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1 Introduction

The main thrust of this paper is to model obligate mutualism with the middle and top
predators of a three-species food chain. The cases of facultative mutualism with the prey
and middle predator populations have been considered in [24].

Previously, models of mutualism with predator-prey systems have been considered in
[2, 12, 16, 24, 27, 34]. Models of obligate mutualism have been discussed in [7, 12, 13, 14].
For general discussions of mutualism the reader is referred to [1, 7, 11, 32].

Most models of mutualism are two dimensional. There has been a fair amount of
work recently on three dimensional models, where the mutualism occurs between prey
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(see eg. [2, 15, 27]); predators (see [2, 13, 14, 15, 27]), perhaps both [30], or competitors
(see [2, 9, 27, 29, 33]), etc. However, to date the only results dealing with mutualism in
food chains are contained in [24].

Our main concern in this paper will be to develop criteria for the persistence or
extinction of populations considered in our model. Persistence and extinction criteria for
food chains and/or mutualism models have been discussed in [13, 15, 16, 17, 18, 21, 24].

At this time we give definitions of extinction, persistence and nonpersistence. First
we define extinction. We say that N(t) > 0 exhibits extinction if lim

t→∞
N(t) = 0. We

note that nonpersistence (defined below) does not necessarily imply extinction for all
initial values N(0). If lim

t→∞
N(t) = 0 for all N(0) > 0, we say that our system exhibits

total extinction with respect to the N(t) population. We will employ the notation R+
v

to denote the positive v-axis and R̄+
v for its closure, for any variable v. R+

vw denotes the
positive v − w plane and R̄+

vw its closure etc.
Further if populations N1, . . . , Nk exhibit total extinction in the space R+

v1,...,vℓ
,

we denote this by EN1,...,Nk
→ 0. Here N1, . . . , Nk and v1, . . . , vℓ are subsets of the

set {u, x, y, z}.
We now define persistence with respect to the positive orthant in Rn (see [4, 5] for more

general definitions). We say that N(t), N(0) > 0, persists if N(t) > 0 for all t > 0 and
lim inf
t→∞

N(t) > 0. We say that N(t) uniformly persists if, further, lim inf
t→∞

N(t) ≥ δ > 0

for all N(0) ∈
◦

R+, where
◦

R+ is the interior of Rn
+. Finally, we say that a vector

(N1(t), . . . , Nn(t)) ∈ Rn
+ (uniformly) persists if each component (uniformly) persists. If

any component fails to persist, we say that nonpersistence occurs.
In Section 2, we discuss our model. Section 3 contains an equilibrium analysis and a

review of known persistence criteria. Section 4, gives persistence and extinction criteria
for the total model including reversal of outcome. In particular, criteria are developed
for the first time to the best of our knowledge for the case of almost periodic dynam-
ics. Included in this are examples to illustrate our results. Section 5 contains a brief
discussion.

2 The Models

In this section we describe a general model of interactions between a mutualist population
and populations of a food chain. The mathematical formulation of obligate relationships
between the mutualist and two different trophic levels of the food chain are also described.
Finally, we estimate the region of attraction in each case, showing that the models are
well-behaved.

We consider the autonomous system,

du

dt
= uh(u, x, y, z),

dx

dt
= αxg(u, x) − yp1(u, x) − zp2(u, x),

dy

dt
= y[−s1(u, y) + c1(u)p1(u, x)] − zq(u, y),

dz

dt
= z[−s2(u, z) + c2(u)p2(u, x) + c3(u)q(u, y)],

u(0) = u0 ≥ 0, x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0,

(2.1)
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as a model of a mutualist-food chain interaction with continuous birth and death pro-
cesses. The variable u(t) represents the density of the mutualist at time t and x(t), y(t),
z(t) denote the prey, predator, and superpredator densities respectively.

The function h(u, x, y, z) represents the specific growth rate of the mutualist popula-
tion. We assume that h(u, x, y, z) possesses the following properties.

(H1) h(0, x, y, z) > 0, ∂h
∂u

(u, x, y, z) ≤ 0.
(H2) There exists a unique function L(x, y, z) > 0, such that h(L(x, y, z), x, y, z) = 0.

The function g(u, x) is the specific growth rate of the prey x in the absence of any
predation. We assume that

(G1) g(u, 0) > 0, ∂g
∂x

(u, x) ≤ 0.
(G2) There exists a unique K(u) > 0 such that g(u,K(u)) = 0.

(G3) ∂g
∂u

(u, x) ≥ 0.

Next, the functions pi(u, x), i = 1, 2 and q(u, y) denote the predator’s functional
response to the prey and mutualist densities. We assume that,

(P1) pi(u, 0) = 0, ∂pi

∂x
(u, x) > 0, i = 1, 2, q(u, 0) = 0, ∂q

∂y
(u, y) > 0.

The functions s1(u, y) and s2(u, z) are the specific death rates of the predators y and
z, in the absence of predation. We assume that

(S1) ∂s1(u,y)
∂y

> 0, ∂s2(u,z)
∂z

> 0.

(S2) ∂s1(u,y)
∂u

≤ 0, ∂s2(u,z)
∂u

≥ 0, c′1(u) ≥ 0, c′i(u) ≤ 0, i = 2, 3.

The non-negative functions ci(u), i = 1, 2, 3 are the conversion rates of prey biomass to
the predator biomass. The implications of the above conditions are described in detail in
[24]. Finally, we assume that all the functions are smooth enough so that existence and
uniqueness of initial value problems hold and any required analysis can be carried out.

In model (2.1), we will think of α as a bifurcation parameter.

