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The Geometry of Mass Distributions

S.B. Davis ∗

Research Foundation of Southern California,
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Received: October 25, 2021; Revised: February 8, 2022

Abstract: Geometrical characteristics of mass distributions are defined and the
relation with classical mechanics and general relativity is described. The classical
stability of closed geodesic trajectories on surfaces of arbitrary genus is established.
An iterative procedure for solving the N-body problem to a high degree of precision
is introduced through a complexity minimization method.

Keywords: center; geodesics; geometrical complexity; N-body problem.

Mathematics Subject Classification (2010): 52C45, 58E10, 70S05.

1 Introduction

The equations of classical mechanics and general relativity describe the motion of particle
in a geometry of three or four dimensions. The potential in general relativity is derived
from the curvature of space-time which results from the energy-momentum tensor or
mass distribution. The effect of the geometry of the mass distribution on the dynamics
will be considered. A geometrical median will be given and verified for various curves and
surfaces. It is proven in the two theorems of Section 2 that the geometrical median of a
curve is located on the curve if it is a straight line in Euclidean space and a geodesic in
curved space. These theorems remain valid for the barycentre which coincides with the
center of mass of a uniform distribution. The role of the center of the mass distribution
then will be described in classical mechanics and general relativity. It is known that mass
distributions tend towards the center [8]. The local stability of geometrical configurations
under the gravitational potential will follow for geodesics.

The stability of geodesics that can be identified with strings on a surface is considered.
Given the tendency of uniform mass distributions towards the center of a geometrical
configuration, it follows from the theorems of Section 2 that only closed geodesics will

∗ Corresponding author: mailto:sbdavis@resfndsca.org

© 2022 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua117
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118 S. B. DAVIS

be stable on a Riemann surface in a gravitational field. The geodesic flows on ellip-
tic and hyperbolic surfaces are described. The effect of the flow on an elliptic surface
is an infinitesimal displacement of the trajectory. On a hyperbolic surface, however,
the transformation of the Jacobi field tends to introduce divergences. The geodesics
are known to form a dense set on a hyperbolic Riemann surface [27] and the flow is
metrically transitive [17]. The dynamics is invariant under quasi-isometries [12]. The
stability of the geodesic flow under the action of the fundamental group has been proven
for diffusion paths on a geometrially finite hyperbolic surface with finite [24] or infinite
volume [10]. Gibbs measures for the dynamics of geodesic flow on negatively curved
Riemannian manifolds have been developed to describe the equilibrium state in the pres-
ence of a potential [29]. It is related to the Patterson-Sullivan density at the boundary of
Teichmüller space, which suffices for the Myrberg limit set with the full measure [33,37],
where singularities occur for an isometry in the interior.

Particles follow geodesics on the space-times shaped by energy-momentum tensors. A
measure of geometrical complexity will be defined in Section 3 for spatial curves satisfying
conditions of minimal complexity for geodesics and locally extremal values for curves
of high symmetry in a neighbourhood in path space. A divergence is found to arise
for the sets of points, with the same equivalence class of tangent vectors or covariant
derivatives, having zero Lebesgue measure. The occurrence of these infinities is similar
to that of the singularities in a theory of gravity or the elementary particles through point
particles. A fundamental length scale may be introduced which would require, however, a
theoretical basis. The sum representing this term in the intrinsic complexity is rendered
finite through the removal of the singular term in a zeta function regularization method.
Given this measure of the complexity, the geodesics paths of particles in curved spaces
may be derived from an action principle with a Lagrange multiplier term.

The principle of complexity minimization in deterministic processes may be used to
establish the time development of a configuration of masses. Its theoretical foundations
are enunciated in the first law of classical mechanics and the geodesic free motion in
general relativity. It is adapted in Section 3 to predict the dynamics of an N -body system
of approximately equal masses, with an iterative procedure of replacing two masses by a
single mass at the center of gravity. This subsequent motion can be placed in a general
relativistic setting and the geodesics on the curved manifold representing the force fields
would tend to reduce complexity of the system. The classical limit then would yield a
configuration that also minimizes complexity.

2 The Geometrical Characteristic

The geometrical median of any continuous set S will be defined to be that point a which
minimizes

∫
C
r(s, a)ds, where r(s, a) is the distance from the point a to the point s ∈ C.

For a discrete set of points, the sum
∑

s r(s, a)ds is minimized [39] and a generalization
to continuous sets has been given [13].

For a straight line of length L,
∫ L

0
r(s)ds = 2

∫ L
2

0
rdr = 2

(L
2 )

2

2 = L2

4 from the

midpoint, while
∫ L

0
r(s)ds =

∫ L

0
rdr = L2

2 from the endpoint. For the vertices of an
equilateral triangle with sides of length L, the sum of the distances from the center is
3 L√

3
=

√
3L, whereas the sum of the distances from any of the vertices equals 2L.

From a point at a distance r0 from the point of symmetry of a circle,

r(θ) =
√
R2 + r20 − 2r0R cos θ, (1)
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where θ is the angle subtended from the point of symmetry. When r0 = 0,
∫
r(θ)ds =

R2
∫ 2π

θ=0
dθ = 2πR2. If r0 = R,∫

r(θ)ds =
√
2R2

∫ 2π

0

(1− cos θ)
1
2 dθ = 8R2. (2)

The geometrical median therefore coincides with the conventional definition of the center
for these sets of points.

More generally, let C(t) : [t0, t1] → C[t0, t1] be a curve in Euclidean space. The
distance from a point on the curve is

r(t) =
√
(x(t)− xc)2 + (y − yc)2 (3)

and the integral
∫ t1
t0
r(t)dt is minimized when

δxc

∫ t1

t0

√
(x(t)− xc)2 + (y(t)− yc)2dt = δyc

∫ t1

t0

√
(x(t)− xc)2 + (y(t)− yc)2dt = 0.

(4)
Then ∫ t1

t0

x(t)− xc√
(x(t)− xc)2 + (y(t)− yc)2

dt = 0, (5)∫ t1

t0

y(t)− yc√
(x(t)− xc)2 + (y(t)− yc)2

dt = 0.

The condition for the center to be a point on the curve is that there exists t′ ∈ [t0, t1]
such that ∫ t1

t0

x(t)− x(t′)√
(x(t)− x(t′))2 + (y(t)− y(t′))2

dt = 0, (6)∫ t1

t0

y(t)− y(t′)√
(x(t)− x(t′))2 + (y(t)− y(t′))2

dt = 0.

Theorem 2.1 The only curves in two-dimensional Euclidean space with geometrical
medians located on the curves are straight lines.

Proof. The conditions (6) can be verified for a straight line y = mx+ b. Let x(t) =

a1t + b1 and y(t) = a2t + b2 such that y(t) = a2

a1
(a1t + b1) +

(
b2 − a2

a1
b1

)
. Substituting

these linear relations into (6) gives∫ t1

t0

a1(t− t′)√
(a21(t− t′)2 + a22(t− t′)2

dt =
a1√
a21 + a22

∫ t1

t0

t− t′

|t− t′|
dt (7)

=
a1√
a21 + a22

∫ t1

t0

[θ(t− t′)− θ(t′ − t)] dt = 0, (8)∫ t1

t0

a2(t− t′)√
(a21(t− t′)2 + a22(t− t′)2

dt =
a2√
a21 + a22

∫ t1

t0

t− t′

|t− t′|
dt

=
a2√
a21 + a22

∫ t1

t0

[θ(t− t′)− θ(t′ − t)] dt = 0,
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which can be satisfied if

−(t′ − t0) + (t1 − t′) = 0, t′ =
t0 + t1

2
.

The use of nonlinear parameters for the straight line does not alter the result.

If y = mxα + b, where α ̸= 1, then the conditions on t′ will not be satisfied by a
single value of t′ ∈ [t0, t1]. Therefore, the center would not occur on the curve for α ̸= 1.
A similar conclusion is reached for a sum of terms with different exponents {α1, ..., αℓ},
where αi ̸= 1, i = 1, ..., ℓ.

The generalization of the definition of the geometric median of the curve would be
the point in a manifold which minimizes the integral

∫ t1
t0

√
gµν(x(t)− xµ0 )(x(t)− xν0)dt.

Theorem 2.2 The geometrical median is located on a curve in a manifold if and
only if it is a geodesic.

Proof. The geodesic extremizes the arc length of the curve
∫ t1
t0

√
gµν

dxµ

dt
dxν

dt dt be-

tween two fixed points x(t0) and x(t1). Since
dxµ

dt = lim
t−t′→0

xµ(t)−xµ(t′)
t−t′ for any curve x(t),

the arc length equals

lim
t−t′′→0

∫ t1

t0

√
gµν(xµ(t)− xµ(t′′))(xν(t)− xν(t′′))

(t− t′)2
dt. (9)

Since dxµ(t)
dt is a continuous function, one of the two sets of inequalities

xµ(t)− xµ(t− δt)

δt
<
dxµ(t)

dt
<
xµ(t+ δt)− xµ(t)

δt
, (10)

xµ(t)− xµ(t− δt)

δt
>
dxµ(t)

dt
>
xµ(t+ δt)− xµ(t)

δt
,

is valid when the second derivative d2xµ(t)
dt2 does not vanish. It follows that, given a

positive definite metric, either

∫ t

t− δt
2

(
gµν

(xµ(t)− xµ(t− δt
2 ))(x

ν(t)− xν(t− δt
2 ))

( δt2 )
2

) 1
2

dt (11)

< lim
t−t′→0

∫ t

t− δt
2

√
gµν(xµ(t)− xµ(t′))(xν(t)− xν(t′))

(t− t′)2
dt

lim
t−t′→0

∫ t+ δt
2

t

√
gµν(xµ(t)− xµ(t′))(xν(t)− xν(t′))

(t− t′)2
dt

<

∫ t+ δt
2

t

(
gµν

(xµ(t+ δt
2 )− xµ(t))(xν(t+ δt

2 )− xν(t))

( δt2 )
2

) 1
2

dt
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or ∫ t

t− δt
2

gµν
(xµ(t)− xµ(t− δt

2 ))(x
ν(t)− xν(t)− δt

2 ))

( δt2 )
2

dt (12)

> lim
t−t′→0

∫ t

t− δt
2

gµν(x
µ(t)− xµ(t′))(xν(t)− xν(t′))

(t− t′)2
dt,

lim
t−t′→0

∫ t+ δt
2

t

gµν(x
µ(t)− xµ(t′))(xν(t)− xν(t′))

(t− t′)2
dt

>

∫ t+ δt
2

t

gµν
(xµ(t+ δt

2 )− xµ(t))(xν(t+ δt
2 )− xν(t))

( δt2 )
2

dt.

At the point xµ(t), moving an infinitesimal distance δt in any other direction than the
tangent vector to the geodesic will increase the integrals in the bounds (10) and (11).
Therefore, by eliminating the fixed value of δt, the integral∫ t+ δt

2

t− δt
2

(gµν(x
µ(t)− x′µ)(xν(t)− x′ν))

1
2 (13)

is minimized with respect to x′µ, defined by a change of δt in the affine parameter along
a curve which is derived by exponentiation of a vector field at the point xµ(t), when this
curve is the same geodesic {xµ(s)|t− δt

2 < s < t+ δt
2 } in the neighbourhood Nexp δt

2
(xµ(t)).

By overlapping neighbourhoods (t− δt
2 , t+

δt
2 ) throughout the interval (t0, t1), it may be

concluded that there exists a point xµ0 on the path, equal to xµ(t′′), with t′′ fixed, such
that the integral ∫ t1

t0

√
gµν(xµ(t)− xµ0 )(x

ν(t)− xν0)dt (14)

achieves a minimal value.

Suppose that xµ0 is not located on the geodesic x(t) between x(t0) and x(t1). That
would be equivalent to the existence of a path x̂(t) including xµ0 which is not a geodesic
between x(t0) and x(t1). By triangulation of the interior region between the two curves
x(t) and x̂(t), with xµ0 = x̂µ(t′),∫ t1

t0

√
gµν(x̂µ(t)− x̂(t′))(xν(t)− x̂ν(t′)) dt <

∫ t1

t0

√
gµν(xµ(t)− xµ0 )(x

ν(t)− xν0) dt.

(15)

The inequality∫ t1

t0

√
gµν(x̂µ(t)− x̂µ(t′))(x̂ν(t)− x̂ν(t′)) dt (16)

>

∫ t1

t0

√
gµν(xµ(t)− xµ(t′′′))(xν(t)− xν(t′′′)) dt

for a choice of t′′′ is valid by the integral form of the mean value theorem and
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the minimization of the integral by the geodesic. Then∫ t1

t0

√
gµν(xµ(t)− xµ0 )(x

ν(t)− xν0) dt (17)

>

∫ t1

t0

√
gµν(xµ(t)− xµ(t′))(xν(t)− xν(t′)) dt

>

∫ t1

t0

√
gµν(xµ(t)− xµ(t′′′)(xµ(t)− xµ(t′′′) dt,

again, by triangulation. The inequality may be proven generally by overlapping neigh-
bourhoods of the geodesic. It follows that x(t′′′) is located on the geodesic, which,
therefore, includes its center.

Paths which are not geodesics do not minimize the integral (14) for some xµ0 on the
curve, and therefore, by triangulation, there exists another curve through xµ0 and the
endpoints x(t0) and x(t1) which has a lesser integral. A slight perturbation of the second
curve will produce a curve with nearly the same integral that does not include xµ0 . Then
xµ0 will minimize the integral for a curve on which it is not located. Consequently, the
only curves which include the geometrical medians are geodesics.

The centroid or center of mass has been defined for regions in Euclidean space and
generalized to Riemannian manifolds [2,15,19]. The center of mass of an object occupying
a volume in a Euclidean space has coordinates

xi,c.m =

∫
ρ(x)xidV∫
ρ(x)dV

. (18)

The mass density ρ(x) is constant for a uniform distribution and

xi, c.m =
ρ
∫
xidV

ρ
∫
dV

=

∫
xidV∫
dV

. (19)

The barycenter minimizes the integral of the squared distance [20], [21] from a given
point x0 to the other points in the region∫ ∑

i

(xi − xi,0)
2dV. (20)

Extremizing this integral requires

δ

∫ ∑
i

(xi − xi,0)
2dV = 0. (21)

Suppose x0 = xc.m.. Then

−
∑

i

∫
(xi − xi,0)δxi,0dV = −

∑
i

∫
xiδxi,0dV +

∑
i

∫ ∫
xidV

′∫
dV ′ δxi,0dV

= −
∑

i

∫
xiδxi,0dV +

∑
i

∫
xiδxi,0dV

= 0.
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Therefore, the center of mass of a uniform distribution coincides with the barycentre of
the geometric configuration. It may be verified that the barycenter of a straight line
x(t) = a1t + b1 and y(t) = a2t + b2 between two points (x(t0), y(t0)) and (x(t1), y(t1))
occurs at t0+t1

2 . Similarly, the barycenter of a geodesic will be located on the geodesic

since the integral
∫ t1
t0
gµν(x

µ(t)−xµ0 )(xν(t)−xν0) dt will be minimized when xµ0 = xµ(t′′),

t′′ ∈ [t0, t1].

The geometrical median may be compared with the barycenter for various compact
sets including the circle [4, 40]. The variational conditions for this integral in Euclidean
space are

δxc

∫ t1

t0

[(x(t)−xc)2+(y(t)− yc)2]dt = 0, δyc

∫ t1

t0

[(x(t)−xc)2+(y(t)− yc)2]dt = 0,

or ∫ t1

t0

(x(t)− xc)dt = 0,

∫ t1

t0

(y(t)− yc)dt = 0.

These equations generally differ from Eq. (5). For the circle, with (xc, yc) located at the
center and

√
(x(t)− xc)2 + (y(t)− yc)2 equal to a constant, the conditions are equivalent.

The tendency of uniform mass distributions towards the centers would cause the linear
density of a geodesic on a Riemann surface to move towards a point on the curve. When
it is closed, there are no distinguished points on the geodesic, which should be stable
against variations satisfying classical equations. It may be identified, therefore, with a
closed string state. However, a closed curve that is not a geodesic would have a center
of mass located away from the path, and if it tends towards this point, the configuration
will not be stable. It follows that there is an equivalence between closed string states
and closed geodesics only.

The linear Poincare mapping of a closed geodesic translates the Jacobi field and its
covariant derivative from one curve to another. The eigenvalue of this transformation
has magnitude one when the geodesic is elliptic and stable and it is not equal to one if
the geodesic is hyperelliptic and unstable [31]. This variation does not cause a geodesic
to disintegrate. Instead, it is moved to a neighbourhood in the first class and diverges
in the second category. The transformation only would represent a form of propagation
of closed string states along the surface. Consequently, the geodesic flows differ at genus
g = 1 and g ≥ 2.

3 Complexity of a Curve and the Relation to the Center

Consider the Frenet frame of a curve spanned by the tangent, normal and binormal
vectors t⃗, n⃗ and b⃗ and the resultant v⃗ = t⃗+ n⃗+ b⃗. The integrals

−
∫
γ
ds

[
(v⃗·⃗t)2
|v⃗|2 ln

(v⃗·⃗t)2
|v⃗|2 + (v⃗·n⃗)2

|v⃗|2 ln (v⃗·n⃗)2
|v⃗|2 + (v⃗·⃗b)2

|v⃗|2 ln (v⃗·n⃗)2
|v⃗|2

]
∫
ds

(22)
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and

1∫
ds

[
−
∫
γ

ds

[
(∇t⃗t⃗ · t̂)2

|∇t⃗t⃗|2
ln

(
(∇t⃗t⃗ · t̂)2

|∇t⃗t⃗|2

)
+

(∇t⃗t⃗ · n̂)2

|∇t⃗t⃗|2
ln

(
(∇t⃗t⃗ · n̂)2

|∇t⃗t⃗|2

)
(23)

+
(∇t⃗t⃗ · b̂)2

|∇t⃗t⃗|2
ln

(
(∇t⃗t⃗ · b̂)2

|∇t⃗t⃗|2

)]

increase with the number of nonrepetitive windings of a spatial curve. When the curve
γ is a geodesic, ∇t⃗t⃗ = 0 or it is proportional to t⃗ with a change of the affine parameter

and ln
(∇t⃗ t⃗·t̂)

2

|∇t⃗ t⃗|2
= 0, the integral vanishes.

The first integral for the circle is maximized amongst planar curves. Given the coor-
dinates and the tangent vector

(x(t), y(t)) = (a cos t, a sin t), (24)(
dx

dt
,
dy

dt

)
= (−a sin t, a cos t),

the normal vector is n⃗ = (−a cos t,−a sin t). Then

v⃗ = (−a(sin t+ cos t), a(cos t− sin t)), (25)

|⃗t+ n⃗|2 = a2((sin t+ cos t)2 + (cos t− sin t)2) = 2a2

and

t⃗ · v⃗ = a2, (26)

n⃗ · v⃗ = a2.

It follows that

−
∫
γ
ds

[
(v⃗·⃗t)2
|v⃗|2 ln

(v⃗·⃗t)2
|v⃗|2 + (v⃗·n⃗)2

|v⃗|2 ln (v⃗·n⃗)2
|v⃗|2

]
∫
ds

=
2πa

(
− 1

2 ln
1
2 − 1

2 ln
1
2

)
2πa

= ln 2. (27)

If a series expansion
∑

k
1
k!Ik is considered, where

Ik (28)

=

−
∫
C

[
t⃗(k)·v⃗(k)

|v⃗(k)|2 ln
(

t⃗(k)·v⃗(k)

|v⃗(k)|2

)
+ n⃗(k)·v⃗(k)

|v⃗(k)|2 ln
(

n⃗(k)·v⃗(k)

|v⃗(k)|2

)
+ b⃗(k)·v⃗(k)

|v⃗(k)|2 ln
(

b⃗(k)·v⃗(k)

|v⃗(k)|2

)]
ds∫

C
ds

,

it may be verified that, by the Frenet equations,
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t⃗′ =
d|⃗t|
ds

t̂+ κ|⃗t|n̂, (29)

n⃗′ = −κ|n⃗|t̂+ d|n⃗|
ds

n̂+ τ |n⃗|b̂,

b⃗′ = −τ |⃗b|n̂+
d|⃗b|
ds

b̂,

v⃗′ =

(
d|⃗t|
ds

− κ|n⃗|
)
t̂+

(
κ|⃗t|+ d|n⃗|

ds
− τ |⃗b|

)
n̂+

(
τ |n⃗|+ d|⃗b|

ds

)
b̂,

and

I1 = − 1∫
C
ds

∫
C

ds

{ [
d|⃗t|
ds

(
d|⃗t|
ds − κ|n⃗|

)
+ κ|⃗t|

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)]

[(
d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ] (30)

ln


[
d|⃗t|
ds

(
d|⃗t|
ds − κ|n⃗|

)
+ κ|⃗t|

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)]

[(
d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]


+

[
− κ|n⃗|

(
d|⃗t|
ds − κ|n⃗|

)
+ d|n⃗|

ds

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)
+ τ |n⃗|

(
τ |n⃗|+ d|⃗b|

ds

)]
[(

d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]

ln


[
− κ|n⃗|

(
d|⃗t|
ds − κ|n⃗|

)
+ d|n⃗|

ds

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)
+ τ |n⃗|

(
τ |n⃗|+ d|⃗b|

ds

)]
[(

d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]


+

[
− τ |⃗b|

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)
+ d|⃗b|

ds

(
τ |n⃗|+ d|⃗b|

ds

)]
[(

d|⃗t|
ds − κ|n⃗|

)2
+
(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]

ln


[
− τ |⃗b|

(
κ|⃗t|+ d|n⃗|

ds − τ |⃗b|
)
+ d|⃗b|

ds

(
τ |n⃗|+ d|⃗b|

ds

)]
[(

d|⃗t|
ds − κ+ d|n⃗|

ds − τ |⃗b|
)2

+
(
τ |n⃗|+ d|⃗b|

ds

)2 ]
}.

For the circle,

I1 (31)

= − 1∫
ds

∫
ds

[
κ2 |⃗t|2

κ2 |⃗t|2 + κ2|n⃗|2
ln

κ2 |⃗t|2

κ2 |⃗t|2 + κ2|n⃗|2
+

κ2|n⃗|2

κ2 |⃗t|2 + κ2|n⃗|2
ln

κ2|n⃗|2

κ2 |⃗t|2 + κ2|n⃗|2

]
= − 1∫

ds

∫
ds

[
1

2
ln

1

2
+

1

2
ln

1

2

]
= ln 2,
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since |⃗t| = |n⃗| = a, d|⃗t|
ds = d|n⃗|

ds = 0 and |⃗b| = 0. Given equal magnitudes of the integrals
Ik, k ≥ 0, the entire measure would be

∑∞
k=0

1
k! ln 2 = e ln 2, which is the maximal

bound for planar curves.

The second integral is significantly reduced because the projection of the covariant
derivative of the tangent vector onto the vectors would be given in a polar diagram by

t̂ =
1

r
θ̂, n̂ = r̂, (32)

∇t⃗t⃗ = Γθ
θθ θ̂ + Γr

θθ r̂,

Γθ
θθ = 0, Γr

θθ =
1

2
grr(gθθ,r) = r.

Then

Ccurve = −
∫
ds

(∇t⃗t⃗ · n̂)2

|∇t⃗t⃗|2
ln

(
(∇t⃗t⃗ · n̂)2

|∇t⃗t⃗|2

)
= 0. (33)

Even though the circle has maximal symmetry, it is not a geodesic in Euclidean space,
and therefore, given the changing direction of the tangent vector, the introduction of a
non-zero measure, less than that of neighbouring winding curves, may be considered.

The intrinsic complexity of a curve has been defined to be

∞∑
k=1

1

k!
C(k)
int , (34)

C(k)
int = −

∫
µ=Lδ

fk(ℓ)dℓ

L
ln
fk(ℓ)ℓ

(k)
i′ min

L
−
∑
i′

ℓ
(k)
i′

L
ln

ℓ
(k)
i′

L
,

where fk(ℓ) equals the finite number of times that the (k − 1)th covariant derivative of
the tangent vector can be identified, the index i′ labels arcs with identified (k − 1)th

derivatives and ℓi′ min is the minimum length of these arcs of non-zero measure [9].
When the curve is a geodesic, ∇t⃗t⃗ = 0, and the (k−1)th derivatives vanish for k ≥ 2 and

Cint = C(1)
int = 0 because the tangent vectors may be identified through parallel transport.

The angular component of this expression has been evaluated for a circle to be non-zero,
while the radial component is found to vanish [9], representing a local minimum amongst
neighbouring paths. If ℓi′ min ̸= 0, it would be proportional to the arc length of the curve
since a dilation of the curve increases ℓi′ min and the length L by the same factor. When
there are no points that can be identified, the second sum vanishes and ℓi′ min would be
set equal to δℓ

◦
L, where δℓ

◦
= δℓ

[δℓ] , which causes a divergence as δℓ→ 0. This infinity can

be removed from the formula by equating ℓi′ min to a constant for these curves, yielding
a dependence on L that breaks dilatational invariance. Another possibility for ℓi′ min

would be λδL, where λδ is constant. Then, although dilatational invariance is preserved,
the formula includes an arbitrary constant with no theoretical basis.

The measure δℓ ln δℓ
◦
, however, tends to zero, in this limit. Suppose that the variable

η is defined by

δη = −δℓ ln δℓ
◦
. (35)

The integral
∫ L

0
dℓ = L may be regarded as the limit of a Riemann sum

∑{ L
δℓ}

i=1

1 · δℓ =
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L
δℓ

}
δℓ. By contrast, the sum of the infinitesimals δη

L equals

−
{ L

δℓ}∑
i=1

1

L
· δℓ ln δℓ

◦
= − 1

L

{
L

δℓ

}
δℓ ln δℓ

◦
= −ln δℓ

◦
. (36)

Given the approximation ψ(z) ∼ ln z for z ≫ 1, this value may be replaced by{
L
◦

δℓ
◦

}
∑
k=1

1

k
− ln L ≃

{ L
◦

δℓ
◦ }∑

k={L◦}

1

k
. (37)

Independence with respect to L requires equality with
∑{ 1

δℓ
◦ }

k=1

1
k . Then, lim

δℓ
◦→0

∑{ 1

δℓ
◦ }

k=1

1
k =

lim
s→1

ζ(s). Zeta function regularization would consist of removing the singular term in the

expansion of the zeta function around s = 1, yielding lim
s→1

[
ζ(s)− 1

s−1

]
= γ.

At a point (x, y) on the circle x2 + y2 = r2, the polar coordinates are (r, θ), with r
equal to a constant. The tangent vector has components (−y, x) and

t⃗ = −y ∂
∂x

+ x
∂

∂y
= −y

(
x

r

∂

∂r
− y

r2
∂

∂θ

)
+ x

(
y

r

∂

∂r
+
x

r2
∂

∂θ

)
(38)

=
xy − xy

r

∂

∂r
+
x2 + y2

r2
∂

∂θ
=

∂

∂θ
.

