τ1x− τ2y, (2)

dz

dt
=

βαxz

a+ x
− kz. (3)

From ecological point of view, we simply consider the model (1)-(3) in R3
+ =

(x, y, z) ∈ R3 | x, y, z > 0 or in R3
+. The variables x and y as the functions of time t

denote the population sizes of prey in the free area of capture and in the forbidden area,
respectively. The variable z as a function of t denotes the population size of the predator
in the free area of capture. The growth rate of populations x and y is denoted by r
and s, respectively. Carrying capacity of the environment for populations x and y is
denoted by K and L, respectively. The predation rate is denoted by α, and the value of
β (0 < β < 1) is the predation scale. Parameter τ1 denotes the movement rate for the
prey from the free area to the forbidden area. Parameter τ2 denotes the movement rate
for the prey from the forbidden area to the free area. Parameter k is the mortality rate
for the predator in the free area of capture.

The populations are assumed as beneficial stocks, then the predator and the prey
populations in the free area of capture are harvested with fixed efforts. The dynamical
behavior of predator and prey populations is developed and stated as follows:

dx

dt
= rx

(
1− x

K

)
− τ1x+ τ2y −

axz

a+ x
− q1E1x, (4)

dy

dt
= sy

(
1− y

L

)
+ τ1x− τ2y, (5)

dz

dt
=

βαxz

a+ x
− kz − q2E2z. (6)

In the model (4)-(6), parameters q1 and q2 denote the catchability levels for the prey
and predator populations, respectively. The symbols E1 and E2 denote the fixed efforts
of harvesting satisfying 0 ≤ Ei ≤ Eimax for i = 1, 2 and some given value of Eimax.

3 Local and Global Stability of Interior Fixed Point

The interior fixed point for model (4)–(6) may exist as long as a certain condition
is satisfied. The fixed point of model (4)–(6) is found by equating the equations
of the system to zero and solving them. The interior fixed point for the model is
EQ = (x1, y1, z1), where

x1 = a(k+q2E2)
αβ−k−q2E2

, y1 =
L(s−τ2)+

√
L2(s−τ2)2+4sτ1Lx1

2s , and

z1 =
(rKx1−rx2

1−τ1Kx1+τ2Ky1−q1KE1x1)(a+x1)

Kαx1
.

From model (4)–(6), we get the Jacobian matrix evaluated at the fixed point EQ =
(x1, y1, z1) as

JE =

 d1 τ2 −d2
τ1 d3 0
d4 0 d5

 ,
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where d1 = r − 2rx1

K − τ1 − αaz
(a+x1)2

− q1E1, d2 = αx1

a+x1
, d3 = s− 2sy

L − τ2, d4 = αβaz
(a+x1)2

,

and d5 = αβx1

a+x1
− k − q2E2.

The characteristic polynomial corresponds to the Jacobian matrix JE and is expressed
as f(λ) = det(λI − JE), i.e.,

f(λ) = λ3 + b2λ
2 + b1λ+ b0, (7)

where b2 = −(d1 + d3 + d5), b1 = −τ1τ2 + d1d3 + d1d5 + d2d4 + d3d5, and b0 = τ1τ2d5 −
d1d3d5 − d2d3d4. From equation (7) and according to the Routh-Hurwitz criteria of
stability [14], the interior fixed point EQ = (x1, y1, z1) is locally and asymptotically
stable provided the conditions b0 > 0, b2 > 0, and b2b1 − b0 > 0 are satisfied. Global
stability of the interior fixed point EQ = (x1, y1, z1) is analyzed using the Lyapunov
function. We suppose that the conditions for the presence of the interior fixed point are
satisfied. Consider a Lyapunov function

V (x, y, z) = β

(
x− x1 − x1ln

x

x1

)
+

(
y − y1 − y1ln

y

y1

)
+

(
z − z1 − z1ln

z

z1

)
. (8)

It is clear that V (x, y, z) is defined and also continuous for all x, y, and z > 0. Differ-
entiate the Lyapunov function (8) with respect to t to get

dV

dt
= β

(
dx

dt
− x1

x

dx

dt

)
+

(
dy

dt
− y1

y

dy

dt

)
+

(
dz

dt
− z1

z

dz

dt

)
= β (x− x1)

(
r − rx

K
− τ1 + τ2

y

x
− αz

a+ x

)
+ (y − y1)

(
s− sy

L
+ τ1

x

y
− τ2

)
+ (z − z1)

(
αβx

a+ x
− k

)
. (9)