2.1 Obligate mutualism with the bottom-predator

In this section we consider the case of obligate mutualism between the mutualist u and
the predator y. In addition to H(1-2), we assume the following for the specific growth
rate h(u, x, y, z) of the mutualist:

(H3) ∂h
∂x

(u, x, y, z) ≤ 0, ∂h
∂y

(u, x, y, z) > 0, ∂h
∂z

(u, x, y, z) ≤ 0.

(H4) lim
y→∞

L(0, y, 0) = L̃ <∞.

The condition (H3) implies that u derives benefit from the predator population and
that there might be a cost to the mutualist due to its interactions with the predators.
The condition (H4) implies that u has a finite carrying capacity, no matter how much
benefit it derives.

Further we assume

(P2) ∂p1(u,x)
∂u

≥ 0, ∂p2(u,x)
∂u

≤ 0, ∂q(u,y)
∂u

≤ 0.

This condition implies that the mutualist can benefit the bottom-predator by increas-
ing its predator’s response and/or by decreasing the response of the superpredator.

In order for system (2.1) to exhibit obligate mutualism between u and y, the food
chain must collapse in the absence of the mutualist and the predator y must become
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extinct. Thus we require that the subsystem:

dx

dt
= αxg(0, x) − yp1(0, x) − zp2(0, x),

dy

dt
= y[−s1(0, y) + c1(0)p1(0, x)] − zq(0, y),

dz

dt
= z[−s2(0, z) + c2(0)p2(0, x) + c3(0)q(0, y)],

(2.2)

with x(0) > 0, y(0) > 0 and z(0) > 0, exhibits extinction and lim
t→∞

y(t) = 0. As

observed in [11] this happens when either

(S3a) lim
x→∞

p1(0, x) ≤
s1(0,0)
c1(0)

or

(S3b) p1(0, x̂) = s1(0,0)
c1(0)

and x̂ ≥ K(0).

In conclusion whenever hypotheses H(1-4), G(1-3), P(1,2) and S(1-3) hold, mutualism
occurs between u and y and is obligate for the predator y.

The following result establishes that under the above hypotheses, system (2.1) pos-
sesses a region of attraction. The proof is similar to one given in [24].

Theorem 2.1 Let the hypotheses H(1-4), G(1-3), P(1,2), S(1-3) hold. Then the set

C = {(u, x, y, z) : 0 ≤ u ≤ L̃, 0 ≤ x ≤ K̃, 0 ≤ c̃1x+ y ≤ M̃,

0 ≤ c2(L̃)x+ c3(L̃)y + z ≤ Ñ, 0 ≤ c2(0)x+ c3(0)y + z ≤ Ñ},
(2.3)

where

K̃ = max
0≤u≤L̃

K(u), c̃1 = max
0≤u≤L̃

c1(u),

M̃ =
c1(L̃)K̃

s1(L̃, 0)
[αg(L̃, 0) + s1(L̃, 0)],

Ñ =
1

s2(0, 0)

[
c2(0)K̃

(
αg(L̃, 0) + s2(0, 0) + c3(0)M̃

(
c1(L̃)

L̃ K̃ + s2(0, 0)

)]
(2.4)

and
p̃1 = max

0≤u≤L̃

p1(u, K̃),

is positively invariant and attracts all solutions starting with nonnegative initial-values.

2.2 Obligate mutualism with the top-predator

The system (2.1) exhibits mutualism between u and z, which is obligate for the top-
predator z, whenever in addition to H(1-2), G(1-3), P1, S(1,3), the following assumptions
hold:

(H3∗) ∂h(u,x,y,z)
∂x

≤ 0, ∂h(u,x,y,z)
∂y

≤ 0, ∂h(u,x,y,z)
∂z

> 0.

(H4∗) lim
z→∞

L(0, 0, z) = L̃ <∞.

(P2∗) ∂p2(u,x)
∂u

≥ 0, ∂q(u,y)
∂u

≥ 0.

(S2∗) ∂s2(u,y)
∂u

≤ 0, c′2(u) ≥ 0, c′3(u) ≥ 0.
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The following condition ensures that in the absence of u, z will become extinct.

(S4∗a) c2(0) lim
x→∞

p2(0, x) + c3(0) lim
y→∞

q(0, y) ≤ s2(0, 0).

or

(S4∗b) c2(0)p2(0, x) + c3(0)q(0, y) = s2(0, 0), for some x and y, where x ≥ K(0).

Finally the mutualist can indirectly benefit the predator z, by affecting the death rate,
the predator response function or the conversion rate of prey biomass to the predator
biomass of the predator y.

Under the above stated hypotheses by similar arguments as for Theorem 2.1, we can
prove the following by using standard techniques (see e.g. [17]).

Theorem 2.2 Let the hypotheses H(1,2,3∗, 4∗), G(1-3), P(1,2∗), S(1,2∗,4∗) hold.
Then the set

D = {(u, x, y, z) : 0 ≤ u ≤ L̃, 0 ≤ x ≤ K̃, 0 ≤ c̃1x+ y ≤ M̃,

0 ≤ c2(L̃)x + c3(L̃)y + z ≤ Ñ},
(2.5)

where the constants are given in (2.4), and

p̃1 = max
0≤u≤L̃

p1(u, K̃),

is positively invariant and attracts all solutions starting with nonnegative initial-values.

3 The Equilibria

The question of existence and non-existence of various equilibria of system (2.1) and
their stabilities are discussed in detail in [24]. Below we describe the information needed
to study the question of reversal of outcome in our system for the two cases under
consideration.