The r component of the gradient is ∂
∂r , while the θ component is 1

r
∂
∂θ . Therefore, the

components of the tangent vector in this basis are (0, r). There is no radial component
of the tangent vector, the theta component is constant, and yet, the vector ∂

∂θ keeps
changing with θ0 at the points (1, θ0) since

∂

∂θ

∣∣∣∣
θ0

= −rsin θ0
∂

∂x
+ rcosθ0

∂

∂y
(39)

in contrast with the fixed unit vectors ∂
∂x ,

∂
∂y and ∂

∂z . The vanishing of the radial
component of the tangent vector to the circle is sufficient to ensure a local minimum for
Cint
r for this curve, while the angular component yields a non-zero value, without any

further identification of the tangent vectors through Euclidean motions of the plane. The
non-zero value is supported by the work that is required to move an object travelling
at a constant velocity in a circular path, by contrast with a straight trajectory. It may
be noted that this feature is evident also if the distances from the center constitute the
sequence for the radial complexity. More generally, it would be necessary to evaluate
the perpendicular component of the distance. Then, it would be equal to zero from the
center to any other point on a straight line. Since the center is located on the geodesic
in curved space by Theorem 2, it would follow that the perpendicular component of the
distance to any point on this path and the radial complexity with respect to the center
would vanish.

The reduction of the N -body problem to an (N − 1)-body problem through the
replacement of two masses by another centrally located mass introduces an approximation
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in the description of the motion [26]. The error will be increased by the method of
induction culminating in a three-body problem, which has an analytic formulation and
can be solved in the plane, where it is equivalent to a system of geodesic equations [34].
It may be reduced through a complexity minimization procedure [9]. The tendency of
mass distributions to the center is a transition to a more symmetric and less complex
distribution about this point. The introduction of this variational principle selects a
classical configuration with each error range.

Theorem 3.1 The final motions in an N-body problem may be reduced to a three-
body problem for equal masses under the condition of the minimization of the complexity
of the configuration.

Proof. Lagrange multiplier terms may be added to give

LN =
1

2
m
∑

i

N∑
k=1

ẋ2i,k +Gm2
N∑

k<ℓ

1

rkℓ
+
∑

j

λj

N∑
k=1

(xj,k(t)− xc,N (t)). (40)

The minimization of complexity of the configuration of N masses is equivalent to the
extremization of the sum of the distances to the center of mass for this system. When
the masses of two bodies are replaced by the combined mass mN−1,N , the geometrical
center must be replaced by the center of mass xc.m.,N−1 [18], and given a tendency
towards this point, the Lagrangian may be formulated to be

LN−1 =
1

2
m
∑

i

N−2∑
k=1

ẋ2i,k +
1

2
mN−1,N

∑
i

ẋ2i,(N−1,N) +Gm2
N−2∑
k<ℓ

1

rkℓ
(41)

+GmmN−1,N

N−2∑
k=1

1

rk,(N−1,N)

+
∑

j

λ
j

[N−2∑
k=1

(xj,k(t)− xc.m,N−1(t)) + (xj,(N−1,N)(t)− xc.m.,N−1)

]
.

This averaging technique may be applied to the equations of motion derived from the La-
grangian, the nonlinear equations may be formulated with generalized derivatives which
yield estimates of deviations from the exact configurations and ensure existence and
convergence to the solution [25].

Since there exists one mass in the new configuration with a different magnitude,
the minimization of complexity would not coincide exactly with a tendency towards
the center of mass. Nevertheless, the process can be continued over extended intervals
progressing to a state of minimum complexity approximated by a tendency towards
the location x0,K near the center of mass xc.m.,K . Gradient transformation differential
equation algorithms have been developed for the minimization of a scalar function that
may be identified presently with the complexity [14].
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Iteration of the process yields the Lagrangian

LK =
1

2
m
∑

i

K−1∑
k=1

ẋ2i,k +
1

2
mK,...,N

∑
i

ẋ2i,(K,...,N) +Gm2
K−1∑
k<ℓ

1

rkℓ
(42)

+GmmK,...,N

K−1∑
k=1

1

rk,(K,...,N)

+
∑

j

λj

[K−1∑
k=1

(xj,k(t)− x0,K(t)) + (xj,(K,...,N) − x0,K(t))

]
,

where mK,...,N is the combined mass replacing the masses of N − K + 1 bodies,
{xi,(K,...,N)} is the location of center of mass for this system and xc.m.,K is the cen-
ter of mass derived from the mK,...,N and the remaining K − 1 masses.

When K = 3,

L3 =
1

2
m
∑

i

2∑
k=1

ẋ2i,k +
1

2
m3....,N

∑
i

ẋ2i,(3,...,N) +Gm2
2∑

k<ℓ

1

rkℓ
(43)

+Gmm3,...,N

K−1∑
k=1

1

rk,(3,...,N)

+
∑

j

λ
j

[ 2∑
k=1

(xj,k(t)− x0,3(t)) + (xj,(3,...,N) − x0,3(t))

]

with m3,...,N being the combined mass for N − 2 bodies, {xi,(3,...,N)} is the center of
mass for this system and x0,3 is an attractor for the configuration of minimal complexity
for the mass m3.,...,N and the two masses at x1 and x2, amongst those motions that are
allowed by the equations of motion. The equations derived from this Lagrangian would
be solvable.

Series solutions to the three-body problem [35] and the N-body problem [38] con-
verge sufficiently slowly, and approximations are necessary over brief time intervals. The
general instability of solutions in the nonhierarchical three-body problem, where there
is a stratification of the masses and distances, requires statistical methods for a the-
oretical solution. The method derived from Theorem 3 would allow the errors to be
reduced over longer time intervals, especially through stable repeating trajectories in-
cluding the Lagrange-Euler family of solutions for three masses [11,23]. The replacement
of two masses by another mass at the center of gravity resembles the description of the
restricted three-body problem as a two-point boundary value problem [30]. The ap-
proximation introduced in this theorem would increase in precision given a longer time
interval. It is necessary, therefore, to minimize the error for each replacement by the
center of mass.

The complexity minimization principle provides a method for determining final states
of classical systems. These motions in the three-body problem have been classified,
including existence of five relative equilibria representing planar central configuration [5].
The classification may be extended to the N-body problem qualitatively [28], and the
addition of a mass yields only finitely many relative equilibria [16], the finiteness of the
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number of equivalence classes of these critical points has not been determined generally
for N > 3. By the above theorem, however, it would follow that this number is finite for
equal masses since the calculation can be reduced to a three-body problem through an
iteration of an algorithm consisting of the replacement of the location of two masses by
the center of mass.

The simplification of calculations resulting from a minimization of complexity is sim-
ilar to that of the virial theorem, equating the average total kinetic energy with half
of the negative of the Newtonian potential energy [3]. The generalization of relative
equilibrium motions to G-equivariant motions yields a classification of planar three-body
motions by the symmetry groups. Given the action for a certain class of motions, its
minimization for a certain subset of motions can be determined. It is found, for example,
that the minimum of the action amongst motions with an isosceles symmetry of order
2 is achieved by the Lagrange configurations with a discrete invariance group of order
6 [36]. By contrast, the minimization of the action for choreographic motions is found
to be given by relative equilibrium motion corresponding to a regular n-gon. The char-
acterization of stable solutions to the N -body problem by symmetry has generated a
classification of the equilibria [7]. The minimization of the gravitational action [6] may
be supplemented by that of the complexity, which may be combined with integration
techniques to give a description of the dynamics [1].

4 Conclusion

The complexity of a path in curved space would be minimized by geodesics. Prime
geodesics are represented by closed curves on surfaces with handles. Consequently, it
follows that the geodesic trajectories in two dimensions could represent the propagation
of closed strings only on Riemann surfaces of arbitrary genus. The other curves would
be unstable against classical perturbations given a tendency toward the center.

The consistency of the dynamics of closed string theory and gravitation therefore
follows from the motion of free particles along geodesics on a metric which is a solution
to the gravitational field equations. The string effective field equations that tend to the
equations of general relativity coupled to matter in the classical limit represent conditions
for the quantum conformal invariance. Given the propagation of the quantum string
along the surface, the equilibrium configuration of the geodesic can be derived from the
variation of an action that includes a Lagrange multiplier term for the minimization
of complexity [9]. This auxiliary condition may be transferred from the worldsheet to
geodesic motion in the embedding space.

The dynamics of mass distributions in classical mechanics and general relativity then
can be described, given the condition of minimization of complexity. The initial motion
of N masses in a gravitational field may be formulated in terms of an (N − 1)-body
problem after two masses are replaced by the combined system at the center of mass.
The subsequent coordinates then can be computed by requiring the complexity of the
configuration to be minimized, which would include the classical limit of geodesic trajec-
tories in a manifold curved by a gravity. Iteration of this procedure eventually produces
a Lagrangian for the solvable three-body problem. Then the motion of the N bodies is
predicted by separating the combined masses and determining the time evolution of this
and subsequent configurations along the geodesics on the curved manifold representing
the gravitational field of the remaining masses.
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Abstract: In this paper, we consider a linear fractional differential equation with
fractional boundary conditions. First, by obtaining Green’s function, we derive the
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1 Introduction

For the second-order linear differential equation

u′′ + q(t)u = 0, t ∈ (a, b) (1)

with q ∈ C([a, b],R), it is known that if (1) has a nontrivial solution u with u(a) = u(b) =
0, then ∫ b

a

|q (t)| dt > 4

b− a
. (2)

This result is known as the Lyapunov inequality, see [1, 22].
It was first noticed by Wintner [28] and later by several other authors that inequality

(2) can be improved by replacing |q(t)| by q+(t) := max{q(t), 0}, the nonnegative part
of q(t).
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The Lyapunov inequality was extended by Hartman [19, Chapter XI] to the more
general equation

(r(t)u′)′ + q(t)u = 0, (3)

where q, r ∈ C ([a, b] ,R), when it was shown that if (3) has a nontrivial solution u
satisfying u(a) = u(b) = 0 and u(t) ̸= 0 for t ∈ (a, b), then∫ b

a

q+ (t) dt >
4∫ b

a
r−1 (t) dt

.

These Lyapunov inequalities have been used as an important tool in oscillation, dis-
conjugacy, control theory, eigenvalue problems, and many other areas of differential equa-
tions. Due to their importance in applications, they have been extended in various di-
rections by many authors. For more on Lyapunov-type inequalities, we refer the reader
to [6–15] and the references cited therein.

Recently, fractional differential equations have gained a considerable attention for
their applications in the mathematical modeling of systems and processes in the fields
of physics, mechanics, chemistry, aerodynamics, nonlinear dynamics, and system theory
[2–5]. Due to useful applications in the boundary value problems (BVPs), a subsequent
search for the Lyapunov-type inequalities has also begun in the direction of fractional
calculus. Ferreira first obtained Lyapunov-type inequalities for fractional differential
equations with pointwise boundary conditions (BCs). In [17], he considered the Riemann-
Liouville fractional differential equation

Dα
a+u+ q(t)u = 0, 1 < α ≤ 2, (4)

where q ∈ C([a, b],R), and showed that if (4) has a nontrivial solution u satisfying
u(a) = u(b) = 0, then ∫ b

a

|q(t)|dt > Γ(α)
( 4

b− a

)α−1

. (5)

In [10, Theorem 2.3], Dhar and Kong improved (5) by replacing |q(t)| by q+(t). Moreover,
they obtained the Lyapunov-type inequalities for a fractional BVP consisting of Eq. (4)
and the integral BCs

I2−α
a+ u(a+) = I2−α

a+ u(b) = 0, (6)

where I2−α
a+ u is the Riemann-Liouville fractional integral of u(t) of order 2− α.

When α = 2, the results in [17] and [10] lead to the classical Lyapunov inequality. For
more Lyapunov-type inequalities involving the Riemann-Liouville and Caputo fractional
derivatives, we refer the reader to [16,20,26] and the references cited therein.

In this paper, we consider a Riemann-Liouville fractional BVP consisting of the equa-
tion

Dα
a+u+ q(t)u = 0,

together with the boundary conditions (BCs)

u(a) = 0, Dβ
a+u(b) = 0,

where α ∈ (1, 2], β ∈ [0, α − 1], Dα
a+ , D

β
a+ are Riemann-Liouville derivatives of order α

and β, respectively, and q ∈ C([a, b],R). We obtain Lyapunov-type inequalities and use
them to study the nonexistence of a nontrivial solution of certain BVPs. Furthermore,
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by using the contraction mapping theorem, we also establish a criterion for the existence
of a nontrivial solution for a nonlinear fractional BVP.

This paper is organized as follows. After this introduction, we recall some basic defi-
nitions of fractional calculus in Section 2. Section 3 contains the main results regarding
the Lyapunov-type inequalities. Finally, in Section 4, we obtain a criterion for the nonex-
istence of nontrivial solutions of a linear BVP and the existence of a unique solution of
a nonlinear fractional BVP.

2 Background Materials and Preliminaries

For the convenience of the reader, here we present the necessary definitions and lemmas
from fractional calculus theory in the sense of Riemann-Liouville. These results can be
found in the books [21,23,25,27].

Definition 2.1 Let ν > 0. The Riemann-Liouville fractional integral of the function
u : [a, b] → R of order ν, denoted Iνa+u, is defined as

Iνa+u(t) =
1

Γ(ν)

∫ t

a

(t− s)ν−1u(s)ds,

where Γ(ν) =
∫∞
0

tν−1e−tdt is the gamma function, provided the right-hand side is
pointwise defined on R+.

Definition 2.2 Let n denote a positive integer and assume n − 1 < α ≤ n. The
Riemann-Liouville fractional derivative of order α of the function u : [a, b] → R, denoted
Dα

a+u, is defined as

Dα
a+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1u(s)ds = DnIn−α
a+ u(t),

provided the right-hand side is pointwise defined on R+.

In the following, unless otherwise mentioned, we use Dα
a+u(t) to denote the fractional

derivative of u(t) with order α and Dju(t) to denote the classical derivative of order j
of u(t) with j being a nonnegative integer. We recall a few well-known properties of
the Riemann-Liouville fractional derivatives and integrals to construct and analyze the
family of Green’s functions. Let u ∈ L1[a, b]. Then

Iν1
a+I

ν2
a+u(t) = Iν1+ν2

a+ u(t) = Iν2
a+I

ν1
a+u(t), ν1, ν2 > 0; (7)

Dν1
a+I

ν2
a+u(t) = Iν2−ν1

a+ u(t), if 0 ≤ ν1 ≤ ν2; (8)

Dα
a+I

α
a+u(t) = u(t);

and

Iαa+D
α
a+u(t) = u(t) +

n∑
i=1

ci(t− a)α−n+(i−1), (9)

where ci ∈ R for 1 ≤ i ≤ n. The property (7) is referred to as the semigroup property
for the fractional integral.
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It follows from Definition 2.1 and 2.2 that

Iν2
a+(t− a)ν1 =

Γ(ν1 + 1)

Γ(ν2 + ν1 + 1)
(t− a)ν2+ν1 , ν1 > −1, ν2 ≥ 0,

and

Dν2
a+(t− a)ν1 =

Γ(ν1 + 1)

Γ(ν1 + 1− ν2)
(t− a)ν1−ν2 , ν1 > −1, ν2 ≥ 0, (10)

where it is assumed that ν2 − ν1 is not a positive integer. If ν2 − ν1 is a positive integer,
then the right-hand side of (10) vanishes. To see this, appeal to the convention that

1
Γ(ν1+1−ν2)

= 0 if ν2 − ν1 is a positive integer.

3 Main Results

We now consider the fractional boundary value problem consisting of the differential
equation

Dα
a+u+ q(t)u = 0, t ∈ [a, b], (11)

together with the boundary conditions

u(a) = 0, Dβ
a+u(b) = 0, (12)

where α ∈ (1, 2], β ∈ [0, α − 1], Dα
a+ , D

β
a+ are Riemann-Liouville derivatives of order α

and β, respectively, and q ∈ C([a, b],R). First, we present Green’s function corresponding
to the BVP (11), (12).

Lemma 3.1 Let h ∈ C([a, b],R), α ∈ (1, 2], and β ∈ [0, α − 1]. Then the unique
solution of the BVP consisting of the equation

Dα
a+u+ h(t) = 0, t ∈ [a, b], (13)

and the BCs (12) is

u(t) =

∫ b

a

G(t, s)h(s)ds, t ∈ [a, b],

where

G(t, s) =
1

Γ(α)


(t−a)α−1(b−s)α−1−β

(b−a)α−1−β − (t− s)α−1, a ≤ s ≤ t ≤ b,

(t−a)α−1(b−s)α−1−β

(b−a)α−1−β , a ≤ t ≤ s ≤ b.

(14)

Proof. We use (9) to reduce (13) to an equivalent integral equation

u(t) = −Iαa+h(t) + c1(t− a)α−2 + c2(t− a)α−1.

The BC u(a) = 0 implies c1 = 0, and hence

u(t) = −Iαa+h(t) + c2(t− a)α−1.

Note that 0 ≤ β < α. Applying Dβ
a+ on both sides and using (8) and (10), we have

Dβ
a+u(t) = −Dβ

a+

(
Iαa+h(t) + c2(t− a)α−1

)
= −Iα−β

a+ h(t) + c2
Γ(α)

Γ(α− β)
(t− a)α−1−β .
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Since Dβ
a+u(b) = 0, it is easy to see that

c2 =
1

Γ(α)(b− a)α−1−β

∫ b

a

(b− s)α−1−βh(s)ds.

Therefore, the unique solution of problem (13), (12) is

u(t) =
−1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds+
(t− a)α−1

Γ(α)(b− a)α−1−β

∫ b

a

(b− s)α−1h(s)ds

=
1

Γ(α)

∫ t

a

{
(t− a)α−1(b− s)α−1

(b− a)α−1−β
− (t− s)α−1

}
h(s)ds

+
1

Γ(α)

∫ b

t

(t− a)α−1(b− s)α−1

(b− a)α−1−β
h(s)ds

=

∫ b

a

G(t, s)h(s)ds.

The proof is complete.

Lemma 3.2 Green’s function G(t, s) given in (14) satisfies the following properties.

1. G(t, s) ≥ 0 for (t, s) ∈ [a, b]× [a, b].

2. maxt∈[a,b] G(t, s) ≤ G(s, s) for s ∈ [a, b].

3. G(s, s) has a unique maximum at s∗ = (α−1)b+(α−1−β)a
2α−2−β given by

G(s∗, s∗) =
1

Γ(α)

(
(b− a)(α− 1)

2α− 2− β

)α−1 (
α− 1− β

2α− 2− β

)α−1−β

. (15)

Proof. Define

g1(t, s) =
(t− a)α−1(b− s)α−1−β

(b− a)α−1−β
− (t− s)α−1,

for a ≤ s ≤ t ≤ b and

g2(t, s) =
(t− a)α−1(b− s)α−1−β

(b− a)α−1−β
,

for a ≤ t ≤ s ≤ b. First, we point out that

b− s

b− a
− t− s

t− a
=

(b− s)(t− a)− (t− s)(b− a)

(b− a)(t− a)
=

(b− t)(s− a)

(b− a)(t− a)
≥ 0,

or
b− s

b− a
≥ t− s

t− a
,

for a ≤ s ≤ t ≤ b.
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Now,

g1(t, s) =
(t− a)α−1(b− s)α−1−β

(b− a)α−1−β
− (t− s)α−1

= (t− a)α−1

(
b− s

b− a

)α−1−β

− (t− a)α−1

(
t− s

t− a

)α−1

= (t− a)α−1

[(
b− s

b− a

)α−1−β

−
(
t− s

t− a

)α−1
]
.

Since 0 ≤ b− s

b− a
≤ 1, 0 ≤ t− s

t− a
≤ 1, and α− 1− β ≤ α− 1, one has(

b− s

b− a

)α−1−β

≥
(
b− s

b− a

)α−1

≥
(
t− s

t− a

)α−1

.

So g1(t, s) ≥ 0 for a ≤ s ≤ t ≤ b.
Now

∂

∂t
g1(t, s) = (α− 1)

(t− a)α−2(b− s)α−1−β

(b− a)α−1
− (α− 1)(t− s)α−2

= (α− 1)(t− a)α−2

(
b− s

b− a

)α−1−β

− (α− 1)(t− a)α−2

(
t− s

t− a

)α−2

= (α− 1)(t− a)α−2

[(
b− s

b− a

)α−1−β

−
(
t− s

t− a

)α−2
]
.

Since 0 ≤ b− s

b− a
≤ 1, 0 ≤ t− s

t− a
≤ 1, α− 1− β ≥ α− 2, and α− 2 ≤ 0, we have(

b− s

b− a

)α−1−β

≤
(
b− s

b− a

)α−2

≤
(
t− s

t− a

)α−2

.

So ∂
∂tg1(t, s) ≤ 0 for a ≤ s ≤ t ≤ b. Thus g1(t, s) is a decreasing function with respect to

t, implying g1(t, s) ≤ g1(s, s) for all t ∈ [s, b].
It is easy to see that g2(t, s) ≥ 0. Moreover,

∂

∂t
g2(t, s) = (α− 1)

(t− a)α−2(b− s)α−1−β

(b− a)α−1−β
≥ 0,

for a ≤ t ≤ s ≤ b. So g2(t, s) is increasing with respect to t implying g2(t, s) ≤ g2(s, s)
for all t ∈ [a, s]. Thus (1) and (2) hold.

To prove (3), we define

g(s) := G(s, s) =
(s− a)α−1(b− s)α−1−β

(b− a)α−1−βΓ(α)
. (16)

Then g(a) = g(b) = 0 and g(s) > 0 on (a, b). By Rolle’s theorem, there exists s∗ ∈ (a, b)
such that g(s∗) = maxs∈[a,b] g(s), i.e., g

′(s∗) = 0. Note that

g′(s) =
(α− 1)(s− a)α−2(b− s)α−1−β − (α− 1− β)(s− a)α−1(b− s)α−2

(b− a)α−1−βΓ(α)

=
(s− a)α−2(b− s)α−2−β [(α− 1)(b− s)− (α− 1− β)(s− a)]

(b− a)α−1−βΓ(α)
.
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Hence g′(s∗) = 0 when

s∗ =
(α− 1)b+ (α− 1− β)a

2α− 2− β
.

Notice

s∗ >
(α− 1)a+ (α− 1− β)a

2α− 2− β
= a,

and

s∗ <
(α− 1)b+ (α− 1− β)a

2α− 2− β
<

(α− 1)b+ (α− 1− β)b

2α− 2− β
= b,

so s∗ is well-defined. Replacing s∗ in (16) we see that (15) holds.
We remark here that if β ∈ (α − 1, 1], then properties (1) and (2) from Lemma 3.2

still hold. However, the function g(s) defined in the proof has a singularity at b when
β > α− 1. Hence G(s, s) does not have a maximum value, which is not surprising, since
in this case, G(s, s) is only defined for s ∈ [a, b).

Lemma 3.3 Let G(t, s) be given by (14). Then∫ b

a

G(t, s)ds ≤ (α− 1)α−1

(α− β)αΓ(α+ 1)
(b− a)α. (17)

Proof. When using the expression of G(t, s) in (14), it follows that∫ b

a

G(t, s)ds =
1

Γ(α)

[
(t− a)α−1

(b− a)α−1−β

∫ b

a

(b− s)α−1−βds−
∫ t

a

(t− s)α−1ds

]

=
1

Γ(α)

[
(t− a)α−1

(b− a)α−1−β

(b− a)α−β

α− β
− (t− a)α

α

]
=

(t− a)α−1

Γ(α+ 1)

[
α

α− β
(b− a)− (t− a)

]
. (18)

We denote

f(t) :=
(t− a)α−1

Γ(α+ 1)

[
α

α− β
(b− a)− (t− a)

]
, t ∈ [a, b]. (19)

Let c := a+ α
α−β (b−a). Clearly, f(a) = f(c) = 0, and f(t) > 0 on (a, c). Since α−β ≤ α,

we have b ≤ c with the equality holding only when β = 0. By Rolle’s theorem, there
exists t∗ ∈ (a, c) such that f(t∗) = maxt∈[a,c] f(t), i.e., f

′(t∗) = 0. Note that

f ′(t) =
(t− a)α−2

Γ(α)

[
α− 1

α− β
(b− a)− (t− a)

]
. (20)

It is easy to see that f ′(t) = 0 only at t = t∗ = a + α−1
α−β (b − a). Again, α − 1 ≤ α − β

implies t∗ ≤ b with the equality holding only when β = 1. Hence f(t) has a unique
maximum at t∗ ∈ [a, b] ⊆ [a, c] given by

max
t∈[a,c]

f(t) = max
t∈[a,b]

f(t) = f(t∗) =
(α− 1)α−1

(α− β)αΓ(α+ 1)
(b− a)α.

The proof is complete.
Now we present a Lyapunov-type inequality for (11), (12).
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Theorem 3.1 Assume (11) has a nontrivial solution u satisfying (12) and u(t) ̸= 0
on (a, b). Then∫ b

a

q+(t)dt > Γ(α)

(
2α− 2− β

(b− a)(α− 1)

)α−1 (
2α− 2− β

α− 1− β

)α−1−β

. (21)

Proof. Let u be a solution of (11), (12). Then u satisfies

u(t) =

∫ b

a

G(t, s)q(s)u(s)ds.

Without loss of generality, assume u(t) > 0 on (a, b). Define m = maxt∈[a,b] u(t). Using
Lemma 3.2 and the facts that 0 ≤ u(t) ≤ m, u(t) ̸≡ m on [a, b], and q(t) ≤ q+(t), we
have

m < m max
t∈[a,b]

∫ b

a

G(t, s)q+(s)ds ≤ m

∫ b

a

G(s, s)q+(s)ds.

Canceling m from both sides and using Lemma 3.2 again, we see that

1 <
1

Γ(α)

(
(b− a)(α− 1)

2α− 2− β

)α−1 (
α− 1− β

2α− 2− β

)α−1−β ∫ b

a

q+(t)dt,

which gives the desired result.

Remark 3.1 Notice when β = 0, we obtain the improved form (5) which was the
result presented by Ferreira in [17] and later was noted by Dhar and Kong in [10]. Also,
by setting α = 2 and β = 0, we obtain the classical Lyapunov inequality.

4 Application to Boundary Value Problems

In the last section, we apply the obtained results in Section 3 to study the nonexistence,
uniqueness, and existence-uniqueness of solutions of related fractional-order BVPs. First,
we provide a sufficient condition for the nonexistence of a nontrivial solution of the BVP
(11), (12).

Theorem 4.1 Assume∫ b

a

q+(t)dt ≤ Γ(α)

(
2α− 2− β

(b− a)(α− 1)

)α−1 (
2α− 2− β

α− 1− β

)α−1−β

. (22)

Then (11), (12) has no nontrivial solutions.

Proof. Assume the contrary, i.e., BVP (11), (12) has a nontrivial solution u. Then
by Theorem 3.1, (21) holds. This contradicts assumption (22).

Now we consider a nonlinear fractional BVP consisting of the equation

Dα
a+u+ f(t, u) = 0, (23)

together with the BCs (12), where α ∈ (1, 2], β ∈ [0, α− 1]. Here we present a criterion
for the existence of a unique solution for BVP (23), (12).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (2) (2022) 133–143 141

Theorem 4.2 Assume f : [a, b] × R → R is continuous and satisfies a uniform
Lipschitz condition with respect to the second variable on [a, b]×R with Lipschitz constant
K; that is

|f(t, u1)− f(t, u2)| ≤ K|u1 − u2|, (24)

for all (t, u1), (t, u2) ∈ [a, b]× R. If

b− a <

[
(α− β)αΓ(α+ 1)

K(α− 1)α−1

] 1
α

, (25)

then BVP (23), (12) has a unique solution on [a, b].

Proof. Let B be the Banach space of continuous functions defined on [a, b] with the
norm

||u|| = max
t∈[a.b]

|u(t)|.

Now u(t) is a solution of BVP (23) if and only if u(t) satisfies the integral equation

u(t) =

∫ b

a

G(t, s)f(s, u(s))ds.

Define the operator T : B → B by

Tu(t) =

∫ b

a

G(t, s)f(s, u(s))ds.

