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Abstract: In the paper the equilibrium stability of conservative systems both
holonomic and nonholonomic in case when the appropriate force function of
a system has not a local maximum in the equilibrium state is considered. For
the investigation of stability the Hamilton action is used as a function of phase
variables and time.
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0 Introduction

The most vulnerable area of researches on stability of systems based on the application of
the Liapunov second method is the problem of finding a Liapunov function (including its
analogues and modifications), especially if the problem is not solved in the framework of
linear approximation. For this reason relevant stability (instability) theorems involving
auxiliary functions, whose construction remains a problem, are actually inefficient or
even useless.

In view of the above, the approach has become of theoretical and practical significance
when beforehand the class of considered systems (for example conservative, reversible,
with constant phase volume, etc.) is defined, for which the construction of a Liapunov
function or its analogue is possible. Thus, the solution of the problem about stability
(instability) passes into constructive direction at once for the whole class of systems.
Just such idea can be realized concerning the class of conservative systems

d

dt

∂L

∂q̇
−

∂L

∂q
= 0, (0.1)

whose Lagrangian L can retain its sign at least on some set of motions.
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Within the framework of the proposed approach the Liapunov second method should
be interpreted somewhat wider in comparison with the classical approach. In particular,
the ideas incorporated in the second method are put in the forefront instead of the specific
theorems covered by it. Also allowing for the peculiarities of the examined systems takes
an important place.

1 About Hamilton Action as a Function of Phase Variables

In the construction of a Liapunov function analogue for conservative systems it is pro-
posed to use the Hamilton action S as a function of phase coordinates and time. The
possibility to obtain the equations of conservative systems from the condition for the
Hamilton action S being stationary

δS = δ

t1∫

0

L(q, q̇) dτ = 0, (1.1)

enables the action S to be recognized as a carrier of information on conservative systems.
In view of this fact, we replace the fixed value t1 by the current value t in the expression
for the action S and consider S as a magnitude which characterizes the true motion of
the system, i.e. as the action function

S =

t∫

0

L(q, q̇) dτ. (1.2)

It means that the values

q = q(t, q0, q̇0), q̇ = q̇(t, q0, q̇0), (1.3)

q0 = q(t = 0), q̇0 = q̇(t = 0)

in the integrand of equality (1.2) satisfy the equations (0.1). Let us assume further that
the Lagrangian L(q, q̇) ∈ C2(Dq × Rn

q̇ ) and

L(q, q̇) = L2(q, q̇) + L1(q, q̇) + L0(q)

=
1

2
q̇T A(q)q̇ + f(q)

T
q̇ + L0(q),

(1.4)

where the quadratic form L2(0, q̇) is positive definite, the point q = q̇ = 0 corresponds
to the equilibrium state of system (0.1), (1.4), f(0) = 0, L0(0) = 0. Besides, let the
solution (1.3) satisfy the definition of a flow [1]. This does not limit generality of the
consideration, since the instability of the equilibrium state is dealt with below.

Replacing t by τ in (1.3) and carrying out integration in equality (1.2), we obtain

S = S̃(τ, q0, q̇0)|
t
0 ∈ C

(1,1,1)
tq0 q̇0

(R × sδ), (1.5)
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where the vector (q0, q̇0) belongs to the neighborhood sδ = {(q0, q̇0) ∈ Dq × Rn
q̇ ,

‖q0 ⊕ q̇0‖ < δ} of the point q = q̇ = 0. Taking into account that the solution (1.3)
defines a flow and thus

q0 = q(−t, q, q̇), q̇0 = q̇(−t, q, q̇), (1.6)

we have from (1.5)

S = S∗(τ, q(τ), q̇(τ))|t0 ∈ C
(1,1,1)
tqq̇ (R × Dq × Rn

q̇ ). (1.7)

The use of the Hamilton action function S in the form of (1.7) as an analogue of
the Liapunov function provides greater possibility for more complete representation of
the internal properties of the system in question than the standard approach within
the Liapunov second method. Actually, this is confirmed by the investigations of the
inversion of the Lagrange-Dirichlet and Routh theorems [2 – 8]. Sufficient conditions of
instability obtained in these investigations are more general in comparison with the ones
known earlier (see the reviews [7, 9 – 11]. In particular, the following result is true

Theorem 1.1 [6] Let a number ε > 0 (D ⊃ s∗ε) exist such that:

(1) ω = {q ∈ s∗ε : L0(q) > 0} 6= ∅, 0 ∈ ∂ω;
(2) ∂L0/∂q 6= 0 ∀q ∈ ω;
(3) L0 −

1
2 fT A−1f ≥ 0 ∀q ∈ ω.

Then the equilibrium state q = q̇ = 0 of system (0.1), (1.4) is unstable.