Since EQ = (x1, y1, z1) is an interior fixed point, it follows that rx1− rx2
1

K − τ1x1+ τ2y1−
αz1x1

a+x1
= 0, sy1 − sy2

1

L + τ1x1 − τ2y1 = 0, and αβx1z1
a+x1

− kz1 = 0. Then the equation (9) can
be rewritten as

dV

dt
= β (x− x1)

([
r − rx

K
− τ1 + τ2

y

x
− αz

a+ x

]
−
[
r − rx1

K
− τ1 + τ2

y1
x1

− αz1
a+ x1

])
+ (y − y1)

([
s− sy

L
+ τ1

x

y
− τ2

]
−

[
s− sy1

L
+ τ1

x1

y1
− τ2

])
+ (z − z1)

([
αβx

a+ x
− k

]
−
[
αβx1

a+ x1
− k

])
= −rβ

K
(x− x1)

2 − s

L
(y − y1)

2
+ P +Q, (10)

where P =
(
βτ2

(x−x1)
xx1

− τ1
(y−y1)
yy1

)
(x1y−xy1) and Q =

(
αβ(xz1 − zx1)

(x−x1)
(a+x)(a+x1)

)
.

If P ≤ 0 and Q ≤ 0, then the equation (10) becomes non-positive.
Obviously, the solutions x(t), y(t), and z(t) of model (4)–(6) with the initial conditions

x(0), y(0), and z(0) are positive for every time t ≥ 0. From equations (4)-(5), we have

d

dt
(x+ y) =

dx

dt
+

dy

dt
= rx

(
1− x

K

)
+ sy

(
1− y

L

)
− αxz

a+ x

≤ rx
(
1− x

K

)
+ sy

(
1− y

L

)
. (11)
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Given any number ϵ > 0 and following the lemma in [15], we get x(t)+ y(t) ≤ K+L+ ϵ
for time t being sufficiently large. This means that the size number of x(t) + y(t) is
bounded for every time t ≥ 0. Further, there exist some points (x∗, y∗) ∈ R2

+ which
satisfy A(x∗, y∗) = 0, where A(x, y) = rx

(
1− x

K

)
+ sy

(
1− y

L

)
. The inequality (11)

implies the growth of x(t) + y(t) becomes non-positive. From model (4)-(6), we also
know that the populations x(t) and y(t) grow following the logistic equation when there
is no interaction and influence from other population. This has the consequence that the
populations x(t) and y(t) are bounded and there exist real positive numbers M1 and M2

such that 0 < x(t) ≤ M1 and 0 < y(t) ≤ M2.
From the three equations of model (4)-(6), we have

d

dt
(x+ y + z) =

dx

dt
+

dy

dt
+

dz

dt
= rx

(
1− x

K

)
+ sy

(
1− y

L

)
− α(1− β)xz

a+ x
− kz

≤ rx
(
1− x

K

)
+ sy

(
1− y

L

)
. (12)

From the previous analysis, there exist real positive numbers M3 such that
0 < z(t) ≤ M3. Since x(t), y(t), and z(t) ≥ 0 are bounded, and due to inequality
(12), there exist M1, M2, and M3 > 0 such that 0 < x(t) ≤ M1, 0 < y(t) ≤ M2,
and 0 < z(t) ≤ M3. The result of this analysis is summarized in Theorem 3.1.

Theorem 3.1 Suppose that EQ = (x1, y1, z1) is the only interior fixed point for
model (4)-(6). If the conditions P ≤ 0 and Q ≤ 0, with 0 < x(t) ≤ M1, 0 < y(t) ≤ M2,
and 0 < z(t) ≤ M3 are fulfilled, then the interior fixed point EQ = (x1, y1, z1) is globally
and asymptotically stable via the Lyapunov function (8).

4 Maximum Profit Problems

The interior fixed point EQ of the model (4)-(6) is connected with an economic problem.
The predator and prey populations in the free area of capture are assumed as profitable
stocks. The populations are then harvested with fixed efforts. The economic activities
require operating costs and provide beneficial results. For this purpose, a function of
total cost is defined as TC = cE, where c states the cost of exploitation and E is
the fixed effort of harvesting. A function of total revenue is defined as TR = pY (E),
where p denotes the price of profitable stock (N). The result of exploitation is stated
as Y (E,N) = qEN , where q is the catchability level. Further we also define the profit
function as π = TR − TC. Since the interior fixed point EQ = (x1, y1, z1) leans on
the fixed efforts, the profit function also leans on the fixed efforts. Therefore the profit
function is stated as π(E) = TR(E)− TC(E).