Then T is completely continuous. We claim that T has a unique fixed point in B. In
fact, for any u1, u2 ∈ B, we have

|Tu1(t)− Tu2(t)| ≤
∫ b

a

|G(t, s)||f(s, u1(s)− f(s, u2(s)))|ds.

Since G(t, s) ≥ 0 on [a, b]× [a, b] and f satisfies (24), we have

|Tu1(t)− Tu2(t)| ≤ K

∫ b

a

G(t, s)|u1(s)− u2(s)|ds

≤ K||u1 − u2||
∫ b

a

G(t, s)ds. (26)

From Lemma 3.3, it follows that

|Tu1(t)− Tu2(t)| ≤ K
(α− 1)α−1

(α− β)αΓ(α+ 1)
(b− a)α||u1 − u2|| < ||u1 − u2||,

where we have used (25). Hence T is a contraction mapping on B. By the contraction
mapping theorem, we obtain the desired result.

Remark 4.1 It is easy to see that the results in Theorem 4.2 can be extended to a
nonlinear fractional BVP consisting of the equation (23) and the following nonhomoge-
neous BC:

u(a) = 0, Dβ
a+u(b) = k,

where k ∈ R. We leave the details to the interested reader.
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5 Conclusion

In this paper, we obtained a Lyapunov-type inequality for a fractional differential equa-
tion with a fractional boundary condition. The inequality obtained is an improvement
and a generalization of inequalities that have been obtained in the past. The inequality
was applied to show the existence and nonexistence of solutions to a nonlinear fractional
boundary value problem.
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Abstract: This paper studied the performance of a new class of evolutionary algo-
rithms called the chaos optimization algorithms (COA). It was originally proposed
to solve nonlinear optimization problems with bounded variables by Caponetto et
al. [1, 2]. Different chaotic mappings have been considered, combined with several
working strategies. We propose four different 2-D chaotic maps in the optimization
algorithm using a two-stage chaos optimization method and compare them. This
study surveys and compares the chaotic optimization algorithms in the literature.
Furthermore, a two-phase strategy is a technique commonly used in the COA to fine
tune the solution and help escaping from local optimums. The performance study is
conducted to understand their impact on the chaos optimization algorithm.

Keywords: chaos; global optimization; chaotic map; chaos optimization algorithm.
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1 Introduction

The existence of chaotic systems is an accepted fact of science [3]. Chaos is a kind of
characteristics of nonlinear systems and chaos theory studies the behavior of systems
that follow deterministic laws but appear random and unpredictable. This theory brings
many qualitative and quantitative tools, namely, ergodicity, entropy, expansivity, and
sensitive dependence on initial conditions. Theory of chaos, since its evolution, has found
application in various important areas such as engineering, medicine, biology, economy
and many others. The application of the Chaotic Search strategy in engineering had
its peak of popularity over the last few years [3–8]. This approach configured as an
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attractive option for global optimization. One of the modern optimization algorithms is
the chaos-based optimization [9, 10].

The chaos optimization search as a novel method of global optimization has attracted
much attention in nonlinear fields. The chaos optimization algorithm (COA) is an ef-
fective way to solve the optimization problem of a nonlinear multimodal function with
boundary constraint. Due to the nonrepetition of chaos, it can carry out overall searches
at higher speeds than stochastic searches, which depend on probabilities. The applica-
tion of chaotic sequences instead of random sequences in the COA is a powerful strategy
to improve the COA’s performance in preventing premature convergence to local min-
ima [11,14].

In the present paper, a robust chaos optimization algorithm is applied to efficiently
solve the problem of optimizing a nonlinear multimodal function. In most of the chaos
optimization algorithms, chaos variables are generated by logistic mapping [15, 16], but
the uneven distribution will weaken the ergodicity of chaos variables. To overcome this
problem, we select 5 different two-dimensional maps and replace the chaos variable gen-
erator in one of the existing COAs [17–20] with them. The remainder of this paper is
organized as follows. Section 2 is made for Chaotic maps. Then in Section 3, the chaos
optimization algorithm is introduced, experiments and simulation results are shown in
Section 4, and finally, the conclusion is presented in Section 5.

2 Two-Dimensional Maps

Non-linear systems with complex dynamics have lately been the subject of intense re-
search and exploration, giving birth to chaos theory. Chaotic systems are deterministic
systems that exhibit irregular behavior and a sensitive dependence on the initial con-
ditions. Chaos theory studies the behavior of systems that follow deterministic laws
but appear random and unpredictable, i.e., dynamical systems. Chaotic variables can
go through all states in certain ranges according to their own regularity without repeti-
tion [3, 8].

A chaotic map is a map that exhibits some type of chaotic behavior. In this work,
we applied five different chaotic maps that are common in the literature, namely, the
Hénon map, Lozi map, Duffing map, Gingerbreadman map, and Zeraoulia map. The
mathematical form of a chaotic two-dimensional map, which maps the unit square I × I,
where I = [0, 1], onto itself in a one-to-one manner, is chosen.

Later on, we will use these maps in the chaotic searches.

2.1 The Hénon map

The Hénon map is a discrete-time dynamical system [21]. It is one of the most studied
examples of dynamical systems that exhibit chaotic behaviour. The Hénon map takes a
point (xn, yn) in the plane and maps it to a new point{

y1(k) = 1− a(y1(k − 1))2 + by(k − 1),

y(k) = y1(k − 1),
(1)

where k is the iteration number.
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Figure 1: A chaotic Hénon attractor obtained for a = 1.4 and b = 0.3.

2.2 The Lozi map

Lozi map [22, 23] is a piecewise linear simplification of the Hénon map and it admits
strange attractors. It is given by{

y1(k) = 1− a|(y1(k − 1))|+ by(k − 1),

y(k) = y1(k − 1).
(2)

 

Figure 2: A chaotic Lozi attractor obtained for a = 1.7 and b = 0.5.

2.3 The Duffing map

The Duffing map (also called the ’Holmes map’) [24] is a discrete-time dynamical system.
It is an example of a dynamical system that exhibits chaotic behavior. The Duffing map
takes a point (xn, yn) in the plane and maps it to a new point given by{

y1(k) = y(k − 1),

y(k) = −by1(k − 1) + y1(k − 1)− y(k − 1)3.
(3)
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The map depends on two constants a and b. These are usually set to a = 2.75 and
b = 0.2 to produce chaotic behaviour.

It is a discrete version of the Duffing equation.

 

Figure 3: A chaotic Duffing attractor obtained for a = 2.75 and b = 0.2.

2.4 The Gingerbreadman map

In dynamical systems theory, the Gingerbreadman map [25] is a chaotic two-dimensional
map. It is given by the piecewise linear transformation{

y1(k) = 1− a(y1(k − 1))2 + by(k − 1),

y(k) = y1(k − 1).
(4)

 

Figure 4: A chaotic Gingerbreadman attractor obtained for a = 1 and b = 1.
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2.5 The Zeraoulia map

In dynamical systems theory, the Zeraoulia map [26] is a chaotic two-dimensional map.
It is given by the piecewise linear transformation{

y1(k) = 1− asin(y1(k − 1)) + y(k − 1),

y(k) = by1(k − 1).
(5)

The choice of the term sin(x) has an important role in that it makes the solutions
bounded for the values of b such that |b| ≤ 1, and all values of a, while they are unbounded
for |b| > 1. The chosen parameter values are a = 4 and b = 0.9 as suggested in [26]. For
these values the observed attractor shown in Figure 5.

 

Figure 5: A chaotic Zraoulia attractor obtained for a = 4 and b = 0.9.

3 Chaos Optimization Search

The study of chaos has been rapidly developed and attracted a great attention due to a
variety of applications in science and technology, e.g., chaos-based global optimization.
The chaos optimization algorithm (COA) is one of the hot topics in recent years. The
COA is an effective method to solve the optimization problem of a nonlinear multimodal
function with boundary constraint. Many chaotic strategies in the COA generally include
two major stages [17–19]: the global phase and the local phase. Firstly, during the global
phase, chaotic points are drawn from the domain of searches [L,U ] according to a certain
2-D chaotic model. Then, the objective function is evaluated at these points and the point
with the minimum objective function as the current optimum is chosen. Secondly, during
the local phase, the current optimum is assumed to be close to the global optimum after
certain iterations and it is viewed as the center with a little chaotic perturbation and the
global optimum is obtained through the fine search.

Consider the following optimization problem on the minimum of functions. If the
target function f(xi) is continuous and differentiable, the object problem to be optimized
is find xi to minimize f(xi);xi ∈ [Li, Ui]; i = 1, 2, ..., n. The main procedures of this
algorithm are shown as follows:

Input :
Mg : maximum number of iterations of the global search.
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Ml : maximum number of iterations of the local search.
Ml +Mg : stopping criterion of the chaotic optimization method in iterations
λ : step size in the chaotic local search
Output :
X∗ : best solution from the current run of the chaotic search.
f∗ : best objective function (minimization problem).

• Step 1 : Initialization of the numbersMg,Ml of steps of the chaotic search and ini-
tialization of the parameters λ and initial conditions. Set k = 1, y(0), y1(0).a = 1.4
and b = 0.3 of the Henon map, a = 1.7 and b = 0.5 of the Lozi map, a = 2.75 and
b = 0.2 of the Duffing map, a = 4 and b = 0.9 of the Zraoulia map. Set the initial
best objective function f∗ = infini.

• Step 2 : algorithm of the chaotic global search:

Map the chaotic variables zi(k) =
(xi(k)−Li)
(Ui−Li)

into the optimization variables xi(k)

by the following equation in the chaotic map function:

xi(k) = Li + (Ui − Li)zi(k),

where i = 1, 2, ..., n.

Equation xi(k) = Li + (Ui − Li)zi(k) is suitable for most chaotic maps. It is
determined by the range of the chaotic sequences generated by each chaotic map
to select the equation. As the chaotic sequences generated by chaotic maps is the
interval (0, 1), equation xi(k) = Li+(Ui−Li)zi(k) can map (0, 1) into the interval
(L,U) for optimization variables.

• Step 3 : compute the function value f(x(k)). If f(x(k)) < f∗, then f∗ = f(x(k))
and the optimal solution x∗ = x(k).

• Step 4 : utilize a chaotic map function to generate next chaotic variables zi(k+1).

• Step 5 : k = k + 1. If k ≤ Mg, turn to step 2, otherwise terminate the first stage
search.

• Step 6 : algorithm of the chaotic local search:
If r < 0.5, then (where r is a uniformly distributed random)
Map the chaotic variables zi(k) into the optimization variables xi(k) by one of the
following equations of the chaotic map function:

xi(k + 1) = x∗
i + λ.zi(k).|Ui − L∗

i |,

xi(k + 1) = x∗
i − λ.zi(k).|Ui − L∗

i |,

where i = 1, 2, . . . , n.
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• Step 7 : compute the function value f(x(k1)), f(x(k2)). Take the
minimum value of the two as f(x(k)). If f(x(k1)) < f(x(k2)), then
x(k) = x(k1), f(x(k)) = f(x(k1)); otherwise x(k) = x(k2), f(x(k)) = f(x(k2)).
Compare f(x(k1)) with the optimal value, so far f∗. If f(x(k)) < f∗, then
f∗ = f(x(k)) and the optimal solution x∗ = x(k).

• Step 8 : utilize a chaotic map function to generate next chaotic variables zi(k+1).

• Step 9 : k = k+1. If k ≤ Mg+Ml, turn to step 6, otherwise terminate the second
stage search.

4 Simulation Results

The proposed algorithm was tested on two benchmark functions, see Table 1, Figures 6,
7 . All the programs were run on a 2 GHz Pentium IV processor with 2 GB of random
access memory in the MATLAB. The algorithm used for comparison is a two-stage chaotic
optimization algorithm with five chaotic maps. The algorithm was executed with 50 runs;
Mg=1000, Ml=400, and different values for the step size λ (such λ = 0.01 , λ = 0.001
and λ ∈]0.001, 0.01[). Tables 2,3,4 show the best solution, the mean of the solution and
standard deviation. From Tables 2, 3, 4, all of the best solutions are exactly equal to the
exact solution of the function 2. From Tables 3, 4, the Hénon map and Zeraoulia map
have better solutions for λ = 0.001 and λ ∈]0.001, 0.01[ of function 1 than other maps
according to the best solution. The Hénon map, Lozi map and Gingerbreadman map
have better solutions for λ = 0.001 and λ ∈]0.001, 0.01[ of function 2 than other maps
according to the best solution.

Function
name

Expression bounds Opt Modality

The
Schaffer

F1(x1, x2) = −0.5
(sin

√
(x2

1+x2
2)

2
)−0.5)

(1+0.001(x2
1+x2

2)
2 [−100, 100] −1 Multimodal

The Ea-
som

F2(x1, x2) = cos(x1) cos(x2) exp(−(x1− [-20,20] −1 unimodal

π)2 − (x2 − π)2)

Table 1: Properties of benchmark functions.
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Figure 6: Plot of F1.

Figure 7: Plot of F2.

λ = 0.01
Fun- Maps Best fit (Xbest,Ybest) Mean fit standard fit

ction
Hénon -0.9897 (3.1331,0.4282) -0.9897 1.0e-15×0.1121
Lozi -0.8304 (5.7743,10.8775) -0.8304 1.0e-14×0.1009

F1 Duffing -0.9398 (0.4017,-6.1062) -0.9398 1.0e-14×0.0224
Gingerbreadman -0.8217 (-11.7448,-11.7448) -0.8217 0.0000

Zraoulia -0.9870 (3.1432,-0.5825) -0.9870 1.0e-15×0.6729
Hénon -0.9961 (3.1739 ,3.1812) -09960 1.0e-03×0.0452
Lozi -0.9859 (3.0529,3.1054) -0.9818 0.0021

F2 Duffing -0.9963 (3.1819,3.1128) -0.9961 0.0002
Gingerbreadman -0.9918 (3.0893,3.0893) -0.9918 1.0e-15×0.4486

zraoulia -0.9961 (3.1006,3.1736) -0.9960 1.0e-03×0.0718

Table 2: COA based five chaotic saerches so that Mg=1000, Ml=400, for 50 run.
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λ = 0.001
Fun- Maps Best fit (Xbest,Ybest) Mean fit standard fit

ction
Hénon -0.9899 (3.1432,0.4698) -0.9899 1.0e-14×0.0336
Lozi -0.8727 (5.4511 ,11.0601) -08726 0.0001

F1 Duffing -0.9628 (0.2366,-6.2706) -0.9627 0.0001
Gingerbreadman -0.8218 (-11.4213,-11.4217) -0.8214 0.0004

Zeraoulia -0.9903 (3.0870,-0.6231) -0.9902 0.0001
Hénon -1 (3.0706,3.0244) -0.9983 0.0053
Lozi -0.9999 (3.1335,3.1428) -0.9999 0.001

F2 Duffing -1 (3.1393,3.1363) -1 0.0000
Gingerbreadman -1 (3.0303,3.030) -0.9971 0.0072

Zeraoulia -1 (3.1421,3.1388) -1 1.0e-0.3×0.0020

Table 3: COA based five chaotic searches so that Mg=1000, Ml=400, for 50 run.

λ ∈]0.01, 0.001[
Fun- Maps Best fit (Xbest,Ybest) Mean fit standard fit

ction
Hénon -0.9899 (3.0829,0.4698) -0.9899 1.0e-14×0.0336
Lozi -0.8727 (5.4511 ,11.0601) -0.8726 0.0001

F1 Duffing -0.9628 (0.2366,-6.2706) -0.9627 0.0001
Gingerbreadman -0.8218 (-11.4213,-11.4217) -0.8214 0.0004

Zeraoulia -0.9903 (3.0870,-0.6231) -0.9902 0.0001
Hénon -1 (3.0706,3.0244) -0.9984 0.0053
Lozi -0.9999 (3.1303,3.1385) -0.9999 0.0001

F2 Duffing -1 (3.1399,3.1363) -1 0.0000
Gingerbreadman -1 (2.9741,2.9741) -0.9931 0.0179

Zeraoulia -1 (3.1424,3.1388) -1 1.0e-03×0.0020

Table 4: COA based five chaotic searches so that Mg=1000,Ml=400, for 50 run.

5 Conclution

In this paper, we have proposed some two-dimensional maps which can be used as search
patterns in the chaos optimization algorithm. We use five chaotc map searches. Our
main conclusion is made by comparing different search patterns based on the numerical
simulation results. We exhibited the generated chaotic sequences and the obtained best
chaotic sequences. Further, this algorithm is tested on a benchmark consisting of two
known nonlinear objective functions.
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Abstract: This work is devoted to the prove of the existence of solutions for a
semilinear retarded differential equation with infinite delay and impulses on time-
scales, which is done by using a version of the Arzela-Ascoli theorem on time-scales,
and applying the Leray-Schauder alternative. After that, the uniqueness of solutions
is proved by applying a version of Gronwall’s inequality for impulsive differential
equations, and finally, the continuation of solutions is proved.
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1 Introduction

In the last decades, the theory of time scales has occupied an important space within
the mathematical community, attracting the interest of many researchers since it is a
powerful tool for continuous and discrete analysis from a unified point of view (see, for
instance, [1–3] and references therein).

The time scales theory has made possible to create models in population dynamics,
physics, chemical technology, economics, control theory, among others, that allow the
study of certain phenomena and processes where the temporal variable can vary both
continuously and discretely (see [3, 6–9] and references therein). However, there exists
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the possibility that these processes and phenomena on time scales could undergo drastic
changes of their states at given times. These alterations in state might be due to certain
external factors and these changes can be represented in mathematical notation in the
form of impulses, which cannot be well described by pure time scales models, there-
fore, the influence of these impulses on the system could be investigated by introducing
impulses effects, see, for instance, [10–12] and references therein.

In these order of ideas, in this paper we are going to study the existence, uniqueness
and continuation of solutions for the following semilinear functional dynamic equation
with infinite delay and impulses:

z∆(t) = A(t)z(t) + f(t, zt), t ∈ [0,∞)T \
∞⋃
k=1

{tk},

z(s) = ϕ(s), s ∈ (−∞, 0]T,

z(t+k ) = z(t−k ) + Jk(tk, z(t
−
k )), k = 1, 2, . . . .

(1)

For system (1), we are assuming that 0 ∈ T, inf T = −∞, supT = ∞ and t + τ ∈ T if
t, τ ∈ T. 0 < t1 < t2 < t3 · · · < tk → +∞, tk ∈ T. Here z(t+k ) and z(t−k ) represent the
right and left limits with respect to the time scale, and, in addition, if tk is right-scattered,
then z(t+k ) = z(tk), whereas if tk is left-scattered, then z(t−k ) = z(tk). Moreover, it is
usually assumed that the solution z should be left-continuous (see [10]), in this case
z(t+k ) = z(tk) + Jk(tk, z(tk)), k = 1, 2, . . . . On the other hand, if tk is right-scattered,
then J(tk, z(tk)) = 0, in other words, it makes sense to consider impulses at right-dense
points only (see [11]). Here A(t) ∈ R(T,Rn×n) and ϕ ∈ Chp, where Chp is called the
phase space that will be defined later. For this type of problems, the phase space for
initial functions plays an important role in the study of both qualitative and quantitative
theory, for more details, in the continuous case and without impulses, we refer to Hale
and Kato [13], Hino et al. [14] and Shin [15]. In the case of functional dynamic equations
on time scales with and without impulses, there are a few works in this directions, we can
cite Benchohra et al. [16] and Li et al. [17]. Particularly in this work we will use a modified
version of the phase space defined in [17] since the initial function ϕ : (−∞, 0]T −→ Rn

has a fixed number of points of discontinuity, where the side limits exist and the function
ϕ is left-continuous at such points. The function zt(θ) = z(t + θ) for θ ∈ (−∞, 0]T
illustrates the history of the state up to the time t, and also remembers much of the
historical past of ϕ, carrying part of the present to the past. f : [0,∞)T × Chp −→ Rn

is an rd-continuous function on t and continuous on Chp, Jk : [0,∞)T × Rn −→ Rn are
rd-continuous on t and continuous on Rn.

The paper is organized as follows. In Section 2, we present a summary on dynamical
systems on time scale, particularly the concept of rd-continuity, the exponential function,
the variation of constants formula and a generalization of Gronwall’s inequality to be
applied to impulsive differential equations. In Section 3, we define the phase space for our
problem, which satisfies the Hale and Kato Axiomatic Theory for Retarded Differential
Equations with Infinite Delay. Section 4 is devoted to the proof of our main results,
the existence and the uniqueness of solutions, which is done in two theorems, one for
the existence using the Arzela-Ascoli theorem on time-scale (see [18]) and applying the
Leray-Shauder alternative; and the other theorem for the uniqueness of solutions. Section
5 is dedicated to the study of the continuation of the solutions of our system, introducing
the concept of maximal interval of existence of solutions on time scale and applying the
generalization of Gronwall’s inequality. Section 6 is devoted to an example, where we
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can apply our results. Finally, Section 7 presents the conclusion and final remark, where
we formulate future problems to investigate.

2 Preliminaries

In this section, we will make a brief introduction to the calculus on time scales, especially
to clarify the notations and definitions, for a better understanding by the reader. For
more details about time scales theory, we recommend the excellent monograph [3].

The time scales theory was introduced by Stefan Hilger (see [4]), and defined a time
scale as any arbitrary nonempty closed subset of R, this set is denoted by T. For every
t ∈ T, the forward and backward jump operators σ, ρ : T −→ T are defined, respectively,
as σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}. A point t ∈ T is
said to be right-dense if σ(t) = t, right-scattered if σ(t) > t, left-dense if ρ(t) = t, left-
scattered if ρ(t) < t, isolated if ρ(t) < t < σ(t). The function µ : T −→ [0,∞) defined
by µ(t) := σ(t) − t is known as the graininess function. It is assumed that T has the
topology inherited from standard topology on the real numbers. The time scale interval
[a, b]T is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b}, with a, b ∈ T, and is similarly defined
by open intervals and open neighborhoods.

Definition 2.1 [3] A function f : T −→ Rn is said to be right-dense continuous or
just rd-continuous if f is continuous at every right-dense point t ∈ T and lim

s→t−
f(s) exists

(finite) for every left-dense point t ∈ T.

The class of all rd-continuous functions f : T −→ Rn is denoted by Crd(T,Rn). If
f : T → Rn is a function, then we define the function f ◦ σ : T → Rn by fσ(t) = f(σ(t))
for all t ∈ T, i.e., fσ = f ◦ σ. We define the set Tκ by Tκ = T \ (ρ(supT), supT] if T has
a left-scattered maximum, and Tκ = T otherwise.

Definition 2.2 [3] A function f : T −→ Rn is called delta differentiable (or simply
∆-differentiable) at t ∈ Tκ provided there exists f∆(t) with the property that given
ε > 0, there is a neighborhood U = (t− δ, t+ δ)T for some δ > 0 such that∥∥fσ(t)− f(s)− f∆(t)(σ(t)− s)

∥∥ ≤ |σ(t)− s)| , for all s ∈ U.

In this case, f∆(t) will be call the ∆-derivative of f in t.

If f is ∆-differentiable at t ∈ Tκ, then it is easy to show that (see [3], Thm. 1.16)

f∆(t) =


fσ(t)− f(t)

σ(t)− t
if σ(t) > t,

lim
s→t

f(t)− f(s)

t− s
if σ(t) = t.

Definition 2.3 [3] A function F : T −→ Rn is called an antiderivative of f : T −→
Rn if F∆(t) = f(t) for t ∈ Tκ. The Cauchy integral is defined by∫ t

s

f(τ)∆τ = F (t)− F (s), t, s ∈ T,

where F is an antiderivative of f .
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A function p : T −→ R is said to be regressive if 1 + µ(t)p(t) ̸= 0, t ∈ T, and positively
regressive if 1 + µ(t)p(t) > 0, t ∈ T. We will denote by R the set of all regressive and
rd-continuous functions and by R+ the set of all positive regressive and rd-continuous
functions.

Definition 2.4 [3] If p ∈ R, then the generalized exponential function is defined by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
,

where

ξµ(z) :=

{ 1
µLog(1 + µz) if µ > 0,

z, if µ = 0.

Here z ∈ Cµ := {z ∈ C : z ̸= 1/µ} and Logz = log |z|+ i arg z, −π < arg z ≤ π.
Let A be an n× n-matrix valued function on T.

Definition 2.5 [3] We say that A is rd-continuous on T if each entry of A is rd-
continuous on T, and the class of all such rd-continuous n × n matrix-valued functions
on T is denoted by Crd(T,Rn×n). A is called regressive (with respect to T) provided
I + µ(t)A(t) is invertible for all t ∈ Tκ, and the class of all such regressive and rd-
continuous functions is denoted by R(T,Rn×n).

Let t0 ∈ T and A be an n× n regressive matrix-valued function defined on T. Then
the unique solution of the initial value problem

X∆ = A(t)X, X(t0) = I,

is called the matrix exponential function and it is denoted by eA(t, t0). The matrix
exponential function has the following properties.

Theorem 2.1 ([3], Thm. 5.24) Let A ∈ R(T,Rn×n) and suppose that f : T −→ Rn

is rd-continuous. Let t0 ∈ T and x0 ∈ Rn. Then the initial value problem{
x∆(t) = A(t)x(t) + f(t),

x(t0) = x0
(2)

has a unique solution x : T −→ Rn. Moreover, this solution is given by

x(t) = eA(t, t0)x
0 +

∫ t

t0

eA(t, σ(s))f(s)∆s.

We will need the following fixed theorem to prove the existence of solutions of system
(1).

Theorem 2.2 (Leray-Schauder alternative ([5], Thm. 5.4)) Let D be a closed
convex subset of a Banach space Z with 0 ∈ D . Let P : D → D be a completely
continuous operator. Then either P has a fixed point in D or the set

{z ∈ D : z = λP(z), 0 < λ < 1}

is unbounded.
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Following Corollary 6.7 in [3] and Theorem 1.5.1 in [10], it is possible to prove the
following Gronwall’s inequality with impulses on time scales.

Theorem 2.3 (Gronwall’s inequality) Assume that

1. the sequence {tk} satisfies 0 ≤ t0 < t1 < · · · < tk . . . , limk→∞ tk = ∞,

2. u ∈ Crd(T,R) and u is left continuous at tk, k = 1, 2, . . . ,

3. p ∈ R+, p ≥ 0, βk ≥ 0, and α ∈ R.

Then

u(t) ≤ α+

∫ t

t0

p(s)u(s)∆s+
∑

t0<tk<t

βku(tk), t ≥ t0,

implies

u(t) ≤ α
∏

t0<tk<t

(1 + βk)ep(t, t0), t ≥ t0.

3 The Phase Space

In this section, we will introduce an adequate phase space that will permit us to solve
our problem. This phase space is a modification of the phase space presented in [17].

We denote by T− = (−∞, 0]T. Now, we shall define the functions space

PW p = {ϕ : T− −→ Rn :ϕ is rd-continuous except on sk ∈ T−, k = 1, 2, . . . , and such

that ϕ(s−k ), ϕ(s
+
k ) exist with ϕ(s−k ) = ϕ(sk)}.

Following [17], we consider h ∈ Crd(T−,Rn), h(s) > 0 for all s ∈ T− and∫ 0

−∞
h(s)∆s = 1.

Now, we define the following space of functions:

Chp =

{
ϕ ∈ PW p :

∫ 0

−∞
h(s) |ϕ|[s,0]T ∆s < ∞

}
,

where |ϕ|[a,b]T = sup
a≤θ≤b

|ϕ(θ)|, and |·| is a norm in Rn.