Case I: Obligate mutualism between u and y

The system (2.1) possesses the equilibrium E0(0, 0, 0, 0) and one dimensional equilibria
E1(L0, 0, 0, 0), E2(0,K0, 0, 0), where L0 = L(0, 0, 0) and K0 = K(0). The two dimen-
sional equilibrium E3(ũ, x̃, 0, 0) always exists. The equilibrium E5(0, x2, 0, z2) in the x−z
plane may or may not exist. The three dimensional equilibria, if they exist are of the
form E6(u3, x3, y3, 0) and E7(u4, x4, 0, z4). We note that a three dimensional submodel
has an equilibrium if it is uniformly persistent (see [4]).

Case II: Obligate mutualism between u and z

In this case the equilibria E0(0, 0, 0, 0), E1(L0, 0, 0, 0), E2(0,K0, 0, 0), E3(ũ, x̃, 0, 0) always
exist. The equilibrium E4(0, x1, y1, 0) in the x−y plane may or may not exist. The three
dimensional equilibria if they exist are of the form E6(u3, x3, y3, 0) and E7(u4, x4, 0, z4).

Next, we list information regarding the eigenvalues of the variational matrix, computed
at the various equilibria so that their stabilities may be discussed.

The eigenvalues of E2 in the y and z-directions are

αi , −si(0, 0) + ci(0)pi(0,K0), i = 1, 2. (3.1)



30 R. KUMAR AND H.I. FREEDMAN

The eigenvalues of E3 in the y and z directions are

βi , −si(ũ, 0) + ci(ũ)pi(ũ, x̃), i = 1, 2. (3.2)

The eigenvalues of E4 in the z-direction and of E5 in the y-direction are

γ , −s2(0, 0) + c2p2(0, x1) + c3(0)q(0, y1), (3.3)

and
δ , −s1(0, 0) + c1(0)p1(0, x2) − z2qy(0, 0), (3.4)

respectively.
The eigenvalues of E6 and E7 in the z and y directions are

ξ , −s2(u3, 0) + c2(u3)p2(u3, x3) + c3(u3)q(u3, y3) (3.5)

and
η , −s1(u4, 0) + c1(u4)p1(u4, x4) − z4qy(u4, 0), (3.6)

respectively.
The above values are computed in a straightforward manner using standard techniques

of ordinary differential equations.

4 Reversal of Outcome

Case I: Obligate mutualism between u and y

Suppose that for the system (2.1) the hypotheses H(1-4), G(1-3), P(1-2), S(1-3) hold.
The obligate relationship between u and y implies that Ey→0 in R+

xy and R+
xyz, that is,

in the absence of mutualism, the predator y becomes extinct. However, we will show
that with mutualism present, system (2.1) can exhibit uniform persistence resulting in
a reversal of the outcome exhibited by the food chain submodel. The following result
specifies a set of conditions leading to such a reversal. The proof follows using techniques
similar to those used in [24] and is thus omitted. First we assume the following additional
hypotheses for technical mathematical reasons.

(H5) Let E5 (if it exists) be globally asymptotically stable with respect to solutions

initiating in
◦

R+
xz.

(H6) Let the equilibria E6 and E7 be globally asymptotically stable in
◦

R+
uxy and

◦

R+
uxz,

respectively.

Theorem 4.1 Let the hypotheses H(1-6), G(1-3), P(1,2) and S(1-3) hold. Then the
system (2.1) is uniformly persistent whenever ξ > 0 and η > 0, where ξ and η are given
by (3.5) and (3.6), respectively.

The above theorem can be interpreted as follows. If the predator y is unable to survive
on its own, then the mutualist could help the predator population to survive. As observed
in [13], the mutualist can benefit the mutualist predator in several ways: by increasing
the prey growth rate, by increasing the rate of predation of its prey x, by providing
an alternate food source for the mutualist-predator and by enhancing the efficiency of
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utilization of the prey by the mutualist-predator. Below we illustrate each of these cases
with an example. All examples considered are of the form

du

dt
= u

(
1 −

u

L+ ℓy

)
,

dx

dt
= αx

(
1 −

x

K + ku

)
− (γ0 + γ1u)xy −

δ0
1 + δ1u

xz,

dy

dt
= y

[
− s10 + s11u− s12y + (c10 + c11u)(γ0 + γ1u)x− ξ0z

]
,

dz

dt
= z

[
− s20 − s21u− s22z +

c20
1 + c21u

δ0
1 + δ1u

x+
c30ξ0

1 + c31u
y

]
,

(4.1)

where all the constants are assumed to be nonnegative.
In the absence of the mutualist u, there will be an equilibrium in R+

xy,

(x, y) =

(
K(s10γ0 + αs12)

αs12 +Kc10γ2
0

,
α(Kc10γ0 − s10)

αs12 +Kc10γ2
0

)
,

unless Kc10γ0 ≤ s10. Thus for obligate mutualism we require

Kc10γ0 ≤ s10. (4.2)

Example 4.1 When γ1 = δ1 = s11 = c11 = s21 = c21 = c31 = 0 and k > 0, mutualism
occurs by means of the mutualist enhancing the prey growth rate.

The region of attraction for the system is contained in the set

B = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓM̃, 0 ≤ x ≤ K + k(L+ ℓM̃),

0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ},
(4.3)

where

M̃ =
−s10 + c10γ0(K + kL)

s12 − c10γ0kℓ
,

Ñ =
1

s22

(
− s20 +Kc20δ0 +K(L+ ℓM̃) + c30ξ0M̃

)
.