In order to get the fixed point EQ = (x1, y1, z1) lying in the first octant, the
condition α β − k − q2E > 0, i.e. E < αβ−k

q2
must be satisfied. Under the assumption

that the value of effort is non-negative, the values of parameter must satisfy the
conditions αβ − k > 0 and 0 ≤ E2 < αβ−k

q2
. Besides, we also have to assume that

rkx1 − rx2
1 − τ1kx1 + τ2ky1 − q1KEx1 > 0. By taking E1max = 1 and E2max = 1,

the fixed point EQ becomes an interior fixed point when (E1, E2) ∈ D, where
D = {(E1, E2) : 0 ≤ E2 ≤ A, 0 ≤ E1 ≤ B}, A = min{1, αβ−k

q2
, f(0, E2) = 0}, and

B = min{1, E12 = f(E2)}. The function E12 = f(E2) is found from the implicit
function f(E1, E2) = rkx1 − rx2

1 − τ1kx1 + τ2ky1 − q1KEx1 = 0. Moreover, we assume
that E1 < E12. The profit function associated with the fixed point EQ = (x1, y1, z1) is
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given by π(E1, E2) = (p1q1x1)E1 + (p2q2z1)E2 − (c1E1 + c2E2).

Example 4.1 Suppose that the hypothetical values of the paramaters of the model
are given as r = 1.5, s = 1.5, a = 100, K = 1000, L = 1000, τ1 = 0.25, τ2 = 0.25,
α = 0.5, β = 0.5, k = 0.1, q1 = 1, q2 = 1, p1 = 10, p2 = 12, c1 = 5, and c2 = 6 with

appropriate units. We get the fixed point EQ = (x1, y1, z1), where x1 = 100(E2+1)
0.15−E2

,

y1 = 416.6667 + 0.3334
√
1562500 + 1500x1, z1 = 0.00200

(1250x1−1.5x2
1+250y1−1000E1x1)

x1
.

The fixed point becomes an interior fixed point when the conditions 0 ≤ E < 0.15
and 1250x1 − 1.5x2

1 + 250y1 − 1000E1x1 > 0 are satisfied. The positive solutions
of f(E2) = 0 are E2 = 0.1273, E2 = 0.1500, and E2 = 0.8607. Therefore, we get
D = {(E1, E2) : 0 ≤ E2 ≤ 0.1273, 0 ≤ E1 ≤ min{1, f(E2)}}, where

f(E2) =
2.5.10−13

(3− 20E2)(1 + 10E2)

[
−2.24.1014E2 − 2.867.1014E2

2 + 3.255.1013

+ 1.500.1010

√
1.562.106 +

1.500− 105(E2 + 0.100)

0.150− E2

−

2.000.1011

√
1.562.106 − 1.500− 105(E2 + 0.100)

0.150− E2

E2

+

6.667.1011

√
1.562.106 − 1.500− 105(E2 + 0.100)

0.150− E2

E2
2

 . (13)

The profit function is now written as

π(E1, E2) =

(
1000(E2 + 0.1)

0.15− E2

)
E1

+

(
0.00024E2

0.1 + E2

(
1.2500.105(E2 + 0.1)

−0.15 + E2
+

15000(E + 0.1)2

(−0.15 + E2)2

− 1.0417.105 − 83.3333

√
1.5625.106 − 1.5.105(E2 + 0.1)

−0.15 + E2

+
100000E1(E2 + 0.1)

(0.15− E2)

)
(−0.15 + E2)

(
100 +

100(E2 + 0.1)

0.15− E2

)
− 6

)
.

By observing the critical values of the profit function in the feasible regionD and equation
(13), a pair of fixed efforts (E∗

1 , E
∗
2 ) = (1, 0.10718) is found, which maximizes the

profit function of π (E∗
1 , E

∗
2 ) = 4833.0425. The pair of the fixed efforts lies in the curve

f(E1, E2) = 0 which is the boundary of the feasible region D. The critical value of fixed
efforts (E∗

1 , E
∗
2 ) = (1, 0.10718) gives the fixed point EQ = (483.8687, 920.9046, 0).

This condition leads the predator population towards extinction when the fixed point is
asymptotically stable.