It is clear that Chp is a linear subspace of PW p, and for ϕ ∈ Chp,

∥ϕ∥Chp
=

∫ 0

−∞
h(s) |ϕ|[s,0]T ∆s.

Define a norm on Chp. Furthermore, analogously to Theorem 3.1 in [17], the space
(Chp, ∥·∥Chp

) is a Banach space.

Next, for τ ∈ (0,∞)T being arbitrary but fixed, we consider the space

PW hτ = PW hτ ((−∞, τ ]T,Rn)



160 C. DUQUE, H. LEIVA AND A. TRIDANE

given by

PW hτ = {z : (−∞, τ ]T −→ Rn : z
∣∣
T− ∈ Chp and z

∣∣
[0,τ ]T

is rd-continuous except at

tk, k = 1, . . . , p with tp < τ, where z(t+k ), z(t
−
k ) exist and z(t−k ) = z(tk)}.

Note that PW hτ is a Banach space endowed with the norm

∥z∥PW hτ
=
∥∥z∣∣T−

∥∥
Chp

+ |z|[0,τ ]T .

By using Theorem 3.2 in [17], it is possible to show that if ϕ ∈ Chp, then

P1) If z ∈ PW hτ and z0 = ϕ, then for every t ∈ [0, τ ]T we have that

i) zt is in Chp,

ii) zt is rd-continuous with respect to t,

iii) there exists H > 0 such that |z(t)| ≤ H ∥zt∥Chp
.

P2) ∥zt∥Chp
≤ 2 ∥z∥PW hτ

.

4 Main Result

In this section we will show the existence of solutions for system (1). In order to accom-
plish this, we shall assume the following hypotheses:

H1) |f(t, ϕ)− f(t, φ)| ≤ η(t) ∥ϕ− φ∥Chp
, for all ϕ, φ ∈ Chp and t ∈ [0, τ ]T, where η ∈

Crd([0, τ ]T,R+).

H2) |f(t, ϕ)| ≤ ν(t)(1 + ∥ϕ∥Chp
), for ϕ ∈ Chp and t ∈ [0, τ ]T, ν ∈ Crd([0, τ ]T,R+).

H3) |Jk(t, x)− Jk(t, y)| ≤ dk |x− y|, Jk(t, 0) = 0, k = 1, 2, . . . and
∑
k≥1

dk < ∞.

A straightforward computation shows that

Theorem 4.1 z(·) is a solution of system (1) on (−∞, τ ]T if and only if z(·) satisfies

z(t) =


ϕ(t), t ∈ T−,

eA(t, 0)ϕ(0)+

∫ t

0

eA(t, σ(s))f(s, zs)∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk)), t ∈ [0, τ ]T.

(3)

Now, for a given ϕ ∈ Chp being arbitrary but fixed, define ϕ∗ : (−∞, τ ]T −→ Rn by

ϕ∗(t) =

{
ϕ(t), t ∈ T−,

eA(t, 0)ϕ(0), t ∈ [0, τ ]T.
(4)

Note that ϕ∗
0 = ϕ. Let x(t) = z(t)− ϕ∗(t), then x(t) satisfies
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x(t) =


0, t ∈ T−,∫ t

0

eA(t, σ(s))f(s, xs + ϕ∗
s)∆s+

∑
0<tk<t

eA(t, tk)Jk(tk, x(tk)+ϕ∗(tk)), t ∈ [0, τ ]T.

(5)
Finding a solution of system (1) on (−∞, τ ]T is equivalent to solving the integral

equation (5), and this is equivalent to finding a fixed point of the operator

T : PW 0
hτ −→ PW 0

hτ

defined by

(T x)(t) =


0, t ∈ T−,∫ t

0

eA(t, σ(s))f(s, xs+ϕ∗
s)∆s+

∑
0<tk<t

eA(t, tk)Jk(tk, x(tk)+ϕ∗(tk)), t ∈ [0, τ ]T,

(6)

where PW 0
hτ = {x ∈ PW hτ : x0 = 0}, with ∥x∥PW 0

hτ
=
∥∥x∣∣T−

∥∥
Chp

+|x|[0,τ ]T = |x|[0,τ ]T .
Notice that (PW 0

hτ , ∥·∥PW 0
hτ
) is a Banach space.

Theorem 4.2 Suppose that H1), H2) and H3) hold, then system (1) has at least one
solution on (−∞, τ ]T.

Proof. To prove that the operator (6) has a fixed point, we will use the Leray-
Schauder alternative. We denote by M = sup{∥eA(t, ξ)∥ : t, ξ ∈ [0, τ ]T}, η∗ = sup{η(t) :
t ∈ [0, τ ]T} and ν∗ = sup{ν(t) : t ∈ [0, τ ]T}.

First, we will show that in three steps the operator T is completely continuous.

Step 1: T is continuous. If t ∈ [0, τ ]T, then

|T x)(t)− (T y)(t)| ≤
∫ t

0

∥eA(t, σ(s))∥ |f(s, xs + ϕ∗
s)− f(s, ys + ϕ∗

s)|∆s

+
∑

0<tk<t

∥eA(t, s(s))∥ |Jk(tk, x(tk) + ϕ∗(tk))− Jk(tk, y(tk) + ϕ∗(tk))|

≤M

{∫ t

0

|f(s, xs + ϕ∗
s)− f(s, ys + ϕ∗

s)|∆s

+
∑

0<tk<t

|Jk(tk, x(tk) + ϕ∗(tk))− Jk(tk, y(tk) + ϕ∗(tk))|
}

≤M

{∫ t

0

η(s) ∥xs − ys∥Chp
∆s+

p∑
k=1

dk |x(tk)− y(tk)|
}

≤M

{
2η∗

∫ τ

0

∥x− y∥PW hτ
∆s+

p∑
k=1

dk |x(tk)− y(tk)|
}

≤M

{
2η∗τ +

∞∑
k=1

dk

}
∥x− y∥PW 0

hτ
.
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Therefore,

∥T x− T y∥PW 0
hτ

≤ M

{
2η∗τ +

∞∑
k=1

dk

}
∥x− y∥PW 0

hτ
.

So, we have proved that T is locally Lipschitz and therefore it is continuous.

Step 2: T maps bounded sets of PW 0
hτ into bounded sets of PW 0

hτ . It is enough to
show that for any R > 0, there exists r > 0 such that for each x ∈ BR = {x ∈
PW 0

hτ : ∥x∥PW 0
hτ

≤ R}, we have that ∥T x∥PW 0
hτ

≤ r. Indeed,

|(T x)(t)| ≤ M

{∫ t

0

|f(s, xs + ϕ∗
s)|∆s+

p∑
k=1

dk |x(tk) + ϕ∗(tk)|

}

≤M

{∫ t

0

ν(s)(1 + ∥xs + ϕ∗
s∥Chp

)∆s+

p∑
k=1

dk(|x(tk)|+ |ϕ∗(tk)|)

}

≤M

{∫ t

0

ν(s)(1 + ∥xs∥Chp
+ ∥ϕ∗

s∥Chp
)∆s+

p∑
k=1

dk(|x(tk)|+∥eA(tk, 0)∥ |ϕ(0)|)

}

≤M

{∫ τ

0

ν∗(1 + 2 ∥x∥PW 0
hτ

+ 2 ∥ϕ∗∥PW hτ
)∆s+

p∑
k=1

dk(∥x∥PW 0
hτ
+M |ϕ(0)|)

}

≤M

{
ν∗(1 + 2R+ 2 ∥ϕ∗∥PW hτ

)τ + (R+M |ϕ(0)|)
∞∑
k=1

dk

}
= r,

Step 3: T maps bounded sets into equicontinuous sets. Let us consider BR as in step 2.
We shall prove that T (BR) is equicontinuous on the interval [0, τ ]T. If t′, t′′ ∈
[0, τ ]T with t′ < t′′, then

∣∣(T x)(t′′)− (T x)(t′)
∣∣ ≤ ∫ t′

0

∥eA(t′′, σ(s))− eA(t
′, σ(s))∥ |f(s, xs + ϕ∗

s)|∆s

+
∑

0<tk<t′

∥eA(t′′, tk)− eA(t
′, tk)∥ |Jk(tk, x(tk) + ϕ∗(tk))|

+
∑

t′<tk<t′′

∥eA(t′′, tk)∥ |Jk(tk, x(tk) + ϕ∗(tk))|

≤
∫ t′

0

∥eA(t′′, σ(s))− eA(t
′, σ(s))∥ ν(s)(1 + ∥xs + ϕ∗

s∥Chp
)∆s

+

∫ t′′

t′
∥eA(t′′, σ(s))∥ ν(s)(1 + ∥xs + ϕ∗

s∥Chp
)∆s

+
∑

0<tk<t′

dk ∥eA(t′′, tk)− eA(t
′, tk)∥ |x(tk) + ϕ∗(tk)|

+
∑

t′<tk<t′′

dk ∥eA(t′′, tk)∥ |x(tk) + ϕ∗(tk)|
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≤
∫ τ

0

∥eA(t′′, σ(s))−eA(t
′, σ(s))∥ ν(s)(1+ 2∥x∥PW hτ

+2 ∥ϕ∗∥PW hτ
)∆s

+

∫ t′′

t′
∥eA(t′′, σ(s))∥ ν(s)(1 + 2 ∥x∥PW hτ

+ 2 ∥ϕ∗∥PW hτ
)∆s

+
∑

0<tk<t′

dk ∥eA(t′′, tk)− eA(t
′, tk)∥ (∥x∥PW 0

hτ
+M |ϕ(0)|)

+
∑

t′<tk<t′′

dk ∥eA(t′′, tk)∥ (∥x∥PW 0
hτ

+M |ϕ(0)|)

≤ν∗(1 + 2R+ 2 ∥ϕ∗∥PW hτ
)

∫ τ

0

∥eA(t′′, σ(s))− eA(t
′, σ(s))∥∆s

+Mν∗(1 + 2R+ 2 ∥ϕ∗∥PW hτ
) |t′′ − t′|

+ (R+M |ϕ(0)|)
∑

0<tk<t′

dk ∥eA(t′′, tk)− eA(t
′, tk)∥

+M(R+M |ϕ(0)|)
∑

t′<tk<t′′

dk.

Since eA(·, σ(s)) is continuous, we have |(T x)(t′′)− (T x)(t′)| −→ 0 as t′ → t′′, inde-
pendently of x ∈ BR.

Therefore, T (BR) is equicontinuous. From the Arzéla-Ascoli theorem we have that
T (BR) is relatively compact, so T is completely continuous.

Now, let us consider the set

D = {x ∈ PW 0
hτ : x = λT x, 0 < λ < 1}.

If x ∈ D , then for t ∈ [0, τ ]T, we get

|x(t)| =λ

∣∣∣∣∣
∫ t

0

eA(t, σ(s))f(s, xs + ϕ∗
s)∆s+

∑
0<tk<t

eA(t, tk)Jk(tk, x(tk) + ϕ(tk)
∗)

∣∣∣∣∣
≤
∫ t

0

∥eA(t, σ(s))∥ |f(s, xs + ϕ∗
s)|∆s+

∑
0<tk<t

∥eA(t, tk)∥ |Jk(tk, x(tk) + ϕ∗(tk))|

≤Mν∗
∫ t

0

(1 + ∥xs∥Chp
+ ∥ϕ∗

s∥Chp
))∆s+M

∑
0<tk<t

dk(|x(tk)|+ |ϕ(tk)∗|)

≤M

(
ν∗(1 + 2 ∥ϕ∗∥PW hτ

)τ +M |ϕ(0)|
∞∑
k=1

dk

)
+Mν∗

∫ t

0

∥xs∥Chp
∆s

+M
∑

0<tk<t

dk |x(tk)| .

If we put α = M

(
ν∗(1 + 2 ∥ϕ∗∥PW hτ

)τ +M |ϕ(0)|
∞∑
k=1

dk

)
, then

|x(t)| ≤ α+Mν∗
∫ t

0

∥xs∥Chp
∆s+MH

∑
0<tk<t

dk ∥xtk∥Chp
.
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Thus

∥xt∥Chp
≤ α+Mν∗

∫ t

0

∥xs∥Chp
∆s+MH

∑
0<tk<t

dk ∥xtk∥Chp
.

By applying Gronwall’s inequality with impulses on time scales, we get that

∥xt∥Chp
≤ α

∏
0<tk<t

(1 +MHdk)eMν∗(t, 0) ≤ α

p∏
k=1

(1 +MHdk)eMν∗(t, 0).

Then

∥x∥PW 0
hτ

≤ αH

p∏
k=1

(1 +MHdk)eMν∗(t, 0).

Therefore, D is a bounded set, and by the Leray-Schauder alternative, the operator T
has a fixed point.

Theorem 4.3 Under the conditions of Theorem 4.2, the solution of system (1) on
(−∞, τ ]T is unique.

Proof. Let ϕ ∈ Chp, and suppose that for some τ0 ∈ (0, τ ]T, there are two solutions
z and z̃ mapping (−∞, τ0]T −→ Rn with z ̸= z̃. Let

τ∗ = inf{t ∈ (0, τ0)T : z(t) ̸= z̃(t)}.

Then, for −∞ < t < τ∗, z(t) = z̃(t). On the other hand

z(t) = eA(t, 0)ϕ(0) +

∫ t

0

eA(t, σ(s))f(s, zs)∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk))

and

z̃(t) = eA(t, 0)ϕ(0) +

∫ t

0

eA(t, σ(s))f(s, z̃s)∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z̃(tk)).

Therefore,

|z(t)− z̃(t)| ≤
∫ t

τ∗
∥eA(t, σ(s))∥ |f(s, zs)− f(s, z̃s)|∆s

+
∑

τ∗<tk<t

∥eA(t, tk)∥ |Jk(tk, z(tk))− Jk(tk, z̃(tk))|

≤
∫ t

τ∗
Mη(s) ∥zs − z̃s∥Chp

∆s+
∑

τ∗<tk<t

Mdk |z(tk)− z̃(tk)|

≤ε+

∫ t

τ∗
Mη∗ ∥zs − z̃s∥Chp

∆s+
∑

τ∗<tk<t

MdkH ∥ztk − z̃tk∥Chp
,

for ε > 0 being arbitrary. So,

∥zt − z̃t∥Chp
≤ ε+

∫ t

τ∗
Mη∗ ∥zs − z̃s∥Chp

∆s+
∑

τ∗<tk<t

MdkH ∥ztk − z̃tk∥Chp
.
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By using Gronwall’s inequality, we get that

∥zt − z̃t∥Chp
≤ ε

∏
τ∗<tk<t

(1 +MHdk)eMη∗(t, τ∗) ≤ ε
∏

τ∗<tk<τ

(1 +MHdk)eMη∗(τ, τ∗).

Therefore,

|z(t)− z̃(t)| ≤ εH
∏

τ∗<tk<τ

(1 +MHdk)eMη∗(τ, τ∗).

Since ε is arbitrary, one has |z(t)− z̃(t)| = 0 for t ∈ (τ∗, τ)T, contradicting the
definition of τ∗.

5 Continuation of Solutions

In this section, we will show that z(t) is defined on (−∞,∞)T.

Definition 5.1 We shall say that (−∞, τ)T is a maximal interval of existence of the
solution z(·) of system (1) if there is no solution of (1) on (−∞, τ∗)T with τ∗ > τ .

Theorem 5.1 Suppose that the conditions of existence and uniqueness hold. If z is
a solution of problem (1) on (−∞, τ)T and τ is maximal, then either τ = +∞ or z(t) is
not bounded in any neighborhood of τ .

Proof. Suppose that τ < ∞ and there is a neighborhood U of τ such that |z(t)| ≤ R
for t ∈ U ∩ (−∞, τ)T, then we can suppose that |z(t)| ≤ R for all t ∈ (−∞, τ)T. Let tp
be such that tp ≤ τ . Suppose first that tp < τ .

If τ is left-dense, then there is a sequence {τn} such that tp < τ1 < τ2 < · · · < τn < · · · ,
lim

n→∞
τn = τ and lim

n→∞
z(τn) = z∗ for some z∗ ∈ Rn. We shall see that lim

t→τ−
z(t) = z∗.

Since lim
n→∞

τn = τ , then there is τN ∈ (τ − ε, τ)T such that |z(τN )− z∗| < ε. So, for

t ∈ (τ − ε, τ)T with t > τN , we have that |z(t)− z∗| ≤ |z(t)− z(τN )|+ |z(τN )− z∗|. Now

|z(t)−z(τN )| ≤∥eA(t, 0)−eA(τN , 0)∥ |ϕ(0)|+
∫ τN

0

∥eA(t, σ(s))−eA(τN , σ(s))∥ |f(s, zs)|∆s

+

∫ t

τN

∥eA(τN , σ(s))∥ |f(s, zs)|∆s+

p∑
k=1

dk ∥eA(t, tk)− eA(τN , σ(s))∥ |z(tk)|

≤ ∥eA(t, 0)−eA(τN , 0)∥ |ϕ(0)|+
∫ τN

0

∥eA(t, σ(s))− eA(τN , σ(s))∥ ν(s)(1 + ∥zs∥Chp
)∆s

+

∫ t

τN

Mν(s)(1 + ∥zs∥Chp
)∆s+

p∑
k=1

dk ∥eA(t, tk)− eA(τn, tk)∥R
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≤∥eA(t, 0)−eA(τN , 0)∥ |ϕ(0)|+
∫ τN

0

∥eA(t, σ(s))−eA(τN , σ(s))∥ ν(s)(1+2 ∥z∥PW hτ
)∆s

+

∫ t

τN

Mν(s)(1 + 2 ∥z∥PW hτ
)∆s+

p∑
k=1

dk ∥eA(t, tk)− eA(τN , tk)∥R

≤∥eA(t, 0)− eA(τN , 0)∥ |ϕ(0)|+
∫ τ

0

∥eA(t, σ(s))− eA(τN , σ(s))∥ ν(s)(1 + 2R)∆s∫ τ

τN

Mν(s)(1 + 2R)∆s+

p∑
k=1

dk ∥eA(t, tk)− eA(τN , tk)∥R.

Hence, we get that if τN −→ τ , then |z(t)− z(τN )| −→ 0, so lim
t→τ−

z(t) = z∗ and

therefore z(t) can be continued beyond τ , contradicting our assumption.
If τ is left-scattered, then ρ(τ) ∈ (0, τ)T and since tp is right-dense, we have tp < ρ(τ),

then the solution z exists also at τ , namely, by putting

z(τ) = z(ρ(τ)) + µ(ρ(τ))[A(ρ(τ))z(ρ(τ)) + f(ρ(τ), zρ(τ))],

we get a contradiction.
Now, if τ = tp and tp is left-dense, then we set z+ = z∗ + Jp(tp, z

∗). By using the
same argument as previously, we can show that lim

t→τ−
z(t) = z∗, and therefore z(t) can

be continued beyond τ .
If τ = tp is left-scattered, then

z(tp) =z(ρ(tp)) + µ(ρ(tp))[A(ρ(tp))z(ρ(tp)) + f(ρ(tp), zρ(tp))],

z(t+p ) =z(tp) + Jp(tp, z(tp))

and therefore z(t) can be extended beyond τ to the right. This is a contradiction.

Corollary 5.1 If hypothesis H2) is replaced by

|f(t, ϕ)| ≤ ν(t)(1 + |ϕ(0)|), ϕ ∈ Chp, t ∈ T,

then the system (1) has a unique solution defined on all T.

Proof. Suppose that z(t) is defined on (−∞, τ)T with τ < ∞, then

|z(t)| ≤

∣∣∣∣∣eA(t, 0)ϕ(0) +
∫ t

0

eA(t, σ(s))f(s, zs)∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk))

∣∣∣∣∣
≤M |ϕ(0)|+

∫ t

0

Mν(s)(1 + |z(s)|)∆s+M

p∑
k=1

dk |z(tk)|

≤M(|ϕ(0)|+ ν∗τ) +Mν∗
∫ t

0

|z(s)|∆s+M

p∑
k=1

dk |z(tk)| .

So

|z(t)| ≤M(|ϕ(0)|+ ν∗τ)

p∏
k=1

(1 +Mdk)eMν∗(t, 0)

≤M(|ϕ(0)|+ ν∗τ)

p∏
k=1

(1 +Mdk)eMν∗(τ, 0).
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This implies that |z(t)| stays bounded in any neighborhood of τ . So, for Theorem 5.1
we have that τ = ∞.

6 Example

Consider the following semilinear functional dynamic equation with infinite delay and
impulses on time scales:

z∆(t) = a(t)z(t) + b(t) tanh(zt) + c(t), t ∈ [0,∞)T \
⋃∞

k=1{tk},
z(s) = ϕ(s), s ∈ (−∞, 0]T,
z(t+k ) = z(t−k ) +

1
2k

sin(z(t−k )), k = 1, 2, . . . ,
(7)

with a ∈ R(T,R) and b, c ∈ Crd(T,R). Then we have that

i) |f(t, ϕ)− f(t, φ)| = |b(t)| |tanh(ϕ)− tanh(φ)| ≤ |b(t)| ∥ϕ− φ∥Chp
;

ii) |f(t, ϕ)| = |b(t) tanh(ϕ) + c(t)| ≤ ν(t)(1 + ∥ϕ∥Chp
), where ν(t) = max{|b(t)| , |c(t)|};

iii) |Jk(t, x)− Jk(t, y)| ≤ 1
2k

|x− y|, Jk(t, 0) = 0, for k = 1, 2, . . . and
∑∞

k=1
1
2k

< ∞.

Therefore hypotheses H1), H2) and H3) hold, so, by Theorems 4.2 and 4.3, we get
that the problem (7) has a unique solution z(t) defined on (−∞, τ ]T.

7 Conclusion and Final Remarks

In this work, first of all, we prove the existence of solutions for a semilinear retarded dif-
ferential equation with infinite delay and impulses on time-scale, by using a version of the
Arzela-Ascoli theorem on time-scale and applying the Leray-Schauder alternative. Sec-
ondly, we prove the uniqueness of solutions by applying a version of Gronwall’s inequality
for impulsive differential equations, and finally, we study the continuation of solutions.
Of course, once we have an Arzela-Ascoli version on time-scale (see [18]), we can apply
other fixed point theorems to prove the existence of solutions for such equations, perhaps
one can apply Karakosta’s fixed point theorem like in [19]. Our next work is devoted to
the study of the exact controllability for this type of equations on time-scales by using
Rothe’s fixed point theorem like in [20].
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Abstract: In this paper, we present the asymptotic stability for a class of nonlinear
control systems. To achive the asymptotic stability, we will design a dynamic feedback
control. The design of the dynamic feedback control is based on the modification of
the trajectory following method. To apply the modification of the trajectory following
method, the system will be transformed through the input state linearization.
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1 Introduction

In the analysis for nonlinear control systems, there is no general method which can
be applied to any nonlinear control system in designing the control input for solving
the stability problems. Therefore, in general, the researchers describe some particular
nonlinear classes only. Recently, stability problems for nonlinear control systems have
been intensively investigated. Daizhan Cheng [1] has discussed the stability problem for
a nonlinear system, where the zero dynamic has a multiplicity eigenvalue of 2. Zhengtao
Ding [2] has discussed the stability of a nonlinear system through backstepping, where
the backstepping design starts from the estimation of the output transformation. In
2004, Chen P et al. [3] and Diao L et al. [4] introduced the problem of stability through
the system transformation, where the transformation of the system is made through
dynamic feedback. In 2019, Erkan Kayacan [5] has discussed the Sliding Mode Learning
Control (SMLC) of uncertain nonlinear systems with the Lyapunov stability analysis.
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One of popular methods for solving stability problems is the input-output linearization
method. Some research on the stability problems of a nonlinear control system using
the input-output linearization method was carried out by: Ricardo Marino and Patrizio
Tomei [6], who discussed the stability of lower triangular nonlinear control system. Its
stabiity control was the dynamic feedback of order n + 2(r − 1) (n is the system order,
r is the relative degree). Results on stabilization of nonlinear lower triangular systems
with uncertainties in the output feedback form have been presented in [7] and [8]. In [9],
Naiborhu J. et al. discussed the asymptotic stability problem for a nonlinear class, where
its control design used the exact linearization. Furthermore, Firman et al. [10] have
introduced the problem of stabilization for a class of nonlinear systems with uncertainty.
Then, in [11], Firman et al. have introduced the problem of stabilization for some class
of affine nonlinear control systems with the relative degrees of the system being 1 and
n-1. For the design of input controls, the system will be transformed through the partial
feedback linerization. Naiborhu J. and Shimizu K. [12] have proposed a dynamic feedback
control for the asymptotic stability of a nonlinear class where its unforced dynamic is
asymptotically stable.

In this paper, we will propose a dynamic feedback control for asymptotic stability in a
system nonlinear control, even though its unforced dynamic is not asymptotically stable.
The proposed dynamic feedback control is a modification of the trajectory following
method.

2 Problem Formulation

Consider the affine nonlinear control system

ẋ(t) = f(x(t)) + g(x(t))u, (1)

y(t) = h (x(t)) , (2)

where x(t) ∈ Rn, u(t) ∈ R. f : D → Rn, f (⃗0) = 0⃗ and g : D → Rn are sufficiently
smooth in a domain D ⊂ Rn. Let a state y(t) = h(x(t)), h : D → R is sufficiently
smooth in a domain D ⊂ Rn , h(⃗0) = 0.

Our objective is to make the output y(t) go to zero as t → ∞. The main task
is to design the input control u such that the system (1) has an asymptotically stable
equilibrium at x = 0.

For designing the control input u, we need a system transformation based on the
relative degree of the system. In the following, we present the method of the input state
linearization by Isidori [13].

Let the relative degree of the system (1) with respect to the state y be r, r ≤ n . If
the relative degree of the system (1)-(2) is n, the system (1) with respect to the state y
can be transformed to

żk = zk+1, k = 1, 2, · · · , n− 1, (3)

żn = f(z) + g(z)u, (4)

y = z1.

If g(z) ̸= 0, ∀t, then the relative degree of the system with respect to the state y is well
defined.
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Let the relative degree of the system (1)-(2) be r, r < n, the system (1) with respect
to the state y can be transformed to

żk = zk+1, k = 1, 2, · · · , r − 1, (5)

żr = f(z, η) + g(z, η)u, (6)

η̇ = q(z, η), (7)

y = z1

with the internal dynamic

η̇ = q(z, η), (8)

where (z, η) = (z1, z2, · · · , zr, η1, η2, · · · , ηn−r). If g(z, η) ̸= 0, ∀t, then the relative degree
of the system with respect to the state y is well defined. Then if z1 = 0, for all t, the
system (8) is said to be zero dynamic with respect to the state y = z1.

Consider a function G : Rr+1 → R, where G = G
(
z1, ż1, · · · , z(r)1

)
is a positive

definite function and ∂G
∂xi

exits for i = 1, 2, · · · , n. Our objective is to find a dynamic
feedback control u̇(t), for all t such that the function G becomes minimum. In this case,
if the function G becomes minimum, then the state y(t) goes to zero. The main task
is to design the control input u such that y(t) → ∞0 as t → ∞. Then our problem is
formulated as follows:

min G
(
z1, ż1, · · · , z(r)1

)
, (9)

subj. to ẋ(t) = f(x(t) + g(x(t))u(t), (10)

y(t) = h(x(t)). (11)

The dynamic feedback control is designed based on the trajectory following method [14]
as follows:

u̇ = −∂G

∂u
. (12)

When using the dynamic feedback control (12), the value of time derivative of function
G along the trajectory of the system can not be guaranteed to be less than zero, ∀t ≥ 0.