We assume that M̃ and Ñ are positive, otherwise the system will always exhibit

extinction. The equilibria in R
+

ux are E0(0, 0, 0, 0), E1(L, 0, 0, 0), E2(0,K, 0, 0),

E3(L,K+kL, 0, 0, 0). The equilibrium E5

(
0, K(δ0s20+αs22)

αs22+Kc20δ2

0

, 0, α(−s20+Kc20δ0)
αs22+Kc20δ2

0

)
exists pro-

vided Kc20δ0 > s20.
The subsystem in R+

uxy is uniformly persistent whenever

β1 = −s10 + c10γ0(K + kL) > 0, (4.4)

in which case the equilibrium in R+
uxy is given by

E6(u3, x3, y3, 0) = (L+ ℓy3,
s10 + s12y3
c10γ0

, y3, 0),
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where

y3 =
b +

√
b2 + 4kℓc10γ2

0β1

2kℓc10γ2
0

and
b = αkℓc10γ0 − αs12 − c10γ

2
0(K + kL).

The subsystem in R+
uxz is uniformly persistent provided

β2 = −s20 + c20δ0(K + kL) > 0, (4.5)

and then the equilibrium in R+
uxz is given by

E7(u4, x4, 0, z4) =

(
L,

(αs22 + δ0s20)(K + kL)

αs22 + (K + kL)c20δ20
, 0,

αβ2

αs22 + (K + kL)c20δ20

)
.

The symmetric matrix B(u, x, y) corresponding to E6 is given by

b11 =
1

(L+ ℓy3)
,

b12 =
−αkc10x

2(K + ku)(K + k(L + ℓy3))
,

b13 = −
ℓu

2(L+ ℓy)(L+ ℓy3)
,

b22 =
βc10

K + k(L+ ℓy3)
,

b23 = 0 and b33 = s12.

It is positive definite in the region of attraction of the subsystem in R+
uxy, whenever

s12

(
αc10

L+ ℓy3
−
α2k2c210(K + k(L+ ℓM̃))2

4K2(K + k(L+ ℓy3))

)
−
αc10ℓ

2(L+ ℓM̃)2

4L2(L+ ℓy3)2
> 0. (4.6)

The matrix D(u, x, z) corresponding to E7 is given by

d11 =
1

L
, d12 =

αkc20x

2(K + kL)(K + ku)
, d13 = 0,

d22 =
αc20

K + kL
, d23 = 0, d33 = s22.

It is positive definite whenever

1

L
−
αk2c20(K + kL)2

4(K + kL)K2
> 0. (4.7)

Thus the system (4.1) will be uniformly persistent whenever (4.4) – (4.7) hold and

ξ = −s20 + c20δ0x3 + c30ξ0y3 > 0, (4.8)

and
η = −s10 + c10γ0x4 − ξ0z4 > 0. (4.9)
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Example 4.2 When k = δ1 = s11 = c11 = s21 = c21 = c31 = 0 and γ1 > 0, the
mutualist enhances the rate of predation of the mutualist-predator y. Here the region of
attraction is contained in the set

B = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓM̃, 0 ≤ x ≤ K, 0 ≤ y ≤ M̃,

0 ≤ z ≤
1

s22
(−s20 +Kc20δ0 + c30ξ0M̃)},

(4.10)

where

M̃ = −
s10 +Kc10(γ0 + γ1L)

s12 −Kc10γ1ℓ
.

The equilibria inR
+

ux are given byE0(0, 0, 0, 0), E1(L, 0, 0, 0), E2(0,K, 0, 0), E3(L,K, 0, 0).
The subsystem in R+

uxy is uniformly persistent whenever

β1 = −s10 +Kc10(γ0 + γ1L) > 0, (4.11)

in which case the equilibrium E6(u3, x3, y3, 0) = (L+ℓy3,
1
α
[α−(γ0+γ1(L+ℓy3))y3], y3, 0),

where from Descartes’ rule of signs y3 is the unique positive root of the equation

y3 +
2

γ1ℓ
(γ0 + γ1L)y2 +

(
Kc10(γ0 + γ1L)2 + αs12 − αKc10γ1ℓ

)
y − αβ1 = 0. (4.12)

The subsystem in R+
uxz is uniformly persistent provided

β2 = −s20 + c20δ0K > 0, (4.13)

in which case E7(u4, x4, 0, z4) =
(
L, K(αs22+δ0s20)

αs22+Kc20δ2

0

, 0, αβ2

αs22+Kc20δ2

0

)
. Now we consider the

global asymptotic stability of E6 and E7 in R+
uxy and R+

uxz, respectively.

The symmetric matrix B(u, x, y) corresponding to E6(u3, x3, y3, 0) is given by

b11 =
1

u3
, b12 =

γ1y

2
, b13 = −

1

2

(
ℓu

u3(L+ ℓy)
+ c10γ1x− s11

)
,

b22 =
c10
K
, b23 = 0, b33 = s12.

It is positive definite in its region of attraction whenever

4

s12

(
1

Ku3
−
γ2
1c10M̃

2

4

)
−

1

K

(
ℓ(L+ ℓM̃)

u3L
+Kc10γ1 − s11

)
> 0, (4.14)

where M̃ is given by (4.10). The symmetric matrix D(u, x, z) corresponding to E7 is
given by

d11 =
1

u4
, d12 = 0, d13 =

1

2
s21,

d22 =
αc20
K

, d23 = 0, d33 = s22.

It is positive definite in its region of attraction whenever

4s22 − Ls221 > 0. (4.15)

Thus whenever (4.11), (4.13) – (4.15) hold and

ξ = −s20 + c20δ0x3 + c3ξ0y3 > 0, (4.16)

and
η = −s10 + c10(γ0 + γ1u4)x4 − ξ0z4 > 0, (4.17)

the system (4.1) is uniformly persistent.
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Example 4.3 When k = γ1 = δ1 = c11 = s21 = c21 = c31 = 0 and s11 > 0, the
mutualist provides the mutualist-predator with an alternate food source.

The region of attraction is contained in the set

B = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓM̃, 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.18)

where

M̃ = −
s10 + s11L+ c10γ0K

s12 − s11ℓ
,

Ñ =
1

s22
(−s20 +Kc20δ0 + c3ξ0M̃).