We consider that there exists a minimum number of predators in the free area of
capture, for example, we may assume that the allowed minimum number of the prey
population is z1E =zmin =200. Then we get a new constrain function g(E1, E2) = 0,
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where

g(E1, E2) =
1

0.1 + E2

(
0.00002

(
125.105(E2 + 0.1)

−0.15 + E2
+

15000.(E2 + 0.1)2

(−0.15 + E2)2

− 1.0416.105 − 83.3333

√
1.5625.106 − 1.5.105(E2 + 0.1)

−0.15 + E2

− 100000E1(E2 + 0.1)

−0.15 + E2

)
(E2 − 0.15)

(
100− 100(E2 + 0.1)

−0.15 + E2

))
− 200.

The problem now becomes to maximize the profit function (E∗
1 , E

∗
2 ) subject to

g(E1, E2) = 0. Solving the equations ∇π(E1, E2) = µ∇g(E1, E2) = 0 and g(E1, E2) = 0
simultaneously, where µ is the Lagrange multiplication, we get E∗

1 = 0.95507 and
E∗

2 = 0.10249. By applying the value of the pairs of efforts (E∗
1 , E

∗
2 ) = (0.95507, 0.10249),

we obtain an interior fixed point EQ = (426.2563, 911.2916, 200). From the Jacobian
matrix evaluated at the interior fixed point, we get the eigenvalues −0.9041, − 1.5922,
and −0.0075. The maximum profit now becomes π (E∗

1 , E
∗
2 ) = 4, 311.6345. In this case,

if we apply the value of efforts at the level of E∗
1 = 0.95507 and E∗

2 = 0.10249, then both
populations will live together for a certain span of time even though the populations
in the free area of capture are harvested with fixed efforts of harvesting. Besides, the
harvested populations also maximize the profit function.

5 Optimal Present Value of Net Revenue

The biological steady state is reached for the equations dx
dt = 0, dy

dt = 0, and dz
dt = 0.

The economic steady state is found whenever the total revenue and total cost are at the
same level. The profit function for the harvested populations is stated as π(E1, E2) =
p1q1xE1 + p2q2zE2 − c1E1 − c2E2. Our goal is maximizing J as the present value of the
net revenue for the problem of infinite horizon which is stated as

J =

∫ ∞

0

e−δt{(p1q1x− c1)E1(t) + (p2q2z − c2)E2(t)}dt. (14)

The discount rate of the net revenue is denoted by δ. The present value J subject to
the equation (4)–(6) will be maximized using Pontryagin’s maximum principle [16]. The
control variables E1(t) and E2(t) are subject to the condition 0 ≤ Ei(t) ≤ Eimax for
i = 1, 2. From equation (14), the Hamiltonian function is stated as

H = e−δt{(p1q1x− c1)E1(t) + (p2q2z − c2)E2(t)}+ τ1{rx
(
1− x

K

)
− τ1x

+ τ2y −
axz

a+ x
− q1E1x}+ λ2{sy

(
1− y

L

)
+ τ1x− τ2y}

+ λ3{
βαxz

a+ x
− kz − q2E2z}, (15)

where the adjoint variables are given by λ1(t), λ2(t), and λ3(t), respectively.
As the necessary conditions, we set ∂H

∂E1
= 0 and ∂H

∂E2
= 0 to get the control variables

E1 and E2 to be optimal. From equation (15), we have ∂H
∂E1

= e−δt(p1q1x−c1)−λ1q1x = 0

and ∂H
∂E2

= e−δt(p2q2z − c2) − λ3q2z = 0. Then we get λ1 = e−δt(p1q1x−c1)
q1x

and λ3 =
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e−δt(p2q2z−c2)
q2z

. From equation (15), we also have

∂H

∂x
= e−δtp1q1E1 + λ1

(
r − 2r

K
x− τ1 −

αx

a+ x
+

αz

(a+ x)2
− q1E1

)
+ τ2λ1 + λ3

(
βαz

a+ x
+

βαz

(a+ x)2

)
,

∂H

∂y
= λ1τ2 + λ2

(
s2 −

2s

L
y − τ2

)
,

∂H

∂z
= e−δtp2q2E2 −

λ1αx

a+ x
+ λ3

(
βαx

a+ x
− k − q2E2

)
.