In this paper, we present the asymptotic stability of some class of affine nonlinear
control systems by modifying the dynamic feedback control (12), i.e., by adding an
artificial input.

3 Main Results

Consider the system (1)-(2). Let the relative degree of the system (1)-(2) be r, r ≤ n.
We design an input control u through the properties of the solution of a higher order
ordinary differential equation. Consider a differential equation

ary
(r)(t) + ar−1y

(r−1)(t) + · · ·+ a1ẏ + a0y(t) = 0, (13)

with y(i) = diy
dti , i = 1, 2, · · · , r, where r is the relative degree of the system (1)-(2),

r ≤ n. From equation (13), let ω1 = y, ω2 = ẏ, · · · , ωr = y(r−1), then the equation
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(13) becomes ω̇ = Bω, with B =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−a0

ar

−a1

ar
. . .

−a(r−1)

ar

. If all the roots of the

polynomial
p(λ) = arλ

r + ar−1λ
r−1 + . . .+ a1λ+ a0 (14)

have negative real part, then a solution of differential equation (13) tends to zero as
t → ∞. Constans ai, i = 0.1, · · · , r can be chosen such that all the roots of the polynomial
(14) have negative real part.

Define a function

G(z1, ż1, · · · , z(r)1 ) =
( r∑

j=0

ajz
(j)
1

)2

, r ≤ n. (15)

The main task is to design the control u(t) such that the function G becomes minimum.
If r < n, then the function G (15) contains the internal dynamic solution variable.
Therefore, if the zero dynamic of the system (1) with respect to the state y = z1 is not
asymptotically stable, then the function G (15) becomes unbounded. Furthermore, to
get dynamic feedback control, assume as follows.

Assumption 3.1 The zero dynamic of the system (1) with respect to the state y = z1
is asymptotically stable.

From equation (12), the dynamic feedback control

u̇ = −2ar

( r∑
j=0

ajz
(j)
1

)∂z(r)1

∂u
. (16)

Consider the extended system

ẋ = f1(x) + f2(x)u, (17)

u̇ = −2ar

( r∑
j=0

ajz
(j)
1

)∂z(r)1

∂u
. (18)

The derivative of function G (15) along the trajectory of the system (17)-(18) is given by

Ġ
(
z1, ż1, · · · , z(r)1

)
= 2

( r∑
j=0

ajz
(j)
1

)( r−1∑
j=0

ajz
(j+1)
1

)
+ 2ar

( r∑
j=0

ajz
(j)
1

)(∂f(z, η)
∂t

+
∂g(z, η)

∂t
u
)
−

(∂G
∂u

)2

. (19)

From equation (19), the value of the derivative of function G (15) along the trajectory of
the system (17)-(18) can not be guaranteed to be less than zero for 0 ≤ t. For this, the
dynamic feedback control in equation (16) will be modified by adding an input ν. Then
the extended system (17)-(18) becomes

ẋ = f1(x) + f2(x)u, (20)

u̇ = −2ar

( r∑
j=0

ajz
(j)
1

)∂z(r)1

∂u
+ ν. (21)
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In the same way, the derivative of function G (16) along the trajectory of the system
(20)-(21) is given by

Ġ
(
z1, ż1, · · · , z(r)1

)
= 2

( r∑
j=0

ajz
(j)
1

)( r−1∑
j=0

ajz
(j+1)
1

)
+ 2ar

( r∑
j=0

ajz
(j)
1

)(∂f(z, η)
∂t

+
∂g(z, η)

∂t
u
)
−

(∂G
∂u

)2

+
∂G

∂u
ν. (22)

Suppose equation (22) is written as follows:

Ġ
(
z1, ż1, · · · , z(r)1

)
= ϕ

(
z1, ż1, · · · , z(r)1

)
+

∂G

∂u
ν −

(
∂G

∂u

)2

, (23)

where

ϕ
(
z1, ż1, · · · , z(r)1

)
= 2

( r∑
j=0

ajz
(j)
1

)( r−1∑
j=0

ajz
(j+1)
1

)
+ 2ar

( r∑
j=0

ajz
(j)
1

)(∂f(z, η)
∂t

+
∂g(z, η)

∂t
u
)
. (24)

If we take

ν =
1
∂G
∂u

(
−ϕ

(
z1, ż1, . . . , z

(r)
1

))
, (25)

then

Ġ
(
z1, ż1, · · · , z(r)1

)
= −

(
∂G

∂u

)2

, (26)

with ∂G
∂u ̸= 0.

Consider the function G (15) and its time derivative (26). Adding the artificial
input ν into dynamic controller (16) is used to guarantee the function G (15) will

decrease until
(∑r

j=0 ajz
(j)
1

)
becomes zero. Furthermore, if ∂G

∂u = 0, then we have

2ar

(∑r
j=0 ajz

(j)
1

)
∂z

(r)
1

∂u = 0. Therefore
(∑r

j=0 ajz
(j)
1

)
becomes zero if

∂z
(r)
1

∂u ̸= 0. In this

case, the relative degree of the system (1)-(2) is well defined.

Theorem 3.1 Consider system (1)-(2). Let the relative degree of the system (1)-(2)
be r, r ≤ n, with the relative degree of the system (1)-(2) being well defined. Especially
if r < n satisfies Assumptions 1. Choose constans ai such that all the roots of the
polynomial

p(λ) = arλ
r + ar−1λ

r−1 + . . .+ a1λ+ a0 (27)

have negative real part. Then, when using the dynamic feedback control

u̇ = −2ar

( r∑
j=0

ajz
(j)
1

)∂z(r)1

∂u
+ ν, (28)

with ν as in (25), y = z1 tends to zero as t → ∞. Furthermore, the system (1) has an
asymptotically stable equilibrium at x = 0.
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Proof. Let the relative degree of the system (1)-(2) be r, r < n satisfies Assump-
tion 1, then the function G becomes bounded if ∂G

∂u ̸= 0. From equation (26), then

Ġ
(
z1, ż1, · · · , z(r)1

)
< 0, with

(∑r
j=0 ajz

(j)
1

)
̸= 0. Let

(∑r
j=0 ajz

(j)
1

)
= 0. From

equation (26), Ġ
(
z1, ż1, · · · , z(r)1

)
= 0. Thus, the function G (15) becomes mini-

mum, where the minimum value is zero. Therefore, if G
(
z1, ż1, · · · , z(r)1

)
= 0, then(∑r

j=0 ajz
(j)
1

)
= 0.

Furthermore, ∂G
∂u = 0. Because the relative degree of the system (1)-(2) is well defined,

then
∂z

(r)
1

∂u ̸= 0, ∀t. Then
(∑r

j=0 ajz
(j)
1

)
= 0. Thus, if we choose aj , j = 0, 1, · · · , r

such that all the roots of polynomial (27) have negative real part, then y = z1 goes to
zero as t → ∞. Furthermore, x goes to zero as t → ∞. Thus the system (1) has an
asymptotically stable equilibrium at x = 0.

Example 3.1 Consider the nonlinear system

ẋ1 = x2 + 2x2
1,

ẋ2 = x3 + u, (29)

ẋ3 = x1 + x3.

If we choose the state y = x3, then the relative degree of the system (29) with respect to
x3 is 3. Thus the system transformation with respect to the state x3 is

ż1 = z2,

ż2 = z3,

ż3 = a(z) + u,

where z1 = x3, a(z) = z1 + z2 + (2(z2 − z1) + 1)(z3 − z2 − 2)(z2 − z1)
2 + 2(z2 − z1)

2.
Define a function as follows:

G
(
z1, ż1, z̈1, z

(3)
1

)
=

( 3∑
j=0

aj(z1)
(j)

)2

. (30)

With the above equation, the dynamic feedback control is

u̇ = −2a3

( 3∑
j=0

aj(z1)
(j)

)
+ v, (31)

with v as in equation (25).

Simulation results are shown in Figs.1a) and 1b) for constants a0 = 15, a1 = 23,
a2 = 4, a3 = 1. The initial value x1(0) = −1, x2(0) = 1, 5, x3(0) = −1.5, u(0) = 10.
In Fig.1a), with the application of the control as in equation (31), the system (29) is
asymptotically stable at the equilibrium point x = (0, 0, 0). In Fig.1b), the response
curve of the control input is presented.
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a b
Figure 1: a) the simulation result for Example 3.1, b) the response curve of the input.

Example 3.2 Consider the nonlinear system

ẋ1 = −x1 + x2,

ẋ2 = 3x2 + x3
1 +

(
2 + sin2(x4)

)
u, (32)

ẋ3 = x1 − 2x3,

ẋ4 = −x4 + x2
3.

If we choose the state y = x4, then the relative degree of the system (29) with respect to
x3 is 4. Thus the system transformation with respect to the state x3 is

ż1 = z2,

ż2 = z3,

ż3 = z4, (33)

ż4 = a(z) + b(z)u,

where z1 = x4, b(z) = 2x3

(
2 + sin2(x4)

)
.

From the system transformation (33), we see that the relative degree of the system
(33) with respect to the state y = x4 is not well defined. So the input control as in
equation (28) cannot be used to make the state y = x4 → 0, t → ∞. In this case, the
system (32) can not be achieved. The problem is how to choose such a state that the
transformation of the system with respect to that state has an asymptotically stable zero
dynamic.

Choose the state y = x3. Then the system transformation with respect to the state
x3 is

ż1 = z2,

ż2 = z3,

ż3 = a(z, η) + b(z, η),

η̇ = −η + x3
1,

where z1 = x3, η = x4, a(z, η) = 6z1 + 7z2 + (2z1 + z2)
3, z2 = x1 − 2x3, b(z, η) =(

2 + sin2(η)
)
. So the zero dynamic of the system (29) with respect to the output x3 is

asymptotically stable, with the relative degree of the system being well defined.
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a b
Figure 2: a) the simulation result for Example 3.2, b) the response curve of the input.

Define a function as follows:

G
(
z1, ż1, z̈1, z

(3)
1

)
=

( 3∑
j=0

aj(z1)
(j)

)2

. (34)

With the above equation, the dynamic feedback control is

u̇ =
(
−4− sin2(η)

)
a3

( 3∑
j=0

aj(z1)
(j)

)
+ v, (35)

where v =
1

2a3 (a0z1 + a1ż1 + ż2 + a3ż3) (2 + sin2(η))
(k (z1, ż1, ż2, ż3)), with

(k (z1, ż1, ż2, ż3)) = 2
( 3∑

j=0

aj(z1)
(j)

)( 2∑
j=0

aj(z1)
(j+1)

)

+ 2a3

( 3∑
j=0

aj(z1)
(j)

)(
∂a(z, η)

∂t
+

∂b(z, η)

∂t
u

)
.

Simulation results are shown in Figs.2a) and 2b) for constants a0 = 15, a1 = 13, a2 = 9,
a3 = 1. Initial value x1(0) = −2, x2(0) = 3, x3(0) = −3.5, x4(0) = −7, u(0) = 2.5.
In Fig.2a), with the application of the control as in equation (35), the system (32) is
asymptotically stable at the equilibrium point x = (0, 0, 0, 0). In Fig.2b), the response
curve of the control input is shown.

4 Conclusion

In this paper, we have investigated the asymptotic stability for a class of nonlinear
control systems, with the relative degree of the system being well defined. The dynamic
feedback control has been designed for asymptotic stability problems. The design of
the dynamic feedback control is based on the modification of the trajectory following
method. To apply the modification of the trajectory following method, the system will



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (2) (2022) 169–177 177

be transformed through the input state linearization. If the relative degree of the system
is smaller than the dimensions of the system, then the requirement to design a dynamic
feedback control is that the zero dynamic of the system must be asymptotically stable.

From the results obtained, the modification of the trajectory following method can
be an alternative control design for the asymptotic stability, even though its unforced
system is not asymptotically stable.
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Abstract: In this paper, the three-phase induction machine (IM) fed by a three-level
indirect matrix converter (IMC3) is proposed and investigated. Indeed, the IMC3 con-
verter consists of a current rectifier connected to a three-level neutral-point-clamped
voltage source inverter (NPC-VSI) without a bulky DC link capacitor interface. The
rectifier ensures the bidirectional power transfer, where it is controlled by the space
vector modulation (SVM) with the aim to obtain nearly a unity input power factor
and to improve the input current waveform by the minimization of the harmonics con-
tent. On the other hand, the direct torque control (DTC) strategy is used to ensure
the control of the three-phase IM, where the appropriate voltage vectors applied on
the IM are generated via the control of the NPC-VSI. This combination can benefit
from the advantages of the DTC and the IMC3 at the same time, allowing to improve
the dynamic performances of the controlled three-phase IM compared to conventional
topologies. For the validation of the advantages brought by this combination of the
proposed topology of the used converter and the control strategy, simulations tests
have been carried out.
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1 Introduction

In the AC drive system, there are several converter topologies. The first family provides
AC-DC conversion followed by DC - AC conversion. The main drawback of this converter
is the use of a large capacitor on the DC link which has a limited lifetime when compared
to the power devices, and increases the volume of the used converter. The second family
ensures a direct conversion alternating-alternating (AC/AC). This direct conversion can
be achieved either by cycloconverters or by matrix converters. The matrix converter is a
recent topology of the frequency converters. This makes it possible to obtain an output
voltage with variable amplitude and frequency from a fixed power supply voltage [1].
This can be achieved by the bidirectional current and voltage power switches, which are
used in this kind of converters. Indeed, the matrix converter has many advantages such
as
• A wide range of output frequency.
• The power factor at the output can vary freely according to the operating point of the
load.
• The power factor at the input can be nearly unitary, and it can be imposed by the
control.
• The operation in the four quadrants of the voltage-current plane.

However, it has some disadvantages such as
• The switching of current is more difficult due to the absence of the freewheeling diodes.
• The ratio of output-input voltage is reduced to 0.8666.

There are two topologies of matrix converters: the direct matrix converter (DMC)
and indirect matrix converter (IMC).

The direct matrix converter (DMC) was first introduced by Gyugyi [2]. It connects
directly three inputs to three output phases via nine bidirectional switches where basically
the space vector modulation is used to ensure its control [3]. The conventional concept
of space vector modulation (SVM), which was used for the control of inverter topologies,
has been extended to ensure the control of the matrix converters with the aim to obtain
improved input and output currents waveforms of the DMC [4].

In [5], the direct matrix converter is used with the direct torque control where a
new switching table has been developed for this control taking into account the input
displacement angle as a third control variable. On the other hand, the indirect matrix
converter (IMC) scheme was firstly introduced by Huber and Borojevic [6]. It consists
of a current rectifier connected to a voltage source inverter without intermediate bulky
circuit [7]. The paper [8] investigates the application of the conventional DTC strategy
for the induction machine based on the IMC. The classical DTC is based on the control
of the inverter stage, where on the rectifier stage it is used to produce the DC bus voltage
at the input side of the DC-AC stage, at the same time, it can be also controlled to ensure
improved input current waveform and input power factor.

Indeed, to improve the quality of output voltage, the three-level indirect matrix con-
verter (IMC3) was suggested and investigated by the authors in [9]. This topology is
composed of a rectifier stage incorporated with a three-level-neutral point clamped volt-
age source inverter that has the ability to generate three-level voltages at the outputs.

In order to use the NPC VSI with IMC3 , the DC voltage provided by the rectifier Vpn

is subdivided into two voltage levels Vpo and Von , and the neutral point (o) is connected
to the star connected input filter capacitor as shown in Figure 1. To ensure balanced
input capacitor voltages, the nearest three virtual space vector modulation (NTV SVM)
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approach is used to control the DC-AC stage. This method requires that the sum of the
three output phase currents equals zero at any sampling time.

In this paper, the application of a direct torque control based on the IMC3 to ensure
the control of the three-phase induction motor is analyzed. It is well known that in the
DTC, the generation of the control signals of the voltage source inverter switches depends
on the output of the hysteresis comparators and the position of stator flux, which requires
high frequency switching in the case of conventional two-level inverters. At the same time,
when the conventional two-level inverter is used, the switches are subject to high voltage
stress or high current when used in high voltage or high power application, respectively.
However, the recent multilevel converter topologies (IMC3) seem to be well suitable
for high voltage and high power applications, due to the segmentation of voltages and
currents within the relatively high number of switches, hence they allow the use of fast
semiconductors (eg. IGBT) where the commutation can be ensured as required without
any risk or impact on the operational safety of the whole system. Based on these main
advantages offered by the IMC3 topology and the direct torque control technique, the
present paper investigates the use of the DTC with the IMC3 to ensure the control of
the three-phase IM. Indeed, the high number of available voltage vectors resulting from
the IMC3 and the use of the five-level torque controllers enhance considerably the output
signal quality and the drive performances. It can be said initially that this combination
of the DTC and IMC3 makes it possible to minimize the harmonics content of the output
voltage and current, which have an important effect on the dynamic control of the IM.

The present paper is organized as follows. Section 2 introduces the modeling of in-
duction machine, whereas Section 3 presents the DTC principle. The three-level neutral-
point-clamped voltage source inverter is explained in Section 4. In Section 5, the DTC
based on the IMC3 is presented, whereas simulation results are presented in the last sec-
tion for the validation of the proposed control strategy. Finally, a conclusion is presented
at the end of the paper.

Figure 1: Three-level indirect matrix converter.
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2 Modeling of Induction Machine

The induction machine consists of a stator which is connected to the power supply or a
variable-speed drive and a short circuited rotor [10]. The model of the induction motor
is presented in (αβ) as follows:

Vs = RsIs +
dφs

dt
, (1)

Vr = RrIr +
dφr

dt
. (2)

Vs is the stator voltage and Vr is the rotor voltage, Is is the stator current and Ir is the
rotor current. Here

φs = LsIs + LmIr, (3)

φr = LrIr + LmIs. (4)

φs is the stator flux and φr is the rotor flux, Ls, Lr are the stator and rotor self-
inductances, Lm is the mutual inductance.

The electromagnetic torque equation developed by the motor is expressed as follows:

Tem =
3

2
p

Lm

σLsLr
φsφr sin θ, (5)

σ is the leakage factor, p is the number of pole pairs and θ is the torque angle.
The equation of motion, connecting the electrical and mechanical parts, is written as

follows:

j
dΩ

dt
= Tem − Tr(Ω). (6)

Tem and Tr are the electromagnetic torque and the load torque, j is the rotor inertia.

3 Direct Torque Control Principle

The direct torque control (DTC) technique was proposed by Isao Takahashi in 1986 [11].
It consists of a pair of hysteresis controllers, a flux and torque estimators, and a voltage
vector selection table. The basic advantages of the DTC scheme are presented as follows:
• High dynamic.
• Robustness.
• Reduced response time.
• Absence of park transformation.

The DTC has also some disadvantages, namely, the control of the torque and the flux
at low speed is difficult, the switching frequency is not constant. The last one produces
higher current and torque ripple and, consequently, higher machine losses, more noises
and mechanical stress, which may reduce the lifespan of the machine. It is well known
that the direct torque control (DTC) of an induction machine is based on the ”direct”
determination of the sequence of the control signal applied to the switches of the used
voltage source inverter. This choice is generally based on the use of hysteresis regulators
whose function is to control the amplitude of the stator flux and the electromagnetic
torque. In Figure 2(a) and Figure 2(b) the schematic circuit of the conventional three-
phase two-level voltage source inverter and the voltage vectors corresponding to the eight
different possible switching configurations are presented, where two vectors determine the
zero voltage vectors V0 and V7.
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(a) (b)

Figure 2: (a) Schematic circuit of voltage source inverter, (b) Switching configurations
of voltage vectors.

3.1 Stator flux control

The stator voltage in the stationary reference frame (αβ) of the three-phase IM can be
obtained as follows:

Vs = RsIs +
dφs

dt
. (7)

Hence, the stator flux can be expressed as

φs = φs0 +

∫ t

0

(Vs −RsIs)dt. (8)

Neglecting the voltage drop due to the stator resistance, the stator flux can be written
as follows:

φs = φs0 +

∫ t

0

(Vs)dt. (9)

It can be considered that during a sampling period Ts, which is usually infinitesimal, the
voltage vector applied to the IM remains constant, therefore

φs(k + 1) = φs(k) + VsTs → ∆φs ≃ VsTs. (10)

Ts : Sampling period,
φs(k + 1) : Stator flux vector at the next sampling period (k + 1)Ts,
φs(k) : Stator flux vector at current sampling period kTs,
∆φs : Flux variation vector(φs(k + 1)− φs(k)).

While the sampling period is fixed, ∆φs is proportional to the voltage vector applied
to the motor.

From the equation (10), it is clear that the vector flux φs can be perfectly controlled
by the voltage vector Vs.

3.2 Torque control

The torque equation is expressed as follows:

Tem =
3

2
p

Lm

σLsLr
φsφr sin θ, (11)

where θ is the torque angle which represents the shift angle between the flux vectors φs

and φr (relative position of flux vectors).
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It is obvious from equation (11) that the torque depends on the flux vectors φs and
φr and on their relative position θ. However, the amplitude of φs is kept limited in the
hysteresis band around its reference value and the amplitude of φr is also approximately
constant. Consequently, the electromagnetic torque depends only on the angle (θ), which
means that Tem increases with the increase of θ, and Tem decreases when θ decreases. The
error between the reference flux and the estimated flux is introduced into the hysteresis
controller which generates a variable Cφ. When Cφ = 1, it means that the amplitude of
the flux should be increased, whereas when Cφ = −1, it means that the amplitude of the
flux should be decreased. On the other hand, the error between the reference torque and
the estimated torque is processed by a three-level hysteresis controller which generates
the variable CT which may take three values 1,-1 and 0. When CT = 1, it means that the
amplitude should be increased, and when CT = −1, it means that it should be decreased.
If CT = 0, then it should be kept constant. Table 1. shows the different voltage vectors
to be applied in order to maintain the stator flux and the electromagnetic torque inside
their hysteresis bands.

Cφ 1 1 1 -1 -1 -1
CT 1 0 -1 1 0 -1
S(1) V2 V7 V6 V3 V0 V5

S(2) V3 V0 V1 V4 V7 V6

S(3) V4 V7 V2 V5 V0 V1

S(4) V5 V0 V3 V6 V7 V2

S(5) V6 V7 V4 V1 V0 V3

S(6) V1 V0 V5 V2 V7 V4

Table 1: The basic DTC switching table using VSI.

As an example, if the stator flux vector is in the first sector, the voltage vectors V2 and
V6 can be applied to increase the flux, whereas, the vectors V3 and V5 can be selected to
decrease the flux. On the other hand, within the same sector, the vectors V2 and V3 can
be used to increase the torque and the vectors V5 and V6 can be applied to decrease the
torque. A general block diagram of the DTC scheme is presented in Figure 3.
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Figure 3: Block diagram of the DTC.

4 Three-Level Neutral-Point-Clamped Voltage Source Inverter

The neutral-point-clamped (NPC) inverter has many advantages [12, 13]. The voltage
across each semiconductor is halved, which reduces the voltage stress, the harmonic
content of the output voltages is diminished compared to the conventional two-level
inverter. However, the capacitor voltage unbalance at the input side of the inverter
increases the voltage stresses on the semiconductors and leads to the distortion of the
output voltage [14, 15]. Furthermore, they may be subject to the voltage unbalance,
which causes the unbalance of the three-phase output voltages. In this topology, in each
phase/leg, there are 4 switching devices and 6 diodes that allow performing a combination
of 27 switching states (Figure 4(a)).

It is obvious that the switching states can be presented by space voltage vectors. This
representation is illustrated in Figure 4(b).
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(a) (b)

Figure 4: (a) Three-level neutral-point-clamped voltage source inverter, (b) Space
vector diagram of three-level inverter.

According to the possible switching states that may be achieved for each leg following
the combination presented in Table 2, it is clear that there are three possible voltage lev-
els: VDC

2 , 0, −VDC

2 . These values justify the ability of the presented topology to generate
three-level outputs voltage. The space voltage vectors can be divided into four groups:

S1x S2x S3x S4x Vx0 : x ∈ {A,B,C} Switching states

ON ON OFF OFF VDC

2 P
OFF ON ON OFF 0 0

OFF OFF ON ON −VDC

2 N

Table 2: The switch combination of three-level NPC VSI.

the zero vectors group, the small vectors group, the medium vectors group and the large
vectors group as shown in Figure 4(b) [16].

5 DTC Based on Three-Level Indirect Matrix Converter

The three-level indirect matrix converter consists of a current rectifier connected to a
three-level neutral-point-clamped voltage source inverter. The rectification stage has
nine allowed combinations, it is formed by a six bidirectional switches so that the three-
level indirect matrix converter can operate in the four quadrants. In this stage, the
positive input voltage is connected to the p-terminal and the negative input voltage
is connected to the n-terminal of the DC bus to generate the DC link voltage at the
input side of the inverter stage. The NPC-VSI has nineteen voltage vectors describing
27 possible switching states, where three switching states among them produce the zero
vector. This zero vector allows avoiding the DC bus short circuit and the open circuits
in the case of inductive load which is the case of the IM. The other vectors are divided
into three groups such as the large vectors (six vectors corresponding to six switching
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states), medium vectors (six vectors corresponding to six switching states) and small
vectors (six double vectors corresponding to twelve switching states). All of these vectors
(large, medium, small and zero) are exploited to improve the control of the three-phase
IM performances. As aforementioned, in this paper the advantages of the DTC and
the IMC3 are combined to improve the performances of the control of the three-phase
IM such as the response time, the precision of the developed torque and allowing the
operation in the four quadrants of the torque-speed plane. Thus, a switching table is
issued based on this combination which allows the generation of the appropriate vectors
to be applied to the induction machine via the NPC-VSI [17].

5.1 The rectifier side control

In the rectification stage, only the two largest line-to-line input voltages in every sector
are used. For example, in the first sector, the two maximum voltages uac and uab are
considered as the supply for the inverter stage. The rectifier stage is controlled by a
traditional space vector modulation. This method is based on [18]:
• the determination of the sector where the current or voltage reference is located;
• the application of the nearest vectors;
• the calculation of the corresponding duty cycles.

The input voltage vector can be represented as follows:

Vi =
2

3
(Va + aVb + a2Vc), (12)

where a = ej
2π
3 , Vi is the input voltage vector, Va, Vb and Vc are the three phase-input

voltages. The reference input current space vector can be represented as follows:

¯Iin = Iime(jωi−φi) = Iim∠θi, (13)

Iim is the magnitude of the reference vector, ωi is the angle of the input voltages, φi is
the displacement angle between the fundamental of input current phase and the corre-
sponding line-to-neutral voltage, θi = ωi − φi is the direction of reference vector.

There are six active current space vectors, as shown in Figure 5(a). Each one rep-
resents the connection of the input phase voltages to the terminals of the DC-link. For
example, the current I5 = (c, b) vector represents the connection of the input phase volt-
age Vc to the p-terminal and Vb to the n-terminal. The reference current vector can be
synthesized with the two adjacent vectors (Iv, Iu) as shown in Figure 5(b).

The corresponding duty cycles are

du =
Tu

Ts
= mR sin(

π

3
− θi), (14)

dv =
Tv

Ts
= mR sin(θi), (15)

d0 =
T0

Ts
= 1− du − dv. (16)

The zero current vector cannot be used, so the duty cycles of rectification stage are
adjusted as follows:

dRu =
du

du + dv
, (17)

dRv =
dv

dv + du
. (18)
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(a) (b)

Figure 5: (a) Input voltage and current vectors, (b) Generation of the reference input
current.