(4.19)

The equilibria in R
+

ux are E0(0, 0, 0, 0), E1(L, 0, 0, 0), E2(0,K, 0, 0) and E3(L,K, 0, 0).
The subsystem in R+

uxy is uniformly persistent whenever

β1 = −s10 + s11L+Kc10γ0 > 0. (4.20)

The subsystem in R+
uxz is uniformly persistent whenever

β2 = −s20 +Kc20δ0 > 0. (4.21)

Whenever the inequalities (4.20) and (4.21) hold the equilibria in R+
uxy and R+

uxz are
given by

E6(u3, x3, y3, 0) =

(
L+ ℓy3,

K(s10γ0 + αs12 − αs11ℓ+ s11Lγ0)

Kc10γ
2
0
− αs11ℓ+ αs12

,
αβ1

Kc10γ
2
0
− αs11ℓ+ αs12

, 0

)

and

E7(u4, x4, 0, z4) =

(
L,
s20 + s22z4
c20δ0

, 0,
αβ2

Kc20δ20 + αs22

)
.

The symmetric matrix B(u, x, y) corresponding to E6 is given by

b11 =
1

u3
, b12 = 0, b13 = −

ℓu

2u3
,

b22 =
αc10
K

, b23 = 0, b33 = s12.

It is positive definite in the region of attraction whenever

s12 −
ℓ2

4u3
(L + ℓM̃)2 > 0. (4.22)

The matrix corresponding to E7, D(u, x, z) = diag
(

1
u4
, αc20

K
, s22

)
is always positive

definite.
Thus the system (4.1) will be uniformly persistent whenever inequalities (4.20) – (4.22)

hold and
ξ = −s20 + c20δ0x3 + c30ξ0y3 > 0, (4.23)

and
η = −s10 + s11u4 + c10γ0x4 − ξ0z4 > 0. (4.24)
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Example 4.4 When k = γ1 = δ1 = s11 = s21 = c21 = c31 = 0 and c11 > 0, the
mutualist enhances the efficiency of the utilization of the prey by the mutualist-predator.
Here the region of attraction is contained in the set

B = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓM̃, 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.25)

where

M̃ =
−s10 +Kγ0(c10 + c11L)

s12 −Kγ0c11ℓ
,

Ñ =
−s20 +Kc20δ0 + c30ξ0M̃

s22
.

The equilibrium in R+
ux is E3(L,K, 0, 0). The subsystems in R+

uxy and R+
uxz are uniformly

persistent provided
β1 = −s10 + (c10 + c11L)γ0K > 0, (4.26)

and
β2 = −s20 +Kc20δ0 > 0. (4.27)

The equilibrium

E6(u3, x3, y3, 0) =

(
L+ ℓy3,

K

α
(α− γ0y3),

b+
√
b2 + 4αβ1

2Kc11γ2
0ℓ

, 0

)
,

where
b = α(ℓKc11γ0 − s12) −Kγ2

0(c10 + c11L).

The equilibrium

E7(u4, x4, 0, z4) =

(
L,
K(αs22 + δ0s21)

αs22 +Kc20δ20
, 0, αβ2

)
.

The symmetric matrix B(u, x, y) corresponding to E6 is given by

b11 =
1

u3
, b12 = 0, b13 = −

ℓu

2u3(L+ ℓy)
−

1

2
c11γ0x,

b22 =
α

K
(c10 + c11u3), b23 = 0, b33 = s12.

It is positive definite in its region of attraction whenever

4s12
u3

−

(
ℓ(L+ ℓM̃)

u3L
+Kc11γ0

)2

> 0. (4.28)

The symmetric matrix corresponding to E7 is given by

D(u, x, z) = diag

(
1

L
,
αc20
K

, s22

)
.
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Thus whenever inequalities (4.26) – (4.28) hold and

ξ = −s20 − s21u3 + c20δ0x3 + c30ξ0y3 > 0, (4.29)

and

η = −s10 + (c10 + c11u4)γ0x4 − ξ0z4 > 0, (4.30)

the given system is uniformly persistent.

In the above examples, all boundary equilibria of predator-prey type were globally
asymptotically stable in their respective predator-prey planes, i.e. we assumed that
hypotheses (H5) and (H6) hold.

We now allow for the possibility that (H5) and/or (H6) be violated, in which case there

could be periodic solutions in
◦

R+
xz and periodic, almost periodic, or recurrent motions in

◦

R+
uxz and

◦

R+
uxy.

Persistence criteria have been obtained in three dimensional systems when periodic
solutions occur in the predator-prey planes. To the best of our knowledge the almost
periodic case for four dimensions has not yet been considered.

Hence we next demonstrate that uniform persistence can occur even when one or more
of the three-dimensional subsystems have almost periodic solutions. We note that the
closure Σ of an almost periodic orbit is a compact, minimal set and every solution in Σ
is almost periodic (see [26]).

We state and prove a theorem for persistence in the case where almost periodic solu-

tions occur in R+
uxy, but that E7 is globally stable with respect to

◦

R+
uxz. Let there be k

nontrivial almost periodic solutions in R+
uxy, denoted (φi(t), ψi(t), ξi(t), 0), with disjoint

closures
∑
i

, i = 1, . . . , k.

Theorem 4.2 Let the hypotheses H(1-5), G(1-3), P(1,2) and S(1-3) hold, and E7

be globally stable with respect to
◦

R+uxz. Also let the omega limit sets of all solutions

initiating in R+
uxy lie in the acyclic set

{ k⋃
i=1

Σi∪E6

}
. Then the system (2.1) is uniformly

persistent whenever ξ > 0, η > 0 and

lim
t→∞

1

t

t∫

0

[−s2(φi(r), 0) + c2(φi(r))p2(φi(r), ψi(r))

+ c3(φi(r))q(φi(r), ξi(r))] dr > 0, i = 1, . . . , k.