Following Pontryagin’s maximum principle λ̇1 = −∂H
∂x , λ̇2 = −∂H

∂y , λ̇3 = −∂H
∂z , and

considering the transversality condition λ2(t) = 0 as t → ∞, we get λ1 = e−δt(p1q1x−c1)
q1x

,

λ2 = e−δtτ2(−p1q1x+c1)

q1x(−δ+s− 2s
L y−τ2)

and λ3 = e−δt(p2q2z−c2)
q2z

. After substituting λ1 = e−δt(p1q1x−c1)
q1x

,

λ2 = e−δtτ2(−p1q1x+c1)

q1x(−δ+s− 2s
L y−τ2)

and λ3 = e−δt(p2q2z−c2)
q2z

into the equations λ̇1 = −∂H
∂x ,

λ̇2 = −∂H
∂y , and λ̇3 = −∂H

∂z , we get E1 and E2. The optimal paths of E1 and E2 still

depend on populations x, y, and z, i.e., E1 = E1(x, y, z) and E2 = E2(x, y, z). By
substituting x = x1, y = y1, and z = z1 into the implicit equations E1 = E1(x, y, z) and
E2 = E2(x, y, z), we get the suitable values of control variables E1 and E2. The values
of E1, E2, x1, y1, and z1 give a maximum value of the present value J .

Example 5.1 Suppose that the hypothetical values of the paramaters of the model
are given as r = 1.5, s = 1.5, a = 100, K = 1000, L = 1000, τ1 = 0.25, τ2 = 0.25,
α = 0.5, β = 0.5, k = 0.1, q1 = 1, q2 = 1 in appropriate units. Take p1 = 10, p2 = 12,
c1 = 5, c2 = 6, and δ = 0.005 in appropriate units. Further we have the fixed point
EQ = (x1, y1, z1), where

x1 = 100(E2+0.1)
0.15−E2

, y1 = 416.66667 + 0.33333
√
1, 562, 500 + 1, 500x1, and

z1 =
0.00200(1,250x1−1.5x2

1+250y1−1000E1x1)(100+x1)

x1
.

The adjoint variables are λ1 = −e−0.005t(10x1−5)
x1

, λ2 = 0.25e−0.005t(5−10x1)
(1.245−0.003y1)x1

, and

λ3 = −e−0.005t(6−12z1)
x1

.
By solving the equations and then choosing the suitable values of fixed efforts of

harvesting, we get E1 = 1.13676 and E2 = 0.10278. Further we get the fixed point
EQ = (429.40138, 911.82119, 0.01043) with the eigenvalues −1.0359, − 1.62450,
and −3.32935 × 10−7. Under these conditions, the fixed point EQ is locally and
asymptotically stable. The adjoint variables are denoted by λ1 = 9.988356e−0.005t,
λ2 = 1.675377e−0.005t, and λ3 = −563.471151e−0.005t. Then we get the maximum value
of the present value of the net revenue J =

∫∞
0

4, 874.957199e−0.005tdt = 9.749914× 105.
We now continue the problem of maximizing the present value J of the net revenue

for the problem of finite horizon which is stated as

J =

∫ T

0

e−δt{(p1q1x− c1)E1(t) + (p2q2z − c2)E2(t)}dt. (16)

The control variables E1(t) and E2(t) are subject to the condition 0 ≤ Ei(t) ≤ 1 for
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i = 1, 2. From equation (16), the Hamiltonian function is stated as

H = e−δt{(p1q1x− c1)E1(t) + (p2q2z − c2)E2(t)}+ τ1{rx
(
1− x

K

)
− τ1x

+ τ2y −
axz

a+ x
− q1E1x}+ λ2{sy

(
1− y

t

)
+ τ1x− τ2y}

+ λ3{
βαxz

a+ x
− kz − q2E2z}, (17)

where λ1(t), λ2(t), and λ3(t) denote the adjoint variables. Again, following Pon-
tryagin’s maximum principle, we set λ̇1 = −∂H

∂x , λ̇2 = −∂H
∂y , λ̇3 = −∂H

∂z , with

λ1(T ) = λ2(T ) = λ3(T ) = 0. Since the equation (17) is linear in E1 and E2

with the slope ∂H
∂E1

= e−δt(p1q1x− c1)− λ1q1x and ∂H
∂E2

= e−δt(p2q2z − c2)− λ3q2z, we
define the following to maximize H:

E∗
1 (t) =

{
0, e−λt(p1q1x− c1)− λ1q1x < 0,
1, e−λt(p1q1x− c1)− λ1q1x ≥ 0

and

E∗
2 (t) =

{
0, e−λt(p2q2z − c2)− λ2q2z < 0,
1, e−λt(p2q2z − c2)− λ2q2z ≥ 0.