5.2 The three-level inverter side control

The three-level inverter of the IMC3 ensures more control flexibility by offering several
choices for the selection of the voltage vector under the direct torque control. Indeed, a
switching table of the control structure makes it possible to select the appropriate voltage
vector at each sampling instant according to the state of the flux and torque comparators
and the sector where the stator flux vector is located [19–22]. The chosen vector should
satisfy the requirement of the torque and the flux, and limits ∆V voltage to VDC

2 .
For instance, suppose that the stator flux is located in the first sector, and the cur-

rently used voltage vector is V2 . To increase the torque and the flux, V5 should be
selected. In this case, a high ∆V

dt is applied on the semiconductor of the phase B, which
should be avoided. However, this problem can be resolved by inserting a medium voltage
vectors, which leads to reducing considerably the voltage stress across these devices. The
position of the stator flux can be calculated as follows:

θs = arctan
φβs

φαs
, (19)

φαs and φβs are the components of the stator flux in αβ reference axes.
The reference torque can be obtained at the output of a PI which receives at its input

the speed which presents the difference between the reference speed and the machine
rotor speed. This reference torque is compared with the estimated value, and the error
is processed using five-level hysteresis comparator which allows minimizing the torque
ripples and improving the dynamic behavior of the electromagnetic torque developed by
the machine.

The error (εT = T ∗
em − Tem) belongs to one of the five regions fixed by the following

constraints:
CT = +2 for (ϵTmax2 < ϵT ) high increase,
CT = +1 for (ϵTmax1 < ϵT < ϵTmax2) small increase,
CT = 0 for (εTmin1 < εT < εTmax1) maintaining,
CT = −1 for (εTmin2 < εT < εTmin1) small decrease,
CT = −2 for (εT < εTmin2) high decrease,
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εTmax2 = 0.1, εTmin2 = −0.1, εTmax1 = 0.04, εTmin1 = −0.04.
The estimated flux is compared with its reference value and the error is introduced

to a three-level hysteresis controller. The error (εφ = φ∗
s − φs) is located in one of three

regions defined by the following constraints:
Cφ = +1 for εφ > εφmax,
Cφ = 0 for εφmin > εφ > εφmax,
Cφ = −1 for εφ < εφmin,
εφmax = 0.001, εφmin = −0.001.

The three-level torque controller and the five-level flux controller are shown in Figure
6(a) and Figure 6(b) According to the flux and torque errors and the position of the

(a) (b)

Figure 6: (a) Flux hysteresis comparator, (b) Torque hysteresis comparator.

stator flux, an appropriate voltage vector from the 19 vectors generated by the NPC
inverter is selected to maintain the flux and torque within the limits of hysteresis bands.
Assume that the stator flux is located in the first sector to increase the flux.
For a large increase of the torque, the vector V5 is used to diminish the torque and the
flux errors. During one Ts , φs advances by the angle (δ1) from its last position and
therefore, the corresponding angular speed (ωs1) is expressed as follows (Figure 7(a)) :

ωs1 =
δ1
Ts

. Consequently, the new formed angle between the stator and rotor flux becomes

equal to θ+ δ1, which results in a large increase of the torque compared to its last value,
whereas the rotor flux continues rotating by (ωs1). For a small increase of the torque,
the vector V3 is applied. The stator flux advances by angle δ2, regarding that δ2 < δ1.

The angular speed (ωs2) is given as follows (Figure 7(b)): ωs2 =
δ2
Ts

< ωs1.

The rotation speed of the stator flux is reduced compared to its previous value. This
leads to reducing the angle between φs and φr, which therefore leads to a small increase
of the torque [23–27]. A voltage vector is generated (Table 3) depending on the position
of the stator flux and the output of the two comparators.

6 Simulation Results

For the validation of the application of the proposed control on the three-level indirect
matrix converter topology driving a three-phase induction motor, two simulation tests
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(a) (b)

Figure 7: (a),(b) Evolution of the flux vector in the αβ plane.

Cφ CT S(1) S(2) S(3) S(4) S(5) S(6)
+1 +2 V5 V8 V11 V14 V17 V2

+1 +1 V3 V6 V9 V12 V15 V18

+1 0 V0 V0 V0 V0 V0 V0

+ 1 -1 V18 V3 V6 V9 V12 V15

+1 -2 V17 V2 V5 V8 V11 V14

0 +2 V4 V7 V10 V13 V16 V1

0 +1 V4 V7 V10 V13 V16 V1

0 0 V0 V0 V0 V0 V0 V0

0 -1 V0 V0 V0 V0 V0 V0

0 -2 V13 V16 V1 V4 V7 V10

-1 +2 V8 V11 V14 V17 V2 V5

-1 +1 V9 V12 V15 V18 V3 V6

-1 0 V0 V0 V0 V0 V0 V0

-1 -1 V12 V15 V18 V3 V6 V9

-1 -2 V14 V17 V2 V5 V8 V11

Table 3: The basic DTC switching table using VSI.

have been carried out under normal speed with sudden rotation reversal and under low
speed with sudden rotation reversal. The input of the matrix converter is connected to
three-phase 220V, 50HZ power supply and the induction motor to be controlled is of
power 1.5kW and its parameters are presented in Table 4.

6.1 Scenario 1

In this scenario, the profile of the reference speed is presented in Figure 8(a), where
the speed is the same for the forward and backward rotation with a value of 100 rad/s
and -100 rad/s, respectively. It can be seen clearly that the motor follows the reference
profile precisely without any kind of overshoot after short transient durations along the
start-up and the sudden rotations reversal, which last 0.32s and 0.40s, respectively, as
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Rated power 1.5 kw
Rated current 3.7 A
Rated speed 1420 r/m
Rated Torque 10 N.m

Number of pole pairs 2
Stator resistance 4.85 Ω
Rotor resistance 3.805 Ω

Stator self inductance 0.274 H
Rotor self inductance 0.274 H
Mutual inductance 0.285 H

Rotor inertia 0.031kg.m2

Friction coefficient 0.001136N.m.s/rd

Table 4: The induction machine parameters.

shown in Figure 8(a). Indeed, the mismatch between the reference speed and the motor
rotor speed at steady state is nearly neglected, which proves that the applied control on
the studied topology fulfills the requirements of the speed imposed at relatively normal
speed values. On the other hand, to check the robustness of the speed control under
torque load changes, a load torque is applied into two intervals of t ∈ [0.6s, 0.9s] and
t ∈ [2s, 2.2s] with a value of 5N.m and -5N.m, respectively. It can be seen clearly that
the changes of the load torque have no impact on the speed where it remains equal to
the reference speed, which proves the robustness of the applied control on the studied
topology in terms of load torque variation within the rated values of the motor.

Figure 8(b) represents the dynamic response of the electromagnetic torque developed
by the motor Tem to ensure the dynamics of the motor imposed by the speed profile
and the applied load torque. It can be noted that during the startup step at no load,
the motor operates at the acceleration mode to reach the imposed reference speed, and
therefore, Tem should behave accordingly where it takes the value of 10N.m to ensure
a fast passage of such mode, whereas when the rotor speed reaches the reference speed
at t = 0.32s, Tem falls to the value of 0.11N.m, which is equal to the value of torque
resulting from the motor friction. When the load torque TL = 5N.m is applied to the
induction machine shaft during the time interval t ∈ [0.6s, 0.9s], the Tem is changed
accordingly to be equal to the load torque. The zoom window taken at this time interval
proves clearly the high dynamics of Tem as shown in Figure 8(b), where its average value
is slightly greater than the load torque, this is due to the fact that the resulting friction
torque aforementioned is added to the load torque. The same dynamics behavior of the
Tem can be observed in the zoom window within the time interval t ∈ [2s, 2.2s] when
the motor is running in the backward direction with the same speed of -100 rad/s and
the load torque TL = −5N.m as shown in Figure 8(b). It is worthy to clarify the high
dynamics of the used control during the rotation reversal of the machine at time 1.3s,
where the electromagnetic torque increases promptly to -10N.m in the inverse direction
to ensure the inversion of the rotor speed which is achieved nearly within 0.4s passing
through the deceleration mode during t ∈ [1.2s, 1.4s] and the acceleration mode in the
backward direction during t ∈ [1.4s, 1.6s]. As the rotor speed of the machine reaches
the reference speed -100 rad/s, the electromagnetic torque is set back to be equal to
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the resulting machine friction torque as shown in Figure 8(b). Based on the whole
observation of Figures 8(a) and 8(b), it can be said that the used control with the used
inverter topology allow ensuring a high dynamics performance control of the machine
with an accurate tracking of the reference speed and the load torque variations.

Figure 8(c) shows the stator flux which tracks the reference flux with a neglected
deviation of 0.1% , where it keeps its value constant with a very neglected ripples along
the variation of the speed and the load torque as it can be seen in the zoom windows
taken at different intervals. Whereas the flux in the (αβ) frame is shown in Figure 8(d),
it presents a circle with a very tiny thickness.

The stator currents in the three phases are shown in Figure 8(e). Without taking
into account the very short transient periods at different stage of start-up and speed
reversal, it can be observed clearly within the zoom windows that the current is balanced
under no-load and load torque application in both speed directions, where the measured
currents are 1.48 A and 2.26 A, respectively. On the other hand, despite the output
voltages of the matrix converter which are applied to the terminals of the machine, the
currents absorbed by the machine possess sine waveform with neglected ripples as shown
clearly within the zoom windows of Figure 8(e).

Figure 8(f) shows the DC-link voltage. It is obvious that it presents important fluc-
tuations around its average value of 475 V. The zoom windows taken at four regions
with a width corresponding to the power supply period of 0.02 s, demonstrate that the
DC-link voltage fluctuates with a frequency which equals six times the frequency of the
input voltage and its amplitude is limited within the range of 540 V and 310 V.

Figure 8(g) shows the IMC3 input current of phase “a”, where it can be noted in
each zoomed window at different intervals of time that this current is rich in harmonics
and can be a source of pollution to the power supply. Therefore, a passive LC low pass
filter is inserted between the source and the IMC3 input to reduce the harmonics content
and to overcome this major problem. The resulting current at the power supply side of
phase “a” is depicted in Figure 8(h), it can be seen clearly within the zoomed window in
this figure that the power supply current has nearly a sine waveform, furthermore, the
shift phase with the power supply voltage is zero, which means a nearly power factor
is ensured. Therein, the zoomed window is within the interval of time [1.2s, 1.8s] that
presents the step of speed reverse, where the motor works into quadrant II and quadrant
III. Indeed, in the quadrant II, the mode of operation is referred to the breaking of the
motor to reach the zero speed, which means that the power absorbed from the source
decreases and transfer of power is directed from the motor to the DC-link. Whereas,
when the motor starts changing its speed, it works in the quadrant III and the power
is transferred from the power supply to the motor, hence the current increases till it
reaches the required value which is corresponding to the steady state speed. Based on
the obtained simulation results, it can be concluded that the proposed control with the
proposed topology of the IMC3 can ensure sufficient dynamics for the control of the
speed of the motor under different aforementioned operation modes. It is also worthy
to mention that the use of the multi-level IMC allows obtaining better flexibility of the
control and avoiding the bulky topology of the conventional two-stage three-level inverter
and its intermediate DC-link.

6.2 Scenario 2

In this scenario, the profile of the reference speed is presented in Figure 9(a). The
motor operates along three modes. The first mode is the forward mode at low speed
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: (a) The rotor speed of the controlled machine and the imposed reference
speed, (b) The electromagnetic torque of the motor and the applied load torque, (c)
The stator flux and the reference flux, (d) The stator flux in the (αβ) frame, (e) The
stator currents, (f) The virtual DC-link between the rectifier stage and the three-level
inverter stage in the used indirect matrix converter, (g) The input current of the IMC

at phase “a”, (h) The current and the voltage of phase “a” at the source side.

t ∈ [0s, 1.2s], where the motor starts up from zero speed to reach its steady value of
30 rad/s. The second mode is the backward mode at low speed t ∈ [1.2s, 2.5s], where
the rotor speed is reversed to reach the steady value of -30 rad/s. The last mode is
the forward mode at high speed t ∈ [2.5s, 4s], where the rotor speed is reversed once
more to reach the speed value of 100 rad/s. It can be noted clearly within the three
steps of speed changes that the motor follows the reference profile precisely without any
kind of overshoot after short transient durations along the start-up and the two sudden
rotation reversals, which last 0.1s, 0.2s and 0.5s, respectively, as shown in Figure 9(a).
On the other hand, a load torque is applied within two intervals of t ∈ [0.6s, 0.9s] and
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t ∈ [2s, 2.2s] with a value of 5N.m and -5N.m, respectively, as shown in Figure 9(b). It can
be noted that during the startup step at no load in the first mode and during the speed
reversal in the third mode, the Tem takes the value of 10N.m to ensure a fast passage to
the steady speed, whereas when the rotor speed reaches the reference speed, Tem falls to
the value of the 0.034N.m, which is equal to the value of torque resulting from the motor
friction. On the contrary, when the motor runs at steady speed in the two first modes,
Tem is equal to the applied load torque during the time interval t ∈ [0.6s , 0.9s] and
t ∈ [2s, 2.2s] as shown in Figure 9(b) It is also observed that the electromagnetic torque
increases according to the speeds changes to ensure the rapid tracking of the reference
speed as shown in the different transition steps of the speed reference. Figure 9(c) shows
the stator flux, where it is equal to the reference flux 0.7Wb with limited ripples. It can
be seen clearly that when the speed is high, more ripples are observed, which is related
to the increase of harmonics components magnitudes within the tolerable range. On the
other hand, the motor currents change according to the transition steps and the applied
load. It behaves similarly as in the first scenario, however the increase of current during
the transition steps is less, as shown in Figure 9(d). The virtual DC-link voltage also
behaves in the same way as in the first scenario with the same characteristics as shown
in Figure 9(e). The source currents from the input side of the IMC3 before the filter
have nearly a sine waveform and are in phase with the power supply voltage as it can be
noticed for the phase “a” in Figure 9(f).

It can be concluded that the application of the DTC with the topology of three-level
IMC can ensure improved performance dynamics for the control of the induction machine
within a wide range of speed variation.

Based on the obtained results from the both investigated scenarios, it can be said that
the presented topology of the three-level matrix converter presents better performance
compared to the conventional two-level inverters, which are commonly used in many
industrial applications. Indeed, the dynamic responses of the induction motor towards
the variation of the load at nominal and low speed prove the improved reliability and the
accuracy of the applied control technique with the aforementioned converter topology
for ensuring the dynamic behavior of the induction motor. On the other hand, the
used converter allows to provide a current with low harmonics content, which means low
ripples in the developed torque, and hence less mechanical stresses are applied on the
motor. At the same time, it is always possible to perform the control of the converter
to meet the requirements of the quality of the input current, which is a major drawback
within the conventional converter topologies, where the absorbed harmonics from the
power source are minimized and their effect is limited. It is worthy to mention that
based on the carried control, the input power factor is nearly equal to the unit, which
means high efficiency of the whole system can be achieved.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: (a) The rotor speed of the controlled machine and the imposed reference
speed, (b) The electromagnetic torque of the motor and the applied load torque, (c)
The stator flux and the reference flux, (d) The stator currents, e) The virtual DC-link
between the rectifier stage and the three-level inverter stage in the used indirect matrix

converter, (f) current and the voltage of phase “a” at the source side.

7 Conclusion

In this paper, the direct torque control (DTC) technique is applied for the control of a
three-phase induction machine within a wide speed range variation based on the use of
a three-level indirect matrix converter (IMC3). The main aim of using the IMC3 under
DTC technique is to ensure improved advantages compared to the conventional conver-
sion topologies such as ensuring small size, eliminating the bulky DC-link, improving the
output form, controlling the input current wave for controlling the input power factor,
reducing the rate of dV

dt at the used switches, and ensuring a fast and accurate torque
response. Indeed, due to the large number of voltage vectors that can be generated by
IMC3, the use of the IMC3 allows elaborating a switching table for the selection of the
appropriate vectors to be applied to the induction machine to ensure the regulation of the
stator flux and the electromagnetic torque with high performance, to improve the out-
put current waveform to guarantee nearly sine waveform of the input current with unity
power factor and to operate within a wide range of speed variation without deficiency.
Based on the obtained simulation results, it can be said the application of the three-level
indirect matrix converter for driving the three-phase induction motor can provide im-
proved dynamic and static performances under an appropriate control technique such as
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the DTC, in terms of dynamic responses, quality of input and output currents, range of
speed variation, less ripples of torque, which lead to less vibrations and less mechanical
constraints, less size and less costs.
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Abstract: The aim of this paper is to study a degenerate parabolic reaction-diffusion
model with nonlinear boundary conditions. Its specificity lies in the introduction of
degenerate diffusion. We prove the existence of maximal and minimal periodic solu-
tions, including the uniqueness of the solution. This model appears in the modeling
of many periodic diffusion phenomena in various sciences. Our approach towards our
goal is through the method of upper and lower solutions.
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1 Introduction

Many problems arise in biology, chemistry, applied science and engineering in the form
of periodic reaction-diffusion models. This has been observed in recent scientific studies.
Different models can be found in Murray [12,13]. As for the mathematical methods used,
some of them are found in the works of Alaa and Mesbahi et al. [2,3,10,11,17], and also
in Pao [16].

In recent years, special attention has been paid to degenerate reaction-diffusion sys-
tems with specific diffusion coefficients and reaction functions, either in the elliptical or
parabolic case, as it is in our work. This is due to their wide applications in various sci-
ences. Our work will be in this context; we will prove the existence of periodic maximal
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and minimal solutions for a class of degenerate quasilinear parabolic reaction-diffusion
systems, including the uniqueness of the positive solution.

Degenerate reaction-diffusion systems appear naturally in the mathematical modeling
of a wide variety of diffusion phenomena, not only in the natural sciences but also in
engineering, chemistry and economics, as, for example, the dynamics of gas, population
dynamics, dynamic systems, fusion process, certain biological models, valuation of assets
in economy, composite media. We find many models and applications in Abuweden [1],
Alaa et al. [3], Anderson [4], Bouzelmate and Gmira [5], Carrillo [6], Holden et al. [8],
Saffidine and Mesbahi [17], and Zhang and Lin [18], where we also find well-known
techniques and methods which are frequently used to study such a problem.

These systems are of great importance from the point of view of applications and also
from the point of view of analysis, as they require the design of new technologies and the
development of known techniques to study them. Therefore, this topic is of great and
growing importance in science and engineering.

The introduction of degenerate diffusion leads to difficulties in the mathematical
analysis of the model. For this, we will use a successful technique described by Pao based
on the method of upper and lower solutions and its associated monotone iterations. The
basic idea of this method is that when using an upper solution or a lower solution as
the initial iteration in a suitable iterative process, the resulting sequence of iterations is
monotone and converges to a solution of the problem. For more details on this technique,
see Pao’s works [14–16]. We will therefore pay special attention to a model that has
several applications which all have in common that they are modeled by the following
nonlinear degenerate parabolic reaction-diffusion system:

(uj)t − djdiv (Dj (uj)∇uj) = fj (t, x,u) in Γ,

Dj (uj)
∂uj

∂η
= βj (t, x)uj + φj (t, x,u) on Σ,

uj (0, x) = uj (T, x) in Ω,

for all 1 ≤ j ≤ m,

(1)

where u = u (t, x) = (u1 (t, x) , . . . , um (t, x)), Ω is a bounded domain subset of Rn (n ≥ 1)
with the smooth boundary ∂Ω, Γ = R+ × Ω, Γ̄ = R+ × Ω̄, Σ = R+ × ∂Ω, η denotes the

unit normal vector to the boundary ∂Ω,
∂

∂η
denotes the outward normal derivative on

∂Ω. For each 1 ≤ j ≤ m, dj > 0 and Dj , fj , φj , βj are prescribed functions satisfying
the conditions in hypothesis (H), which we will mention in the next section.

The rest of this paper is organized as follows. In the next section, we present the
assumptions under which we will study our problem. Next, we give some results regarding
the approximate problem. In the fourth section, we state our main result and also present
its proof in detail. The penultimate section is devoted to an application of the obtained
result. Finally, we conclude with some remarks and perspectives.

2 Assumptions and Notations

In all that follows, we denote ũ ≡ (ũ1, . . . ũm), û ≡ (û1, . . . ûm). The inequality û ≤ ũ
means that ûj ≤ ũj for all 1 ≤ j ≤ m. Below, we will denote E to one of the sets Γ, Γ̄,
Σ or Ω, Cℓ (E) to the space of all continuous functions whose partial derivatives up to
the m-th order are continuous in E , Cℓ+α (E) to the space of functions in Cℓ (E) that
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are Hölder continuous in E with exponent α ∈ (0, 1). Let, also, Cℓ,m (E) be the space of
functions whose ℓ -times derivatives in t and m -times derivatives in x are continuous in
E. In particular, the space C1,2 (E) consists of all functions that are once continuously
differentiable in t and twice continuously differentiable in x for (t, x) ∈ E. When ℓ = 0,
we denote by C (E) the set of continuous functions in E.

Now, we have to clarify in which sense we want to solve our problem.

Definition 2.1 A pair of vector functions ũ ≡ (ũ1, . . . ũm), û ≡ (û1, . . . ûm) in
C

(
Γ̄
)
∩ C1,2 (Γ) are called ordered upper and lower solutions of (1) if û ≤ ũ and if

û satisfies the relations
(ûj)t − djdiv (Di (ûj)∇ûj) ≤ fj (t, x, û) in Γ,

Dj (ûj)
∂ûj

∂η
≤ βj (t, x) ûj + φj (t, x, û) on Σ,

ûj (0, x) ≤ ûj (T, x) in Ω,

(2)

for all 1 ≤ j ≤ m, and ũ satisfies (2) with inequalities reversed.

Now, we make the following assumption:

(H) For each 1 ≤ j ≤ m, the following conditions hold:

(i) fj (t, x, ·) ∈ C
α
2 ,α

(
Γ̄
)
, 0 ≤ βj ∈ C1 (Σ), φj (t, x, ·) ∈ C1+α

2 ,2+α (Σ), and they are all
T -periodic in t.

(ii) Dj (uj) ∈ C1+α (Qj), Dj (uj) > 0 for uj > 0 and Dj (0) ≥ 0.

(iii) fj (·,u) , φj (·,u) ∈ C1 (Q) such that

∂fj
∂ui

(·,u) ≥ 0,
∂φj

∂uj
(·,u) = 0,

∂φj

∂ui
(·,u) ≥ 0 for all j ̸= i, u ∈ Q.

In the above hypothesis, the subsets Qj and Q are given by the sectors between a
pair of upper and lower solutions.

Remark 2.1 In the above hypothesis, we allow Dj (uj) > 0 for uj > 0 and Dj (0) ≥
0. This is why we say that system (1) is degenerate, this is our main point of research.
For more information on degenerate parabolic problems, see DiBenedetto [7].

3 Approximating Scheme

To simplify our study, we perform the following change of variables:

wj = Ij (uj) =

∫ uj

0

Dj (s) ds for uj ≥ 0, 1 ≤ j ≤ m.

Note that this is a continuous change, where I ′j (uj) = Dj (uj), and therefore its
inverse uj = qj (wj) exists and is an increasing function of wj > 0 for all 1 ≤ j ≤ m. We
have

(wj)t = Dj (uj) (uj)t , ∇wj = Dj (uj)∇uj ,
∂wj

∂η
= Dj (uj)

∂uj

∂η
,



200 A. MESBAHI AND S. MESBAHI

then system (1) is equivalent to the following:

(Dj (uj))
−1

(wj)t − dj∆wj = fj (t, x,u) in Γ,

∂wj

∂η
= βj (t, x) .qj (wj) + φj (t, x,u) on Σ,

wj (0, x) = wj (T, x) in Ω,

uj = qj (wj) in Γ̄,

for all 1 ≤ j ≤ m.

(3)

Let w̃j = Ij (ũj), ŵj = Ij (ûj), w̃ = (w̃1, . . . , w̃m) and ŵ = (ŵ1, . . . , ŵm). It is easy
to verify that (ũ, w̃) and (û, ŵ) are ordered upper and lower solutions of (3). We set

Qj =
{
uj ∈ C

(
Γ̄
)
: ûj ≤ uj ≤ ũj

}
, 1 ≤ j ≤ m,

Q =
{
u ∈ C

(
Ω̄
)
: û ≤ u ≤ ũ

}
,

Qj×Q =
{
(u,w) ∈ C

(
Ω̄
)
×C

(
Ω̄
)
: (û, ŵ) ≤ (u,w) ≤ (ũ, w̃)

}
.

Now, we define the modified functions D̄j (uj), 1 ≤ j ≤ m, by

D̄j (uj) =

 Dj (uj) + (uj − ũj) , if uj > ũj ,
Dj (uj) , if ûj ≤ uj ≤ ũj ,
Dj (uj) + (ûj − uj) , if uj < ûj .

It is clear that D̄j (0) > 0 if either Dj (0) > 0 and ûj ≥ 0 or Dj (0) = 0 and

ûj ≥ δj > 0. This implies the existence of nonnegative functions λ
(1)
j , λ

(2)
j ∈ Cα

(
Γ̄
)

such that

λ
(1)
j D̄j (uj) +

∂fj
∂uj

(·,u) ≥ 0 , λ
(2)
j D̄j (uj) + βj ≥ 0 for u ∈ Q. (4)

System (3) directly implies

(Dj (uj))
−1

(wj)t −
(
dj∆wj − λ

(1)
j wj

)
= fj (t, x,u) + λ

(1)
j wj in Γ,

∂wj

∂η
+ λ

(2)
j wj = βj (t, x) qj (wj) + φj (t, x,u) + λ

(2)
j wj on Σ,

wj (0, x) = wj (T, x) in Ω,

uj = qj (wj) in Γ̄,
for all 1 ≤ j ≤ m.

For all 1 ≤ j ≤ m, we denote

Fj (t, x,u) = fj (t, x,u) + λ
(1)
j wj = fj (t, x,u) + λ

(1)
j Īj (uj) ,

Ψj (t, x,u) = βj (t, x)uj + φj (t, x,u) + λ
(2)
j Īj (uj) ,

Ljwj = dj∆wj − λ
(1)
j wj ,

Bjwj =
∂wj

∂η
+ λ

(2)
j wj ,
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where

Īj (uj) =

∫ uj

0

D̄j (s) ds, for uj ≥ 0, 1 ≤ j ≤ m.

According to (4), Fj (·,u) and Gj (·,u) are nondecreasing, i.e.,

Fj (·,v) ≤ Fj (·,u) , Ψj (·,v) ≤ Ψj (·,u) , where û ≤ v ≤ u ≤ ũ. (5)

Consequently, system (3) can be reformulated as follows:

(Dj (uj))
−1

(wj)t − Ljwj = Fj (t, x,u) in Γ,

Bjwj = Ψj (t, x,u) on Σ,

wj (0, x) = wj (T, x) in Ω,

uj = qj (wj) in Γ̄,
for all 1 ≤ j ≤ m.

(6)

It is clear that systems (1) and (6) are equivalent, therefore the existence of a periodic
solution to the equivalent system(6) leads to the existence of that to system (1).

We recall the following important lemma, which will be used to construct monotone
convergent sequences. In Pao and Ruan [14], we find a detailed proof of this lemma.

Lemma 3.1 Let σ (t, x) > 0 in Γ, C(2) (t, x) ≥ 0 on Σ, and let either (i) C(1) (t, x) >

0 in Γ or (ii)

(
−C(1)

σ

)
be bounded on Γ̄. If z ∈ C2,1

(
Γ̄
)
∩ C

(
Γ̄
)
and satisfies the

following inequalities:
σ (t, x) zt − div (a∇z) + b.∇z + C(1)z ≥ 0 in Γ,

∂z

∂η
+ C(2)z ≥ 0 on Σ,

z (0, x) ≥ 0 in Ω,

then z ≥ 0 in Γ̄.