(4.31)

Proof First we observe that the limit in the inequality (4.31) exists. Also as each
Σi is a compact minimal set, it lies in R+

uxy and the subsystem in R+
uxy is uniformly

persistent. The uniform persistence of (2.1) will follow (see [5]) if we can show that the
stable sets, W s(Σi) and W s(Ej) do not intersect R+

uxyz and each of them is isolated

in R
+

uxyz.

First, we show that W s(Σi) ∩R+
uxyz = φ, 1 ≤ i ≤ k. Let Φ(t) = (φ(t), ψ(t), ξ(t), 0)T

be any almost periodic solution in Σi0 and X(t) = (u(t), x(t), y(t), z(t))T , X(0) = X0 ∈
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R+
uxyz be any solution starting sufficiently close to Φ(t). Linearizing X(t) about Φ(t) we

obtain

Y ′(t) = A(t)Y (t), (4.32)

where Y (t) = (u1(t), x1(t), y1(t), z1(t))
T is the linearized vector variable, and

A(t) =




φhu + h φhx φhy φhz

αψg − ψp1 αg + αgx − ξp1x
−p1 −p2

−ψ(−s1u + c′1p1u) ψc1p1x −s1 + c1p1 − ξs1y −q

0 0 0 −s2 + c2p2 + c3q


 ,

where all the functions are evaluated at Φ(t). Solving the last equation in (4.32) we
obtain

z1(t) = z1(0) exp

t∫

0

[−s2(φ(r), 0) + c2(φ(r))p2(φ(r), ψ(r)) + c3(φ(r))q(φ(r), ξ(r))] dr.

Now since Φ(t) lies in Σi0 and the solutions through Σi0 are uniformly stable in both
directions in Σi0 , the inequality (4.31) (with i = i0) implies that z1(t) > 0 for t ≥ 0
and is an increasing function for sufficiently large t. Thus any solution in R+

uxyz, starting
sufficiently close to Σi0 eventually gets away from it.

Hence, Ω(X0) 6⊂ Σi0 . Thus W s(Σi0) ∩R
+
uxyz = φ, 1 ≤ i ≤ k.

Since all boundary equilibria are hyperbolic we conclude as in [24] that W s(Ei) ∩
R+

uxyz = ∅, 1 ≤ i ≤ 7.

Now suppose that for some i0, Σi0 is not an isolated invariant set in R+
uxyz. Then

there must exist closed invariant sets in arbitrarily close neighbourhoods of Σi0 . Let
M ⊃ Σi0 be such a closed invariant set. Then by repeating the arguments, given above
we conclude that Σi0 repels the solutions starting in M/Σi0 and hence they must leave
M . However this contradicts the fact that M is invariant. Hence the proof.

Remark 4.3 The acyclic condition of the above theorem is always satisfied when each
Σi is either asymptotically stable or completely unstable in R+

uxy and there do not exist

any homoclinic orbits in R+
uxy.

Remark 4.4 In the event that almost periodic solutions exist for the subsystems in
R+

uxz a criterion similar to the one given by the above theorem can be obtained.

Case II: Obligate mutualism between u and z

The system (2.1) exhibits obligate mutualism between the mutualist u and the top-
predator z, whenever the hypotheses H(1,2,3∗,4∗), G(1-3), P(1,2∗) and S(1,2∗,4∗) hold.

Also from the hypothesis S(4∗) the mutualism is obligate for the predator. Hence
Ez→0 in R+

xz and R+
xyz and the equilibrium E5 does not exist. To obtain the persistence

criteria in this case, we need to introduce the following additional hypothesis:

(H5∗) Let the equilibrium E4 (if it exists) be globally asymptotically stable with respect

to solutions initiating in
◦

R+
xy.

The following result holds for system (2.1).
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Theorem 4.3 Let the hypotheses H(1,2,3∗,4∗,5∗,6), G(1-3), P(1,2∗), S(1,2∗,4∗) hold.
Then system (2.1) is uniformly persistent whenever ξ > 0 and η > 0.

Persistence in system (2.1) can result in any of the following ways.
The mutualist u can directly benefit the mutualist-predator z, by enhancing the growth

rate of the prey x, by providing an alternate food supply, by increasing its rate of preda-
tion or by enhancing the efficiency of utilization of the prey(s). Below we illustrate each
of these cases with an example. We also note that the mutualist’s interaction with the
predator y can also lead to a beneficial effect for the top-predator.

Consider the system

u′ = u

(
1 −

u

L+ ℓz

)
,

x′ = αx

(
1 −

x

K + ku

)
−

γ0

1 + γ1u
xy − (δ0 + δ1u)xz,

y′ = y

[
− s10 + s12y +

c1γ0

1 + γ1u
xy

]
− (ξ0 + ξ1u)yz,

z′ = z[−s20 − s21u− s22z + (c20 + c21u)(δ0 + δ1u)x+ c3(ξ0 + ξ1u)y],

(4.33)

where all the constants are assumed to be nonnegative.

It is easily seen that in the absence of the mutualist, y(t) ≤ −s10+Kc1γ0

s12

. Hence assume

that

s10 < Kc1γ0, (4.34)

otherwise Ey→0 in R+
uxyz. Furthermore for obligate mutualism to occur we require that

Kc20δ0 + c3ξ0
(−s10 +Kc1γ0)

s12
≤ s20. (4.35)

Example 4.5 When γ1 = δ1 = ξ1 = s21 = c21 = 0 and k > 0, mutualism occurs by
means of mutualist enhancing the rate of growth of the prey x.