Because the Hamiltonian function H is linear in E1 and E2, the usual first order
condition dH

dE1
= dH

dE2
= 0 is inapplicable in our search for E∗

1 (t) and E∗
2 (t), but here we

define E∗
1 (t) = E∗

2 (t) = 1 when dH
dE1

= dH
dE2

= 0. The solution for the problem of finite
horizon will be given using the forward-backward sweep numerical method to plot the
optimal solution of x∗(t), y∗(t), z∗(t), E∗

1 (t), and E∗
2 (t).

Example 5.2. Suppose that the hypothetical values of the paramaters of the model
are given as r = 1.8, a = 200, τ1 = 0.25, τ2 = 0.25, β = 0.15, K = 1000, α = 0.5,
s = 1.8, L = 1000, k = 0.01, q1 = 0.01, q2 = 0.01 in appropriate units. Take p1 = 10,
p2 = 12, c1 = 5, c2 = 6, δ = 0.005, and T = 200. Set the initial and terminal conditions
x(0) = 950, y(0) = 950, z(0) = 600, and λ1(T ) = λ2(T ) = λ3(T ) = 0. The curves
of state, costate, and adjoint variables are plotted using a Matlab program as given in
Figures 1–4.

Figures 1(a), 1(b) and 2(a) show that when harvesting is not considered in the
dynamical behavior of populations, the predator and prey will tend to the stable fixed
point. From the previous analysis, we know that a certain condition is found, where the
interior fixed point becomes globally and asymptotically stable. Harvesting efforts as
control variables influence the dynamical behavior of the populations but the behavior is
still similar to the behavior of the population model without harvesting. The dynamical
behavior for preys with a control seems to increase with a little oscillation, while the
dynamical behavior for predator remains decreasing smoothly.

Harvesting efforts as a control in the model make the predator population decline
rapidly compared to the non-harvested one, but the predator population remains sus-
tainable because when the population is very small, then the population will stop being
harvested. The reduced predator population due to harvesting makes the effect of pre-
dation on the prey in the free area become ineffective. This gives an opportunity for the
prey population to grow more rapidly. As a consequence, the prey population in the free
and forbidden areas for harvesting grow faster than when there are no harvesting efforts
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a b
Figure 1: a) plot curve of x(t), b) plot curve of y(t).

a b
Figure 2: a) plot curve of z(t), b) plot curve of E1(t).

a b
Figure 3: a) plot curve of E2(t), b) plot curve of λ1(t).
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a b
Figure 4: a) plot curve of λ2(t), b) plot curve of λ3(t).

in the model. In this example, the populations are harvested at the maximum level over
the time interval t ∈ [0, 200], see Figures 2(b) and 3(a). The optimal paths x∗(t), y∗(t),
z∗(t), E∗

1 (t), and E∗
2 (t) maximize the present value J for the problem of finite horizon.

6 Conclusion

The dynamical behavior of preys in the free and forbidden areas of harvesting and preda-
tor population with the Holling response function of type II has an interior fixed point
when a specific condition is fulfilled. The interior fixed point both for the model with and
without harvesting effort was analyzed and it was found that the interior fixed point is
locally and globally asymptotically stable. The local stability of the interior fixed point
was analyzed via the linearization approach and Routh-Hurwitz stability criteria. The
Lyapunov function was constructed under a specific condition to guarantee the global
stability of the interior fixed point in the first octant.

In the case of exploitation with the fixed efforts for the predator and the prey popu-
lations, there exists an interior fixed point. Under a specific condition, this fixed point
becomes globally and asymptotically stable and also gives maximum profit, but the
predator population is driven to extinction. By considering that there exists a minimum
size of the predator population which is banned to be exploited, we found a pair value
of the efforts and the suitable values of parameter to get a globally and asymptotically
stable interior fixed point. The stable fixed point also maximizes the profit function for
a certain span of time. Both predator and prey populations in the free and forbidden
area of capture can be sustainable and also maximize the profit function forever even
though the predator and the prey populations in the free area of capture are harvested
with fixed efforts of harvesting.

For the problem of maximizing the present value of revenues, there exist extremal
paths for harvesting efforts that maximize the present value of net revenues for finite
and infinite horizon problems. The harvesting efforts as control variables via simulation
show that the harvesting efforts can reduce the predator population and also, at the same
time, can reduce the effect of predation on the prey population. The harvesting effect
allows the preys to grow rapidly comparing to their growth without harvesting.
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Stability is one of the basic concepts used in many of science, technology in everyday 

life. It expresses the resistance of objects, processes, etc., whose condition may change 

over time due to various internal or external disturbances. This book sets out the main 
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