Assume that a pair of ordered upper and lower solutions ũ, v̂ exist and hypothesis
(H) holds, using either u(0) = ũ or u(0) = û as the initial iteration, we can construct a
sequence

{
u(k),w(k)

}
from the linear iteration process

(
D̄j

(
u
(k)
j

))−1 (
w

(k)
j

)
t
− Ljw

(k)
j = Fj

(
t, x,u(k−1)

)
in Γ,

Bjw
(k)
j = Ψj

(
t, x,u(k−1)

)
on Σ,

w
(k)
j (0, x) = w

(k−1)
j (T, x) in Ω,

u
(k)
j = qj

(
w

(k−1)
j

)
in Γ̄

for all 1 ≤ j ≤ m,

(7)

where u(k) =
(
u
(k)
1 , . . . , u

(k)
m

)
and w(k) =

(
w

(k)
1 , . . . , w

(k)
m

)
. It is clear that this sequence

is well defined, see Ladyženskaja et al. [9]. Denote the sequence by
{
ū(k), w̄(k)

}
if u(0) =

ũ, and by
{
u(k),w(k)

}
if u(0) = û, and refer to them as the maximal and minimal

sequences, respectively.
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Lemma 3.2 The maximal and minimal sequences
{
ū(k), w̄(k)

}
,
{
u(k),w(k)

}
possess

the monotone property, i.e., for k ≥ 1,

(û, ŵ) ≤
(
u(k),w(k)

)
≤

(
u(k+1),w(k+1)

)
≤

(
ū(k+1), w̄(k+1)

)
≤

(
ū(k), w̄(k)

)
≤ (ũ, w̃) .

Proof. Let z
(1)
j = w

(1)
j −w

(0)
j = w

(1)
j − ŵj , 1 ≤ j ≤ m. Then by (7) and the property

of a lower solution stipulated in the previous Definition 2.1, we obtain

(
D̄j

(
u
(1)
j

))−1 (
z
(1)
j

)
t
− Ljz

(1)
j + γ

(0)
j z

(1)
j ≥ 0 in Γ,

Bjz
(1)
j = Ψj

(
·,u(0)

)
−Bjŵj ≥ 0 on Σ,

z
(1)
j (0, x) = w

(0)
j (T, x)− w

(0)
j (0, x) = ŵj (T, x)− ŵj (0, x) in Ω,

where γ
(0)
j is a bounded function on Γ̄ given in the form

γ
(0)
j = −

D̄′
j

(
ξ
(0)
j

)
(
D̄j

(
ξ
(0)
j

))3

(
w

(0)
j

)
t

with u
(0)
j ≤ ξ

(0)
j ≡ ξ

(0)
j (t, x) ≤ u

(1)
j .

By the hypothesis D̄j (0) > 0 or Dj (0) = 0 and ûj ≥ δj > 0, the function(
D̄j

(
u
(1)
j

))−1

is also bounded in Γ̄. By Lemma 3.1, we find z
(1)
j ≥ 0. This proves

w
(1)
j ≥ w

(0)
j and u

(1)
j ≥ u

(0)
j . In the same way, but with the upper solution, we

find w
(1)
j ≤ w

(0)
j and u

(1)
j ≤ u

(0)
j . In the following, we prove that u

(1)
j ≥ u

(1)
j . Let

z
(1)
j = w

(1)
j − w

(1)
j , then by (5) and (7), we have

(
D̄j

(
u
(1)
j

))−1 (
z
(1)
j

)
t
− Ljz

(1)
j + γ

(0)
j z

(1)
j = Fj

(
·, ū(0)

)
− Fj

(
·,u(0)

)
in Γ,

Bjz
(1)
j = Ψj

(
·, ū(0)

)
−Ψj

(
·,u(0)

)
≥ 0 on Σ,

z
(1)
j (0, x) = w

(1)
j (0, x)− w

(1)
j (0, x) = w

(0)
j (T, x)− w

(0)
j (T, x) ≥ 0 in Ω.

By Lemma 3.1, we have z
(1)
j ≥ 0. This is what gives

u(0) ≤ u(1) ≤ ū(1) ≤ ū(0).

By induction, we can easily have the monotone property.
According to Lemma 3.2, the pointwise limits

lim
k→∞

(
ū(k), w̄(k)

)
= (ū, w̄) , lim

k→∞

(
u(k),w(k)

)
= (u,w) (8)

exist and verify the relation (ū, w̄) ≥ (u,w) in Γ̄. It results from (8) and u(k) (0, x) =
u(k) (T, x) that ū (0, x) = ū (T, x) and u (0, x) = u (T, x) on Ω̄.

We will show that ū and u are, respectively, the maximal and minimal periodic
solutions of (1). In other words, we will prove that if u is another periodic solution of
(1) in (û, ũ), then u ≤ u ≤ ū.
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4 The Main Result

Now, we can state the main result of this paper, it is the following theorem.

Theorem 4.1 Let ũ, û be a pair of ordered upper and lower solutions of (1), and let
hypothesis (H) hold with Dj (0) > 0 or Dj (0) = 0 and ûj ≥ δ > 0. Then the sequences{
ū(k), w̄(k)

}
,
{
u(k),w(k)

}
obtained from (7) converge monotonically from above to a

maximal periodic solution (ū, w̄) and from below to a minimal periodic solution (u,w)
in Q× Q̄, respectively, and satisfy the following inequalities for k ≥ 1 :

(û, ŵ) ≤
(
u(k),w(k)

)
≤

(
u(k+1),w(k+1)

)
≤ (u,w)

≤ (ū, w̄) ≤
(
ū(k+1), w̄(k+1)

)
≤

(
ū(k), w̄(k)

)
≤ (ũ, w̃) .

Moreover, ū and u are the maximal and minimal periodic solutions of (1), respectively.
If, in addition, ū (0, x) = u (0, x), then ū (t, x) = u (t, x) (≡ u∗ (t, x)) and u∗ (t, x) is the
unique solution of (1).

Proof. As in Theorem 2.1 in Pao and Ruan [14], using the standard regularity
argument for the equivalent quasilinear parabolic equations and Schauder estimates, we
can conclude that the limits (ū, w̄) and (u,w) are the solutions of (6), and therefore ū,
u are the solutions of (1). We next show the periodic property of solutions (ū, w̄) and
(u,w). We let zj (t, x) = wj (t, x) − wj (t+ T, x), where wj stands for either wj or wj

for 1 ≤ j ≤ m. By hypothesis (H) and the mean-value theorem, we have

(Dj (uj))
−1

(zj)t − Lj (t) zj

= [(Dj (uj (t, x)))
−1

(wj)t (t, x)

−Lj (t)wj (t, x)]− [(Dj (uj (t, x)))
−1

(wj)t (t+ T, x)

−Lj (t+ T )wj (t+ T, x)]

= Fj (t, x,u (t, x))− Fj (t, x,u (t+ T, x))

+ (Dj (uj (t+ T, x)))
−1

(wj)t (t+ T, x)

− (Dj (uj (t, x)))
−1

(wj)t (t+ T, x)

=

m∑
k=1

∂Fj

∂uk
(t, x, ξ) zj (t, x) +

D′
j (ηj)

(Dj (ηj))
3 (wj)t (t+ T, x) zj (t, x) ,

which gives us

(Dj (uj))
−1

(zj)t − Lj (t) zj + γjzj =

m∑
k=1

∂Fj

∂uk
(t, x, ξ) zj (t, x) in Γ̄, (9)

where γj =
D′

j(ηj)

(Dj(ηj))
3 (wj)t (t+ T, x) is bounded in Γ̄, ξ ≡ ξ (t, x) is the different interme-

diate value in Q. We can also get

Bjzj = Bj (t)wj (t, x)−Bj (t+ T )wj (t+ T, x)

= Ψj (t, x,u (t, x))−Ψj (t, x,u (t+ T, x))

=
m∑

k=1

∂Ψj

∂uk
(t, x, ζ) zj (t, x) on Σ,

(10)
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and
zj (0, x) = wj (0, x)− wj (T, x) in Ω, (11)

where ζ = ζ (t, x) is the different intermediate value in Q. Using relation (5) and Lemma
10.9.1 in Pao [16], we obtain zj (t, x) ≥ 0 in Γ̄ for 1 ≤ j ≤ m. Replacing zj by −zj
in (9)-(11) leads to zj (t, x) ≤ 0 in Γ̄, this yields zj (t, x) = 0, which proves wj (t, x) =
wj (t+ T, x) for 1 ≤ j ≤ m; hence the periodicity of wj . Therefore w (t, x) = w (t+ T, x)
and then u (t, x) = u (t+ T, x).

By (5), we observe that every solution u of (1) in (û, ũ) is an upper solution as well
as a lower solution. The argument in the proof of Lemma 3.2 yields u ≥ u(k) ≥ û for
every k. Letting k → ∞ gives u ≥ u. A similar argument using u and û as ordered
upper and lower solutions leads to u ≤ ū. The same work, taking u and û as ordered
upper and lower solutions, leads to u ≤ ū.

Finally, if ū (0, x) = u (0, x) (≡ u0 (x)), we have w̄ (0, x) = w (0, x), then
when considering problem (6) with the initial condition (u (0, x) ,w (0, x)) =
(u0 (x) ,w0 (x)), the well-known existence-uniqueness result for parabolic systems im-
plies that (ū (t, x) ,w (t, x)) = (u (t, x) ,w (t, x)), and ū (t, x) = u (t, x) on Γ̄. With this
we end the proof of Theorem 4.1.

5 Application

As an application of the obtained result, we give the following growth Lotka-Volterra
competition model with two competing species, where the reaction rates of the competi-
tion follow the hypothesis of the Holling-Tanner interaction mechanism

(u1)t − div (D1 (u1)∇u1) = u1

(
a1 − b1u1 − c1

u2

1 + σ1u1

)
in Γ,

(u2)t − div (D2 (u2)∇u2) = u2

(
a2 − b2

u1

1 + σ2u1
− c2u2

)
in Γ,

D1 (u1)
∂u1

∂η
= β1 (x)u1 , D2 (u2)

∂u2

∂η
= β2 (x)u2 on Σ,

u1 (0, x) = u1 (T, x) , u2 (0, x) = u2 (T, x) in Ω,

(12)

where for each j ∈ {1, 2} , aj , bj , cj are positive constants and β1 (x) ≥ 0 on ∂Ω, σj

is nonnegative function. This system is discussed in Pao [15, 16], where there are also
several other applications. One of the main concerns for problem (12) is whether, and
when the two competing species can coexist. The coexistence problem is ensured if the
system has a positive periodic solution.

6 Concluding Remarks and Perspectives

The fruit of this work is a result of existence and positivity of periodic solutions for
a class of degenerate parabolic reaction-diffusion models. Despite some difficulties, we
succeeded in obtaining several important results. It is clear from Theorem 4.1 that under
hypothesis (H), system (1) admits at least one periodic solution if there exists a pair of
ordered upper and lower solutions.

The results of this research paper will motivate the development of the implemented
methods to different open problems in several scientific fields, such as the anisotropic
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system, which consists in adding diffusion coefficients to the studied system depending
on (t, x) or, more generally, depending on (t, x, u,∇u). Moreover, we can study our
problem numerically using one of the well known methods.
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1 Introduction

Nonlinear dynamics is widely used in engineering, physics, biology and many other scien-
tific areas. The interest in nonlinear dynamics and chaotic dynamics has grown rapidly
since 1963, when Edward Lorenz, an American meteorologist, discovered a classic chaotic
system, and the phenomenon of chaos was gradually being considered by many scholars
in various fields. Given the vast applications of chaos phenomena in various sciences
such as secure communications [1], nonlinear circuits [2], chemical reactions [3], power
electronics [4], lasers [5], encryption [6], study and research on the inherent character-
istics of this phenomenon and its control has become of importance in sciences. Due
to the introduction of new chaotic systems, the problem of controlling chaos in these
types of systems was considered by scientists and researchers in order to control chaos
for different purposes such as removing chaos, behavior and anti-chaos control (chaos for
a system), bipolar control and synchronization of two chaotic systems. A chaotic system
with more than one positive Lyapunov exponent is known as a hyperchaotic system which
means that its dynamics extends simultaneously in several different directions. Hyper-
chaos systems in the presence of more than one positive Lyapunov exponent due to more
complex dynamics, which improves applications in secure communications, encryption
and decryption, have attracted the attention of many researchers in recent years. Lately,
several supercharged systems have been discovered with high-level dynamics. For ex-
ample, Chua hyperchaos [7], Rossler system [8], Lorenz hyperchaos system [9]. In 2002,
Levechin found a new chaotic system known as the Lu system which is the bridge be-
tween Lorenz’s chaotic system and Chen’s chaotic system. The Lu hyperchaos system is
based on the chaos Lu system and state feedback [10].

One of the important applications of the hyperchaotic Lu system similar to most of the
other hyperchaotic systems mentioned above in the field of secure communications is the
use of hyperchaotic systems to increase the level of information security. Because of the
noise-like and complex behaviors, chaotic systems have the ability to cover information
with a high degree of reliability. The general idea for transmitting information by chaotic
systems is based on the fact that the embedding of information in the transmitter system
produces a chaotic signal.

In recent years, chaos and synchronization control have been investigated, for exam-
ple, synchronization with adaptive control [11], in which the problem of synchronizing
two hyperchaos systems with an adaptive controller is investigated, active control [12],
fuzzy sliding mode control [13], impulsive synchronization [14], active backstepping syn-
chronization [15], nonlinear schemes [16], [17], hybrid projective synchronization [18] and
so on.

Synchronization of chaos systems has been widely discussed in recent decades, and
attracted the attention of many researchers in controlling chaos. As a general synchro-
nization definition, it is possible to synchronize the variables of a chaotic system with
another chaotic system, when the primary system is called master, and the second system
is slave. The first method of synchronizing two chaotic systems was proposed in [19].

In this paper, synchronization of hyperchaos systems, despite the uncertainties, dis-
turbance and different initial conditions, was investigated. A sliding-adaptive control,
regarding its advantages such as simple and easy realization, quick answer, good transient
performance, and robustness against system uncertainties and disturbances, is designed
as a control method for synchronization. The stability of the chaotic system has been
proved by controllers designed using the Lyapunov theorem, and it is shown that the
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slave system states asymptotically track the states of the master system. One of the
most important applications of the presented method in this paper in nonlinear systems
and systems theory is a secure communications system, where synchronization between
the transmitter and the receiver is a vital problem. The overall structure of this paper
is as follows. In the second section, the dynamical model of the hyperchaos system is
introduced. The third part of the paper describes the issue of synchronization between
two hyperchaos systems, with known bound of uncertainties and disturbances. Further-
more in this section, estimation of the unknown parameters of the hyperchaos system is
investigated in spite of uncertainty and disturbance. Finally, simulation results of the
proposed controller are presented in Section 4.

2 Introduction of Dynamic Model

Elabbasy et al. [20] represented dynamic equations of the hyperchaos system as follows:
ẋ1 = a(x2 − x1),
ẋ2 = cx2 − x1x3 + x4,
ẋ3 = x1x2 − bx3,
ẋ4 = x3 − dx4,

(1)

where the fourth state is a simple feedback, that is added to the second state, and
a = 20, b = 5, c = 10, d = 1.5, andX = [x1, x2, x3, x4] is the vector of the state variables
of the master system. Both master and slave systems follow the same dynamical equations
as equation (1) with different initial conditions, but the main difference is that all states of
the master system should be followed by a slave system using a controller. Therefore, the
slave system, with the disturbance and parametric uncertainty, is expressed as follows:

ẏ1 = a(y2 − y1) + ∆f1 + w1 + u1,
ẏ2 = cy2 − y1y3 + y4 +∆f2 + w2 + u2,
ẏ3 = y1y2 − by3 +∆f3 + w3 + u3,
ẏ4 = y3 − dy4 +∆f4 + w4 + u4,

(2)

in which u = [u1, u2, u3, u4] is the control vector, and Y = [y1, y2, y3, y4] is the vector
of states of the slave system, ∥∆fi∥ ≤ αi, i = 1, .., 4, is the parametric uncertainty with
known bound and ∥wi∥ ≤ βi, i = 1, .., 4, is the disturbance input with known bound. In
Figure 1, the hyperchaos system is shown with a parametric set of a = 20, b = 5, c =
10, d = 1.5 [14]. These parameters, with the Lyapunov exponent 0.75, 0.03,−1.55,−15.73
calculated in [21], cause a hyperchaos system.

3 Synchronization of Two Hyperchaos Lu Systems

In the real world, all or some of the system’s parameters are unknown or uncertain. So,
the synchronization issue may fail. In this section, a synchronization method for two
same hyperchaos Lu systems is mentioned. Consider the master and slave systems (1)
and (2). Due to the definition of the error as ei = yi − xi, i = 1, 2, 3, 4, we have

ė1 = a(e2 − e1) + ∆f1 + w1 + u1,
ė2 = ce2 + e4 − e1e3 − x1e3 − x3e1 +∆f2 + w2 + u2,
ė3 = −be3 + e1e2 + x2e1 + x1e2 +∆f3 + w3 + u3,
ė4 = e3 − de4 +∆f4 + w4 + u4.

(3)
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Figure 1: Images of attractor of hyperchaos Lu system.

3.1 Synchronization of two hyperchaos Lu systems with uncertainty and
disturbance input

First, the problem of synchronizing two same hyperchaos systems, with known parame-
ters is considered and the sliding mode controller is designed. The sliding mode control
is a nonlinear control method that guarantees control strategy over uncertainties. In this
way, stability is obtained by keeping system modes on the sliding surface.

In general, the sliding mode controller design consists of two steps:

• A. Sliding surface design that reduces the order of the closed loop system, and
provides a resilient bed in the movement of the system towards the equilibrium
point.

• B. Choosing the right control policy to move the system to this level and ensure
that it stays on it.

Now, with the sliding surface definition, we have the following:

si = ei +

∫
kiei i = 1, 2, 3, 4, (4)


ṡ1 = a(e2 − e1) + k1e1 +∆f1 + w1 + u1,
ṡ2 = ce2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2,
ṡ3 = −be3 + e1e2 + x2e1 + x1e2 +∆f3 + k3e3 + w3 + u3,
ṡ4 = e3 − de4 + k4e4 +∆f4 + w4 + u4,

(5)

and considering ṡ = 0, we have

ueq =


u1 = −a(e2 − e1)− k1e1,
u2 = −ce2 − e4 + e1e3 + x1e3 + x3e1 − k2e2,
u3 = be3 − e1e2 − x2e1 − x1e2 − k3e3,
u4 = −e3 + de4 − k4e4.

(6)

On the other hand, the control signal of the proposed controller is considered as follows:

ui = ueqi − (rsi + ρsgn(si))− (αi + βi) , (7)
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in which ρ and r are greater than zero.

Theorem 3.1 If in the control signal (7), the parameters are positive and certain,
then all system states of (2) will tend to the states of system (1).

Proof. Suppose that the Lyapunov function is considered as (8), which is a positive
definite function. Given the Lyapunov stability theorem, to prove the stability of the
sliding mode dynamic (5), we need to show that the derivative of the Lyapunov function
is negative, so, according to the selective S, u proves the asymptotic stability by using
the Lyapunov stability.

The proposed Lyapunov function is as follows:

V =
1

2

4∑
i=1

s2i (8)

and its derivative is as follows:

V̇ =
4∑

i=1

siṡi = s1ṡ1 + s2ṡ2 + s3ṡ3 + s4ṡ4

= s1(a(e2 − e1) + k1e1 +∆f1 + w2 + u1)
+s2(ce2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2)
+s3(−be3 + e1e2 + x2e1 + x1e2 +∆f3 + k3e3 + w3 + u3)
+s4(e3 − de4 + k4e4 +∆f4 + w4 + u4),

(9)

V̇ ≤ s1(a(e2 − e1) + k1e1 + α1 + β1 + u1)
+s2(ce2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 + α2 + β2 + u2)
+s3(−be3 + e1e2 + x2e1 + x1e2 + k3e3 + α3 + β3 + u3)
+s4(e3 − de4 + k4e4 + α4 + β4 + u4),

V̇ ≤ s1 (−rs1 − ρsgn (s1)) + s2 (−rs2 − ρsgn (s2))
+ s3 (−rs3 − ρsgn (s3)) + s4 (−rs4 − ρsgn (s4)) ,

V̇ ≤
(
−rs21 − ρ |s1|

)
+
(
−rs22 − ρ |s2|

)
+
(
−rs23 − ρ |s3|

)
+
(
−rs24 − ρ |s4|

)
for r ≥ 0, ρ ≥ 0 ⇒ V̇ ≤ 0. (10)

By choosing ρ, r greater than zero, V̇ becomes negative, and Lyapunov’s stability condi-
tion will be established. 2

3.2 Synchronization of hyperchaos Lu systems with disturbance input and
unknown system parameters

Here is an estimate of the system’s uncertain parameters synchronizing two same hyper-
chaos systems despite the uncertainty. The master systems in the form of Equation (1)
and the slave system are defined as follows:

ẏ1 = ā(y2 − y1) + ∆f1 + w1 + u1,
ẏ2 = c̄y2 − y1y3 + y4 +∆f2 + w2 + u2,
ẏ3 = y1y2 − b̄y3 +∆f3 + w3 + u3,
ẏ4 = y3 − d̄y4 +∆f4 + w4 + u4,

(11)
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where ui, i = 1, ..., 4, are the control signals used to synchronize two same hyperchaos
systems and ā, b̄, c̄, d̄ are unknown parameters, and to estimate them, an adaptive rule is
suggested in the synchronization process.

Due to the definition of the error in the form ei = yi − xi, i = 1, 2, 3, 4, we have
ė1 = ā(y2 − y1)− a(x2 − x1) + ∆f1 + w1 + u1,
ė2 = c̄y2 + e4 − e1e3 − x1e3 − x3e1 − cx2 +∆f2 + w2 + u2,
ė3 = −b̄y3 + e1e2 + x2e1 + x1e2 + bx3 +∆f3 + w3 + u3,
ė4 = e3 − d̄y4 + dx4 +∆f4 + w4 + u4.

(12)

Now, by defining the sliding surface as (4), we have
ṡ1 = ā (y2 − y1)− a (x2 − x1) + k1e1 +∆f1 + w1 + u1,
ṡ2 = c̄y2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2,
ṡ3 = bx3 − b̄y3 + e1e2 + x2e1 + x1e2 + k3e3 +∆f3 + w3 + u3,
ṡ4 = e3 − d̄y4 + dx4 + k4e4 +∆f4 + w4 + u4.

(13)

The proposed controller is presented as follows:

ui = ueqi − (rsi + ρsgn(si)), (14)

where

ueq =



u1 = −(ã+ a) (e2 − e1)− k1e1 −
(
α̃1 + α1 + β̃1 + β1

)
,

u2 = −(c̃+ c)e2 − e4 + e1e3 + x1e3 + x3e1 + k2e2 −
(
α̃2 + α2 + β̃2 + β2

)
,

u3 = (b̃+ b)e3 − e1e2 − x2e1 − x1e2 − k3e3 −
(
α̃3 + α3 + β̃3 + β3

)
,

u4 = (d̃+ d)y4 − e3 − k4e4 −
(
α̃4 + α4 + β̃4 + β4

)
(15)

and ã, b̃, c̃, d̃ are the estimation of the adaptation error.

Theorem 3.2 If the control signal is the relation (14) with the adaptation rules of
relation (22), then all system states (11) will tend to the states of system (1).

Proof. Using the Lyapunov stability theorem, we consider the Lyapunov candidate
function as (16) which is a positive definite function

V =
1

2

(
4∑

i=1

s2i + ã2 + b̃2 + c̃2 + d̃2 + α̃2
1 + β̃2

1 + α̃2
2 + β̃2

2 + α̃2
3 + β̃2

3 + α̃2
4 + β̃2

4

)
(16)

with derivation, we have

V̇ =

4∑
i=1

siṡi+ã̃̇a+b̃̃̇b+c̃̃̇c+d̃̃̇d+α̃1̇̃α1+β̃1̇̃β1+α̃2̇̃α2+β̃2̇̃β2+α̃3̇̃α3+β̃3̇̃β3+α̃4̇̃α4+β̃4̇̃β4, (17)

where

ã = ā− a, b̃ = b̄− b, c̃ = c̄− c, d̃ = d̄− d,

α̃1 = ᾱ1 − α1, β̃1 = β̄1 − β1, α̃2 = ᾱ2 − α2, β̃2 = β̄2 − β2,

α̃3 = ᾱ3 − α3, β̃3 = β̄3 − β3, α̃4 = ᾱ4 − α4, β̃4 = β̄4 − β4,
˙̃a = ˙̄a, ˙̃b = ˙̄b, ˙̃c = ˙̄c, ˙̃d = ˙̄d, ˙̃α1 = ˙̄α1, ˙̃β1 = ˙̄β1,
˙̃α2 = ˙̄α2, ˙̃β2 = ˙̄β2, ˙̃α3 = ˙̄α3, ˙̃β3 = ˙̄β3,

˙̃α4 = ˙̄α4, ˙̃β4 = ˙̄β4.

(18)
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By replacing (13) in (17), we have

V̇ = s1 (ā(y2 − y1)− a (x2 − x1) + k1e1 +∆f1 + w1 + u1)
+ s2 (c̄y2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2)
+ s3

(
−b̄y3 + bx3 + e1e2 + x2e1 + x1e2 + k3e3 +∆f3 + w3 + u3

)
+s4

(
e3 − d̄y4 + dx4 + k4e4 +∆f4 + w4 + u4

)
+ã̃̇a+ b̃̃̇b+ c̃̃̇c+ d̃̃̇d+ α̃1̇̃α1 + β̃1̇̃β1 + α̃2̇̃α2 + β̃2̇̃β2 + α̃3̇̃α3 + β̃3̇̃β3 + α̃4̇̃α4 + β̃4̇̃β4,

(19)

V̇ = s1 (ā(y2 − y1)− a (x2 − x1) + k1e1 +∆f1 + w1 + u1 + ā(x2 − x1)− ā(x2 − x1))
+ s2 (c̄y2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2 + c̄x2 − c̄2x2)
+ s3

(
−b̄y3 + bx3 + e1e2 + x2e1 + x1e2 + k3e3 +∆f3 + w3 + u3 + b̄x3 − b̄x3

)
+s4

(
e3 − d̄y4 + dx4 + k4e4 +∆f4 + w4 + u4 + d̄x4 − d̄x4

)
+ã̃̇a+ b̃̃̇b+ c̃̃̇c+ d̃̃̇d+ α̃1̇̃α1 + β̃1̇̃β1 + α̃2̇̃α2 + β̃2̇̃β2 + α̃3̇̃α3 + β̃3̇̃β3 + α̃4̇̃α4 + β̃4̇̃β4,

V̇ = s1 (ā(e2 − e1) + k1e1 +∆f1 + w1 + u1 − a(x2 − x1) + ā(x2 − x1))
+ s2 (c̄e2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + k2e2 +∆f2 + w2 + u2 + c̄x2)
+ s3

(
−b̄e3 + bx3 + e1e2 + x2e1 + x1e2 + k3e3 +∆f3 + w3 + u3 − b̄x3

)
+s4

(
e3 − d̄e4 + dx4 + k4e4 +∆f4 + w4 + u4 − d̄x4

)
+ã̃̇a+ b̃̃̇b+ c̃̃̇c+ d̃̃̇d+ α̃1̇̃α1 + β̃1̇̃β1 + α̃2̇̃α2 + β̃2̇̃β2 + α̃3̇̃α3 + β̃3̇̃β3 + α̃4̇̃α4 + β̃4̇̃β4.