The region of attraction is contained in the set

C = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓÑ, 0 ≤ x ≤ K + k(L+ ℓÑ),

0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ},
(4.36)

where

M̃ =
−s10 + c1γ0(K + k(L+ ℓÑ))

s11

and

Ñ =
−s20 + c20δ0(K + kL) + c3ξ0M̃

s22 − c20δ0 +Kℓ
.

The equilibrium in R+
ux is (L,K + kL). The subsystems in R+

uxy and R+
uxz are uniformly

persistent whenever

β1 = −s10 + c1γ0(K + kL) > 0, (4.37)
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and
β2 = −s20 + c20δ0(K + kL) > 0. (4.38)

The equilibrium

E6(u3, x3, y3, 0) =

(
L,

(K + kL)(γ0s10 + αs11)

αs11 + (K + kL)γ2
0c1

,
αβ1

αs11 + (K + kL)γ2
0c1

, 0

)
,

E7(u4, x4, 0, z4) = (L+ ℓz4, x4, 0, z4),

where

x4 =
1

α
(α− δ0z4)(K + kL+ kℓz4),

z4 =
b4 +

√
b20 + 4c20δ20αkℓβ2

2c20δ20kℓ
,

and b0 = α(−s22 + c20δ0kℓ) − c20δ
2
0(K + kL). The symmetric matrix B(u, x, y) corre-

sponding to E8 is given by

b11 =
1

u3
, b12 =

−c1αkx

2(K + ku3)(K + ku)
, b13 = 0,

b22 =
αc1

K + ku3
, b23 = 0, b33 = s11.

Thus B(u, x, y) is positive definite in its region of attraction whenever

4K2(K + ku3) − αu3c1k
2(K + kL)2 > 0. (4.39)

The symmetric matrix D(u, x, z) corresponding to E7 is given by

d11 =
1

u4
, d12 =

−αkc20x

2(K + ku4)(K + ku)
, d13 = −

1

2

ℓu

u4(L + ℓz)
,

d22 =
αc20

(K + ku4)
, d23 = 0, b33 = s22.

The region of attraction of the subsystem in R+
uxz is contained in the set

C1 = {(u, x, z) : 0 ≤ u ≤ L+ ℓN1, 0 ≤ x ≤ K + k(L+ ℓN1), 0 ≤ z ≤ N1},

where N1 = β2

s22−c20δ0kℓ
. The matrix D(u, x, z) is positive definite in B1 whenever

4c20s22 −
αu4c

2
20s22k

2

(K + ku4)K2
(K + kL+ kℓN1)

2 −
ℓ2

L2u4
(L+ ℓN1)

2 > 0. (4.40)

Thus the system (4.31) is uniformly persistent whenever the inequalities (4.35) – (4.38)
hold and

ξ = −s20 + c20δ0x3 + c3ξ0y3 > 0 (4.41)

and
η = −s10 + c1γ0x4 − ξ0z4 > 0. (4.42)
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Example 4.6 When k = γ1 = δ1 = ξ1 = c21 = 0 and s21 > 0, mutualism occurs by
means of providing an alternate food source to the top-predator. The region of attraction
is contained in the set

C = {(u, x, z) : 0 ≤ u ≤ L+ ℓÑ, 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.43)

where

M̃ =
−s10 +Kc1γ0

s11
and Ñ =

−s20 + s21L+Kc20δ0 + c3ξ0M̃

s22 − ℓs21
.

The equilibrium in R+
ux is (L,K, 0, 0). The subsystems in R+

uxy and R+
uxz are uniformly

persistent whenever
β1 = −s10 + c1γ0K > 0, (4.44)

and
β2 = −s20 + s21L+ c20δ0K > 0, (4.45)

respectively, in which case the equilibria are

E6(u3, x3, y3, 0) =

(
L,

K(γ0s10 + αs12)

Kc1γ2
0 + αs12

,
α(−s10 +Kc1γ0)

Kc1γ2
0 + αs12

, 0

)

and

E7(u4, x4, 0, z4) =

(
L+ ℓz4,

K((s20 − s21L)δ0 + (s22 − s21ℓ)α)

Kc20δ
2
0

+ α(s22 − s21ℓ)
, 0,

αβ2

Kc20δ
2
0

+ α(s22 − s21ℓ)

)
.

The symmetric matrix corresponding to E6 is B(u, x, y) = diag
(

1
u3
, αc1

K
, s12

)
. The sym-

metric matrix D(u, x, z), corresponding to E7 is given by

b11 =
1

u4
, b12 = 0, b13 =

(
ℓu

u4(L + ℓz)
+ s21

)
,

b22 =
αc20
K

, b23 = 0, b33 = s22.

The region of attraction of the subsystem in R+
uxz is contained in the set

C1 =

{
(u, x, z) : 0 ≤ u ≤ L+

ℓβ2

s22 − s21ℓ
, 0 ≤ x ≤ K, 0 ≤ z ≤

β2

s22 − s21ℓ

}
.

The matrix D(u, x, z) is positive definite in C1 whenever

s22 − u4

(
s21 +

ℓ

Lu4

(
L+

ℓβ2

s22 − s21ℓ

))2

> 0. (4.46)

Therefore the system (4.31) will be uniformly persistent whenever inequalities (4.42) –
(4.44) hold and

ξ = −s20 + s21u3 + c20δ0x3 + c3ξ0y3 > 0, (4.47)

and
η = −s10 + c1γ0x4 − ξ0z4 > 0. (4.48)
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Example 4.7 When k = γ1 = δ1 = ξ1 = s21 = 0 and c21 > 0, mutualism occurs by
mutualist enhancing the utilization of the prey by the top-predator. Here the region of
attraction is contained in

C = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓÑ , 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.49)

where

M̃ =
−s10 +Kc1γ0

s11
and Ñ =

−s20 + (c20 + c21L)δ0K + c3ξ0M̃

s22 −Kc21ℓδ0
.

The equilibrium in R+
ux is E3(L,K, 0, 0). The subsystems in R+

uxy and R+
uxz are uni-

formly persistent whenever
β1 = −s20 +Kc1γ0 > 0, (4.50)

and
β2 = −s20 + (c20 + c21L)Kδ0 > 0. (4.51)

The equilibrium E6(u3, x3, y3, 0) in R+
uxy is the same as in Example 4.6 and the corre-

sponding matrix B(u, x, y) = diag
(

1
u3
, αc1

K
, s12

)
. The equilibrium

E7(u4, x4, 0, z4) =

(
L+ ℓz4,

s20 + s22z4
δ0(c20 + c21u4)

, 0,
−b0 +

√
b20 + 4Kℓαβ2δ20c21
2δ20Kℓc21

)
,

where b0 = αs22 −Kℓαδ0c21 +Kδ20(c20 + c21L). The symmetric matrix D(u, x, z) corre-
sponding to E7 is given by

d11 =
1

u4
, d12 = 0, d13 = −

1

2

(
ℓu

(L+ ℓz)u4
+ c21δ0x

)
,

d22 =
α

K
(c20 + c21u4), d23 = 0, d33 = s22.

The region of attraction for the subsystem in R+
uxz is contained in the set

C1 =

{
(u, x, z) : 0 ≤ u ≤ L+ ℓN1, 0 ≤ x ≤ K, 0 ≤ z ≤

β2

s22 −Kℓδ0c21
= N1

}
.

The matrix D(u, x, z) is positive definite in A1 whenever

4s22 − u4

(
ℓ(L+ ℓN1)

Lu4
+ c21δ0K

)2

> 0. (4.52)

Thus if inequalities (4.48) – (4.50) hold and

ξ = −s20 + (c20 + c21u3)δ0x3 + c3ξ0y3 > 0 (4.53)

and
η = −s10 + c1γ0x4 − ξ0z4 > 0, (4.54)

then the system will be uniformly persistent.



42 R. KUMAR AND H.I. FREEDMAN

Example 4.8 When k = γ1 = ξ1 = s21 = c21 = 0 and δ1 > 0, mutualism occurs by
means of the mutualist increasing the rate of predation by the predator z on the prey x.

C = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓÑ , 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.55)

where

M̃ =
−s10 +Kc1γ0

s11
and Ñ =

−s20 + c20(δ0 + δ1L)K + c3ξ0M̃

s22 −Kc20ℓδ1
.

The equilibrium in R+
ux is E3(L,K, 0, 0). The subsystem in R+

uxy is uniformly persistent
if

β1 = −s10 + c1γ0K > 0. (4.56)

The equilibrium E6 in R+
uxy is the same as in Example 4.7 and is always globally asymp-

totically stable with respect to solutions initiating in R+
uxy.

The subsystem in R+
uxz will be uniformly persistent whenever

β2 = −s20 + c20(δ0 + δ1L)K > 0. (4.57)

The equilibrium in R+
uxz is

E7(u4, x4, 0, z4) =

(
L+ ℓz4,

K

α
(α− (δ0 + δ1u4)z4), 0, z4

)
,

where z4 is the unique positive root of the cubic equation

kℓ2c20δ
2
1z

3 + 2Kℓc20δ1(δ0 + δ1L)z2 + (αs22 − αKℓc21δ1 +Kc20(δ0 + δ1L)2)z − αβ2 = 0.

The symmetric matrix D(u, x, z) corresponding to E7 is given by

d11 =
1

u4
, d12 =

1

2
c20δ1z, d13 = −

1

2

(
ℓu

u4(L+ ℓz)
+ c20δ1x

)
,

d22 =
α

K
c20, d23 = 0, d33 = s22.

The region of attraction for the subsystem in R+
uxz is contained in

C1 =

{
(u, x, z) : 0 ≤ u ≤ L+ ℓN1, 0 ≤ x ≤ K, 0 ≤ z ≤

β2

s22 −Kℓc20δ1
= N1

}
.

The matrix D(u, x, z) is positive definite in A1 provided

s22

(
4α

u4
−Kc20δ

2
1N1

)
− α

(
ℓ

u4L
(L + ℓN1) +Kc20δ1

)2

> 0. (4.58)

Thus whenever the inequalities (4.54) – (4.56) hold and

ξ = −s20 + c20(δ0 + δ1u3)x3 + c3ξ0y3 > 0, (4.59)
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and

η = −s10 + c1γ0x4 − ξ0z4 > 0, (4.60)

the given system is uniformly persistent.

5 Discussion

The main focus in this paper is to examine the possible effects of an obligate mutualist on
the middle and top predator in a food chain. In particular, it was shown how a mutualist
could reverse the outcome of extinction in the case of no mutualism to persistence in the
case of mutualism.

Such mutualisms occur in nature. Examples are cleaner mutualists. The large iguanas
of the Galapagos Islands may be thought of as either middle predators or top predators
depending on whether or not their eggs are subject to predation [10]. Similarly for
the giant tortoises [8]. Both have evolved a mutualism with finches which act as cleaner
mutualists by removing ticks and other pests from the iguanas and tortoises. Such cleaner
mutualism has been shown to be obligate in the Carribean [28]. in that if the cleaning
is not performed, the individuals (in this case certain fish) will soon die.

A remaining problem to be analyzed is the case where the mutualism is obligate on
both mutualists. This is left to future work.
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