(20)
By replacing (14) and (18) in (20), one gets

V̇ ≤ s1

(
ā(e2 − e1) + ke1 + α1 + β1 − a(x2 − x1) + ā(x2 − x1)
−ā(e2 − e1)− ke1 − (ᾱ1 + β̄1)− rs1 − ρsgn(s1)

)
+ s2

(
c̄e2 − cx2 + e4 − e1e3 − x1e3 − x3e1 + ke2 + α2 + β2 + c̄x2

−c̄e2 − e4 + e1e3 + x1e3 + x3e1 − ke2 − (ᾱ2 + β̄2)− rs2 − ρsgn(s2)

)
+ s3

(
−b̄e3 + bx3 + e1e2 + x2e1 + x1e2 + ke3 + α3 + β3 + u3 − b̄x3

+b̄e3 − e1e2 − x2e1 − x1e2 − ke3 − (ᾱ3 + β̄3)− rs3 − ρsgn(s3)

)
+s4

(
e3 − d̄e4 + dx4 + ke4 + α4 + β4 + u4 − d̄x4

−e3 + d̄e4 − ke4 − (ᾱ4 + β̄4)− rs4 − ρsgn(s4)

)
+(ā− a)˙̃a+

(
b̄− b

)
˙̃b+ (c̄− c)˙̃c+

(
d̄− d

)
˙̃d+ (ᾱ1 − α1)˙̃α1 +

(
β̄1 − β1

)
˙̃β1

+(ᾱ2 − α2)˙̃α2 +
(
β̄2 − β2

)
˙̃β2 + (ᾱ3 − α3)˙̃α3 +

(
β̄3 − β3

)
˙̃β3 + (ᾱ4 − α4)˙̃α4

+
(
β̄4 − β4

)
˙̃β4.

(21)
The adaptation rules are given as follows:

˙̃a = (x1 − x2) s1,
˙̃b = x3s3,
˙̃c = −x2s2,

˙̃d = x4s4,
˙̃α1 = s1,
˙̃β1 = s1,

˙̃α2 = s2,
˙̃β2 = s2,
˙̃α3 = s3,

˙̃β3 = s3,
˙̃α4 = s4,
˙̃β4 = s4,

(22)

therefore from (21) and (22), we have

V̇ ≤ s1 (−rs1 − ρsgn (s1)) + s2 (−rs2 − ρsgn (s2))
+s3 (−rs3 − ρsgn (s3)) + s4 (−rs4 − ρsgn (s4)) ,

V̇ ≤
(
−rs21 − ρ |s1|

)
+
(
−rs22 − ρ |s2|

)
+
(
−rs23 − ρ |s3|

)
+
(
−rs24 − ρ |s4|

)
,

for r ≥ 0 , ρ ≥ 0 ⇒ V̇ ≤ 0. (23)

The hyperchaos system (11) with the initial conditions of yi(0) ∈ R4, by the control rules
in (14), where r, ρ > 0, and with the adaptation rules (22), follows the trajectory of the
master system. 2
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4 Simulation

In this section, simulations show the effectiveness of the proposed scheme for synchroniz-
ing hyperchaos Lu systems. Simulation results are obtained using the MATLAB software.

Example 4.1 In this part, simulation with the initial conditions [x1, x2, x3, x4]
T =

[0.1, 0.1, 0.1, 0.1]T and [y1, y2, y3, y4]
T = [−9.9, −4.9, 5.1, 10.1]T and a = 20, b = 5, c =

10, d = 1.5 is done. Parameters used in the design are ki = 15, r = 5, ρ = 10 . Uncer-
tainty and bounded disturbance applied to the system are ∆fi = A sin(x1) cos(x2), wi =
A sin(t), 0.1 < A < 1, respectively, in which ∆fi ≤ αi = 1, wi ≤ βi = 1.

Figures 2 and 3 show the states and error synchronization of hyperchaos system before
applying the controller to the slave system. Figures 4 and 5 show the synchronization
of the two systems after applying the controller of equation (7) which represents the
performance of the proposed controller.

Figure 2: Master and slave system states before applying the controller.

Example 4.2 In this part, we assume unknown slave system parameters. Simulation
with the initial conditions [x1, x2, x3, x4]

T = [0.1, 0.1, 0.1, 0.1]T and [y1, y2, y3, y4]
T =

[−9.9,−4.9, 5.1, 10.1]T is performed. Parameters used in the design are ki = 15, r =
5, ρ = 10. Uncertainty and disturbance input applied to the system are in the form
of ∆fi = A sin(x1) cos(x2), wi = A sin(t), 0.1 < A < 1, respectively. By applying the
control and estimation parameter rules of (14) and (22), respectively, and applying ᾱ0 =
β̄0 = ā0 = b̄0 = c̄0 = d̄0 = 1, the simulation results are shown in Figures 6 and 7.
Figure 6 shows the states of the master and slave systems. In Figure 7, the tendency of
synchronization error to zero is depicted over time. Figure 8 also shows the estimated
unknown parameters ā, b̄, c̄, d̄ of the slave system.
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Figure 3: Synchronization error before applying the controller.

Figure 4: Master and slave system states after applying the controller equation (7).

Figure 5: Synchronization error after applying the controller equation (7).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 22 (2) (2022) 206–217 215

Figure 6: Master and slave system states after applying the controller equation (14).

Figure 7: Synchronization error after applying the controller equation (14).

Figure 8: Estimation of ā, b̄, c̄, d̄ parameters.
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5 Conclusion

The main objective of this paper is to design the adaptive controller for a hyperchaos sys-
tem with unknown parameters in the presence of parametric uncertainty and disturbance
input. To reach this goal, the combination of the two sliding mode control and the adap-
tive control methods is proposed to synchronize hyperchaos Lu systems. The stability
of the chaotic system is proved using the Lyapunov theorem. To achieve synchroniza-
tion, the sliding mode control method, which is a robust control against uncertainty, was
used. Also, adaptive rules are used to identify the unknown slave system parameters.
The results of simulation with MATLAB software showed the well-designed controllers
performance in two ways.
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1 Introduction

There are widespread applications of different censoring schemes in life-testing and re-
liability experiments in reliability systems, where it is impossible to follow the lifetime
of the units till the end of their lifetimes. Several statistical parametric approaches and
scenarios of censoring are considered in the literature based on the selected models and
the available information [1]. The most popular censoring schemes are the conventional
Type-I and Type-II censoring. Type-I censoring describes the situation when a test is
terminated at a particular point in time in one direction (left censoring or right censoring)
or two directions (interval censoring). However, the Type-II censoring scheme requires
fixing the number of failures to be observed. Progressive and hybrid censoring have
also been studied in the literature [2–4]. Another censoring scheme is random censoring
which is used in life testing experiments and clinical trials, where both the survival and
the censoring times are random. Different studies related to random censoring have been
conducted [5, 6].

One of the main censoring schemes is the left censoring, which is an appropriate one
when the event of interest has already occurred for the individual before the observation
time. Applications involving left censoring may include survival analysis and reliability
engineering. Coburn et al. [7] studied the patterns of health insurance coverage among
rural and urban children with the incidence of a higher proportion of rural children whose
spells were ”left censored” in the sample. Also, a job duration might be incomplete
because the beginning of the job spells is not observed, which is an incidence of left
censoring [8]. Jiang et al. [9] conducted a semiparametric analysis on survival data with
left truncation and right censoring dependent. Robert et al. [10] presented a method of
handling left-censored data in quantitative microbial risk assessment. Yoshinari et al. [11]
studied the Bayesian estimation using left-censored data via Markov Chain Monte Carlo
simulation.

Survival analysis using various parametric models under the left censoring scheme
has been considered extensively in the literature [12, 13]. Mira and Kundu [14] studied
the left censored data using the generalized exponential distribution. Sindhu et al. [15]
considered the Bayesian estimation of the left censored data using the inverse Rayleigh
distribution. Asgharzadeh et al. [16] performed estimation and reconstruction based on
the left censored data using the Pareto model. Sindhu et al. [17] applied the Gumbel
Type II distribution under the Bayesian approach to the left censored data.

The J-shaped family distributions were introduced by Toop and Lone [18]. The
applications of the J-shaped family distributions were considered by Nadarajah and
Kotz [19] who showed that the hazard rate function is bathtub shaped. An advantage
of the J-shaped family distributions, which have a bathtub shaped hazard rate function,
is attributed to the possession of only two parameters, whereas other distributions with
a bathtub shaped hazard function involve three or four parameters. Bathtub shaped
hazard rate functions have a wide range of applications in reliability engineering and
reliability analysis. The bathtub shaped hazard rate function can be applied to human
populations. For example, at the infant age, the death rate is high due to birth defects
or infant diseases, then the death rate remains constant up to the age of thirty, then it
increases again. Also, some manufactured items such as televisions, handheld calculators,
and microprocessors follow this pattern.

The power function distribution is commonly used in survival analysis. It is a flexible
distribution as it can be used to model various types of data. Different versions of the
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power function distribution were reported in the literature [20]. In this work, we consider
two versions of power function distribution, namely, the regular power function distribu-
tion, and the generalized uniform distribution; both distributions have two parameters:
a scale parameter, and a shape parameter. Meniconi and Barry [21] compared the power
function distribution with the exponential, lognormal, and Weibull distributions to mea-
sure the reliability. They concluded that the power function distribution is the best one
to model such types of data. The power function distribution is characterized by the
simplicity of its mathematical form and can be handled easily by medical researchers
and reliability engineers to obtain failure rates and reliability data. The generalized
uniform distribution was used as a model of plant growth [22]. Lee [23] studied the
estimation of the generalized uniform distribution (GUD). Bhatt [22] discussed the con-
sistent characterization of the GUD through expectation. Khan and Khan [24] obtained
the characterization of the GUD based on lower record values.

This paper considers Type-II left censoring of some popular finite support family
distributions, namely, the J-family distributions, regular power function distribution,
and generalized uniform distribution. The maximum likelihood estimators (MLEs) for
the model parameters were derived. A simulation study was performed using different
sample sizes, parameter values, and censored proportions to observe the behavior of the
estimators in terms of bias and root mean square error (RMSE) criteria. Finally, two
real lifetime data sets from engineering were analyzed to illustrate the derived results.

2 Finite Family Support Distributions

2.1 J-Family distribution

The cumulative distribution function (CDF) of the J-shaped family of distributions is
given by

F (x; θ, β) =


0, x < 0,

(xθ (2−
x
θ ))

β , 0 ≤ x < θ, 0 < β0 < 1,

1, θ ≤ x,

(1)

with the corresponding probability density function (PDF) given by

f(x; θ, β) =
2β

θ

(
1− x

θ

)(x
θ

(
2− x

θ

))β−1

; 0 < x ≤ θ, 0 < β < 1, (2)

where θ is the scale parameter and β is the shape parameter. The reliability function of
the distribution is given by

R(t) = P (T > t) = 1−
( t
θ

(
2− t

θ

))β
and the hazard rate function is given by

h(t) =
f(t)

R(t)
=

2β
θ

(
1− t

θ

)(
t
θ

(
2− t

θ

))β−1

1−
(

t
θ

(
2− t

θ

))β ,
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2.2 Regular power function distribution

The cumulative distribution function (CDF) of the regular power function distribution
is given by

F (x; θ, β) =
(x
θ

)p
, 0 < x ≤ θ , p > 0, θ > 0 (3)

with the corresponding probability density function (PDF) given by

f(x; θ, β) =
p

θp
xp−1 , 0 < x ≤ θ , p > 0, θ > 0, (4)

where θ is the scale parameter and p is the shape parameter. It is denoted by X ∼
PFF (p, θ). The reliability function of the distribution can be expressed as

R(t) = P (T > t) = 1−
( t
θ

)p
and the hazard rate function is given by

h(t) =
f(t)

R(t)
=

ptp−1

θp − tp
.

2.3 Generalized uniform distribution

The cumulative distribution function (CDF) of the generalized uniform distribution is
given by Lee [23]

F (x; θ, β) =

(
x

θ

)p+1

, 0 < x ≤ θ, − 1 < p, θ > 0 (5)

with the corresponding probability density function (PDF) given by

f(x, θ, β) =

(
p+ 1

θ

)(
x

θ

)p

, 0 < x ≤ θ, − 1 < p, θ > 0, (6)

where θ is the scale parameter, and p is the shape parameter. It is denoted by X ∼
GUD(p, θ). The generalized uniform distribution is a uniform distribution over (0, θ) if
p = 0. It should be noted that the density function (6) is decreasing with x if −1 < p < 0,
and constant if p = 0, and increasing if p > 0.

The reliability function of the distribution can be expressed as

R(t) = P (T > t) = 1−
( t
θ

)p−1

and the hazard rate function is given by

h(t) =
f(t)

R(t)
=

(
p+1
θ

)(
t
θ

)p
1−

(
t
θ

)p−1 .

3 Maximum Likelihood Estimation

The Type-II left censoring scheme is considered. Suppose the initial r observations are
censored or unobserved and the largest n−r lifetimes X(r+1) < X(r+2) < . . . < X(n) have
only been observed. Then the joint probability density function ofX(r+1), X(r+2), ..., X(n)

is given by

f(x(r), ...., x(n); θ, p) =
n!

r!

(
(F (x(r+1))

)r

f(x(r+1))...f(x(n)). (7)
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3.1 Maximum likelihood estimation of J-family distribution

When using equation (7), the joint probability density function ofX(r+1), ..., X(n) is given
by

f(x(r), ...., x(n); θ, β) =

n!

r!

((
x(r)

θ

(
2−

x(r)

θ

))β
)r ∏n

i=r+1

[
2β
θ

(
1− x(i)

θ

)(
x(i)

θ

(
2− x(i)

θ

))β−1
]
,

where

0 < x(r) ≤ x(r+1) ≤ ... ≤ x(n) ≤ θ, 0 < β < 1.

The likelihood function is given by

L(x(r+1), ..., x(n), θ, β) =

n!

r!

xrβ
(r)

θrβ

(
2− x(r)

θ

)rβ
(2β)n−r

n−r

∏n
i=r+1

(
1− x(i)

θ

)(
x(i)

θ

)β−1(
2− x(i)

θ

)β−1

,

where
0 < x(r) ≤ x(r+1) ≤ ... ≤ x(n) ≤ θ,

It is noticed that for fixed 0 < β < 1,

lim
θ→x(n)

L(θ, β|x(r+1), ..., x(n)) = lim
θ→∞

L(θ, β|x(r+1), ..., x(n)).

Thus, for a fixed value of β, the value of θ that maximizes the likelihood function lies
in the interval (x(n),∞). Therefore, the MLE of (θ, β) is the solution of the likelihood
equations, such that

∂L

∂β
= 0 and

∂L

∂θ
= 0

or, equivalently, ∂ logL(β,θ)
∂β = 0 and ∂ logL(β,θ)

∂θ = 0.
The log-likelihood function can be expressed as

logL(θ, β;x(r+1), ..., x(n)) =

log
n!

r!
+ rβ log x(r) −rβ log θ + rβ log

(
2− x(r)

θ

)
+ (n− r) log 2β

−(n− r) log θ +
∑n

i=r+1 log
(
1− x(i)

θ

)
+ (β − 1)

∑n
i=r+1 log

(x(i)

θ

)
+(β − 1)

∑n
i=r+1 log

(
2− x(i)

θ

)
.

The derivative of the log-likelihood function for β gives the following normal equation:

r log x(r)−r log θ+r log
(
2−

x(r)

θ

)
+
(n− r)

β
+

n∑
i=r+1

log
(x(i)

θ

)
+

n∑
i=r+1

log
(
2−

x(i)

θ

)
= 0,

(8)
while the derivative of the log-likelihood function for θ results in the following normal
equation

rβx(r)

θ(2θ − x(r))
+

n∑
i=r+1

x(i)

θ(θ − x(i))
+ (β − 1)

n∑
i=r+1

x(i)

θ(2θ − x(i))
− nβ

θ
= 0. (9)
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The maximum likelihood estimates β̂ and θ̂ of the unknown parameters β and θ can be
obtained by solving equations 8 and 9 numerically.

3.2 Maximum likelihood estimation of power function distribution

When using equation (7), the joint probability density function of x(r+1), ..., x(n) and the
likelihood function can be, respectively, expressed as

f(x(r), ..., x(n); θ, β) =
n!

r!

((
x(r+1)

θ

)p
)r n∏

i=r+1

p

θp
xp−1
(i) ,

L(x(r+1), ..., x(n); θ, β) =
n!

r!

(x(r+1))
rp

θrp
pn−r

θp(n−r)

n∏
i=r+1

xp−1
(i) . (10)

The MLEs of p and θ can be derived by maximizing the function L in equation 10. Since
this likelihood function is a decreasing function of θ, the MLE of θ is

θ̂ = X(n) = max(X1, X2, ..., Xn),

while the MLE of p can be obtained by solving

d logL1(p, θ̂)

dp
.

The log-likelihood function in this case is given by

lnL(θ̂, p; (r + 1), ..., x(n)) = log
n!

r!
+rp lnx(r+1)+(n−r) ln p−np ln θ̂+(p−1)

n∑
i=r+1

lnx(i).

The derivative of the log-likelihood function for p gives the following normal equation:
r lnx(r+1) − n ln θ̂ +

∑n
i=r+1 lnx(i) +

n−r
p = 0. Thus, the maximum likelihood estimator

(MLE) of p can be derived:

p̂ =
n− r

n log θ̂ − r log x(r+1) −
∑n

i=r+1 lnx(i)

.

3.3 Maximum likelihood estimation of generalized uniform distribution

When using equation 7, the joint probability density function of X(r+1), X(r+2), ..., X(n)

and the likelihood function, respectively, can be expressed as

f(x(r), ..., x(n); θ, p) =
n!

r!

((
xp+1
(r+1)

θ

)p+1
)r n∏

i=r+1

p+ 1

θp+1
xp
(i),

L(x(r+1), ..., x(n); θ, β) =
n!

r!

(x(r+1))
r(p+1)

θr(p+1)

pn−r

θp(n−r)

n∏
i=r+1

xp−1
(i) ,

L(x(r+1), ..., x(n); θ, p) =
n!

r!

(x(r+1))
r(p+1)((p+ 1)n−r

θr(p+1)θ(n−r)(p+1)

n∏
i=r+1

xp
(i). (11)
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The MLEs of p and θ can be derived by maximizing the function L in equation 11. Since
this likelihood function is a decreasing function of θ, the MLE of θ is

θ̂ = X(n) = max(X1, X2, ..., Xn),

while the MLE of p can be obtained by solving

d logL1(p, θ̂)

dp
= 0.

In this case, the log-likelihood function is given by

logL(θ̂, p;x(r+1), ..., x(n)) =

log
n!

r!
− n(p+ 1) ln θ̂ +r(p+ 1) lnx(r+1) + (n− r) ln p+ 1 + p

∑n
i=r+1 lnx(i).

The derivative of the log-likelihood function for p gives the following normal equation:

−n lnx(n) + r lnx(r+1) +
n− r

p+ 1
+

n∑
i=r+1

lnx(i) = 0.

Thus, the maximum likelihood estimator (MLE) of p can be derived:

p̂ =
n− r

n lnx(n) − r lnx(r+1) −
∑n

i=r+1 lnx(i)
− 1.

4 Simulation Study

A simulation study was performed to deduce the behavior of the estimators. Different
sample sizes, namely, n = 25, 50 and 100, different combinations of the parameter values
and different censored proportions were considered. The simulation results were based
on 1000 replicates. The means and root mean square errors (RMSE) of the maximum
likelihood estimators of the shape parameters were calculated. The simulation results for
the J-shaped family, power function, and generalized uniform distribution are displayed
in Tables 1-3, respectively.

The following remarks can be drawn based on the simulation results:

a. The performance of the estimators improves in terms of bias and RMSE due to the
increase in the sample size.

b. As the number of censored observations increases, the biases and RMSEs increase
and vice versa.

c. The bias and RMSE increase with increasing values of the shape parameter.

5 Applications

In this section, two applications of Type-II left censoring lifetime data sets are presented.
The first application is related to the J-shaped family distributions and the second ap-
plication is related to the power function distribution.
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Table 1: Mean and RMSE for MLE of β for different combinations of r, n, β and θ of the
J-shaped family distribution.

θ β
n = 25 n = 50 n = 100

r Mean RMSE r Mean RMSE r Mean RMSE

2

0.5
3 0.62421 0.16763 5 0.56925 0.09498 10 0.54283 0.06246
5 0.63776 0.17955 10 0.57903 0.10371 20 0.54937 0.06819

0.7
3 0.88971 0.24339 5 0.80039 0.13669 10 0.76625 0.08940
5 0.91057 0.26119 10 0.82138 0.14954 20 0.77623 0.09778

1.0
3 1.29608 0.36162 5 1.16690 0.20129 10 1.10455 0.13093
5 1.32866 0.38876 10 1.19022 0.22061 20 1.11998 0.14342

4

0.5
3 0.62421 0.16763 5 0.56925 0.09498 10 0.54283 0.06246
5 0.63776 0.17955 10 0.57903 0.10371 20 0.54937 0.06819

0.7
3 0.88971 0.24339 5 0.80039 0.13669 10 0.76625 0.08940
5 0.91057 0.26119 10 0.82138 0.14954 20 0.77622 0.09777

1.0
3 1.29608 0.36162 5 1.16690 0.20129 10 1.10455 0.09777
5 1.32866 0.38876 10 1.19022 0.22061 20 1.11998 0.14342

Table 2: Mean and RMSE for MLE of β for different combinations of r, n, β and θ of the power
function distribution.

θ β
n = 25 n = 50 n = 100

r Mean RMSE r Mean RMSE r Mean RMSE

2

0.5
3 0.55191 0.12795 5 0.53020 0.08585 10 0.51294 0.05625
5 0.55363 0.13522 10 0.52976 0.08607 20 0.51495 0.06071

0.7
3 0.77271 0.17914 5 0.74220 0.12021 10 0.71811 0.07875
5 0.77516 0.18931 10 0.74167 0.12050 20 0.72093 0.08500

1.0
3 1.10399 0.25591 5 1.06040 0.17173 10 1.02588 0.11249
5 1.10737 0.27044 10 1.05953 0.17214 20 1.02990 0.12142

4

0.5
3 0.55191 0.12795 5 0.53020 0.08586 10 0.51294 0.05625
5 0.55368 0.13522 10 0.52976 0.08607 20 0.51495 0.06071

0.7
3 0.77210 0.17914 5 0.74228 0.12021 10 0.71811 0.07875
5 0.77516 0.18931 10 0.74167 0.12050 20 0.72093 0.08500

1.0
3 1.10310 0.25591 5 1.06040 0.17173 10 1.02509 0.11249
5 1.10737 0.27044 10 1.05953 0.17214 20 1.02990 0.12142

5.1 Application (1)

This application considers the use of the Type-II left censored J-shaped fam-
ily distributions to fit a real-life data set which represents the number of cy-
cles to failure for a group of 60 electrical appliances [25]. The failure times are

14 34 61 69 80 123 165 210 381 464 479 556
574 839 917 969 991 1064 1088 1091 1174 1270 1275 1355
1397 1477 1578 1649 1702 1893 1932 2011 2161 2292 2326 2337
2628 2785 2811 2886 2993 3122 3248 3715 3790 3857 3912 4100
4106 4116 4315 4510 4584 5267 5299 5583 6065 9701.
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Table 3: Mean and RMSE for MLE of β for different combinations of r, n, β and θ of the
generalized uniform distribution.

θ β
n = 25 n = 50 n = 100

r Mean RMSE r Mean RMSE r Mean RMSE

2

0.5
3 0.65210 0.38329 5 0.57583 0.23810 10 0.53565 0.1684
5 0.67379 0.41918 10 0.58752 0.26122 20 0.54136 0.17896

0.7
3 0.87339 0.43439 5 0.78594 0.27084 10 0.74041 0.19055
5 0.89696 0.47507 10 0.79919 0.29604 20 0.74876 0.20284

1.0
3 1.20399 0.51105 5 1.10110 0.31864 10 1.04754 0.22417
5 1.23171 0.55891 10 1.11670 0.34829 20 1.05515 0.23861

4

0.5
3 0.65299 0.38329 5 0.57587 0.23900 10 0.53565 0.16814
5 0.67379 0.41918 10 0.58752 0.26122 20 0.54136 0.17896

0.7
3 0.87339 0.43439 5 0.78534 0.27084 10 0.74041 0.19055
5 0.89696 0.47507 10 0.79919 0.29604 20 0.74876 0.20281

1.0
3 1.20399 0.51105 5 1.10110 0.31864 10 1.04754 0.22418
5 1.23172 0.55891 10 1.11669 0.34829 20 1.05515 0.23861

The last observation was ignored as it is about 4 standard deviations above the mean
and thus can be considered as an outlier. Thus, the data was rescaled by dividing each
observation by 7000 [26]. The maximum likelihood estimates for θ and β were found to
be 0.8664 and 0.8425, respectively. The Kolmogorov-Smirnov (K − S) test was used for
this data set. The Kolmogorov-Smirnov test statistic value was found to be 0.11 and
the theoretical critical value at α = 0.05 was 0.17. Thus, fitting the J-shaped family
distribution is adequate for the above data set. In the reliability analysis, the first 10
observations were censored, i.e., r = 10. The maximum likelihood estimates using the
remaining data were 0.8664 for θ and 0.9086 for β. The estimated hazard function of
the J-shaped family distribution using the complete and censored samples is shown in
Figure 1. It is seen that the estimated hazard functions for the complete and censored
samples are very close.

5.2 Application (2)

This application considers the use of the Type-II left censored power function distribution
to fit a real-life data set which represents the failure times (in minutes) for a sample of
15 electronic components in an accelerated life test [25]. The failure times were analyzed
to illustrate the Type-II left censoring scheme. The failure times are

1.4 5.1 6.3 10.8 12.1 18.5 19.7 22.2 23.0
30.6 37.3 46.3 53.9 59.8 66.2.

The validity of the power function distribution was checked. Based on the maximum
likelihood estimates of θ and p, the parameters of 66.2 and 0.792, respectively, were
obtained. The Kolmogorov-Smirnov (K−S) test was used for this data set. It is observed
that the K-S distance between the fitted and the empirical distribution functions, and
the corresponding critical value at α = 0.05 are 0.167 and 0.33, respectively. Thus, the
fit of power function distribution fits the above data reasonably well.

In the analysis, the first three observations, r = 3, were censored, namely, x(1) =
1.4, x(2) = 5.1 and x(3) = 6.3. The maximum likelihood estimate of θ was 66.2 and p
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Figure 1: Hazard function of J-shaped distribution using complete and censored sample.

Figure 2: Hazard function of power function distribution using complete and censored samples.

was 0.7693. The estimated hazard functions for the complete and censored samples are
shown in Figure 2. It is seen that the estimated hazard functions for the complete and
censored samples are very close.

6 Conclusion

Type-II left censoring of three popular finite support family distributions, namely, the J-
family distributions, the regular power function distribution and the generalized uniform
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distribution have been considered. The maximum likelihood estimators (MLEs) were
derived for these distributions. A comprehensive simulation study was conducted for
different sample sizes, parameter values, and censored proportions. Two lifetime data sets
were analyzed to illustrate the Type-II left censoring scheme under the power function
distribution and J-shaped family distributions and showed appropriate results.
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