Corollary 1.1 Let the system be natural (L2 = T , L1 ≡ 0, L0 = −Π, where the
functions T and Π are kinetic energy and potential energy of system respectively) and let
a number ε > 0 (D ⊃ s∗ε) exist such that:

(1) ω = {q ∈ s∗ε : Π(q) < 0} 6= ∅, 0 ∈ ∂ω;
(2) ∂Π/∂q 6= 0 ∀q ∈ ω.

Then the equilibrium state q = q̇ = 0 of the system is unstable.

Corollary 1.2 [2] The isolated equilibrium state q = q̇ = 0 of a natural system is
unstable if in this state the potential energy Π(q) has not a local minimum.

Corollary 1.3 [3] Let the Lagrangian L in the neighborhood of the point q = q̇ = 0
be analytical function. Then the equilibrium state q = q̇ = 0 of a natural system is
unstable if the potential energy Π(q) at the point q = 0 has not a local minimum.

Remark 1.1 In special case when the expression L0 −
1
2 fT A−1f has the local mini-

mum (not necessarily strict) at the point q = 0, the restriction (2) in Theorem 1.1 (and
the restriction (2)) in Corollary 1.1 respectively) can be omitted.

Remark 1.2 The statement of the problem about the equilibrium instability of a
natural system under the assumptions of Corollary 1.3 is due to Liapunov [12].

2 The Application of the Hamilton’s Action Function S to the

Investigation of Stability of Conservative Nonholonomic Systems

The use of the Hamilton’s action function S can also appear to be useful in analysing the
equilibrium stability of nonholonomic systems. As it is well known [11, 13], the equilibria
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set of a nonholonomic system is larger than a set of critical points of the appropriate
Lagrangian L. Restricting the investigation to stability analysis of the equilibria of
nonholonomic systems which are critical points of the Lagrangian L, Whittaker [14]
somewhat narrowed the class of considered nonholonomic systems. However this more
narrow class is of interest first of all because many of the approaches characteristics of
stability investigation of holonomic systems [15 – 19] are applicable to it. It turns out
that for the systems in question, the application of the Hamilton’s action function S is
efficient as well as for the holonomic ones.

So, we shall consider a nonholonomic system written as

d

dt

∂L

∂q̇
−

∂L

∂q
= BT (q)λ, λ = (λ1, . . . , λl)

T , (2.1)

B(q)
dq

dt
= 0, (2.2)

where B(q) = (bij(q)) is a l × n matrix (i = 1, . . . , l, j = 1, . . . , n, l < n), λ is the

l-vector of the Lagrange multipliers, L(q, q̇), B(q) ∈ C2(Dq × Rn
q̇ ) and the Lagrangian

L is defined by expression (1.4).
Let the quadratic form q̇T A(0)q̇ be positive definite as before, the point q = q̇ = 0

correspond to the equilibrium state of system (2.1), (2.2), (1.4) and f(0) = 0, L0(0) = 0.
Nonintegrable relations (2.2) which restrict the generalized velocities of the system

(rankB(q) = l) are nonholonomic constraints.
It is well known [20, 21] that the equations of motion of nonholonomic system can be

obtained on the basis of the Hamilton principle in the Hölder form

t1∫

0

δL(q, q̇) dτ = 0. (2.3)

In contrast to the holonomic systems, the Hamilton principle in the form of (2.3) is
no longer the principle of stationary action when equality (1.1) is valid. Apparently, it
was Hertz [22], who first called his attention to the fact that equality (1.1) ceases to be
true for nonholonomic systems. Nevertheless the indisputable fact is that in the case of
nonholonomic systems the Lagrangian L(q, q̇) is still the key characteristics of the system.
Taking this into account, we shall consider the action function of the form of (1.2) for
nonholonomic system too.

By analogy with the case of holonomic systems it is assumed that the solution of the
considered nonholonomic system is extendable on the whole axis t ∈ R and so in view of
the assumptions on smoothness of L(q, q̇) and B(q) satisfies the definition of a flow. This
fact, as above, does not restrict generality of the consideration and enables the action
function S to be represented in the form of (1.7).

In what follows system (2.1), (2.2), (1.4) will be written as

q̇ =
∂H

∂p
,

ṗ = −
∂H

∂q
+ BT (q)λ,

B(q)
∂H

∂p
= 0,

(2.4)
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where

H(q, p) =
1

2
pT A−1p − pT A−1f − L0 +

1

2
fT A−1f = h = const . (2.5)

Let us consider in Rn the set π which is defined by the equations

B(q)q = 0. (2.6)

Since rankB(q) = l, the equations (2.6) can always be solved with respect to any l

components of the vector of generalized coordinates q. Let us designate by Ψ̂(q) the
restriction of an arbitrary function Ψ(q) to the set π.

Alongside the set π we shall also define the sets

Ω =
{
(q, p) ∈ sε = {(q, p) ∈ Dq × Rn

p , ‖q ⊕ p‖ < ε} : H = h = 0
}
,

Ω+ = {(q, p) ∈ sε : H = h > 0
}
,

Ω+
1 =

{
(q, p) ∈ sε : H = h > 0, H − q

∂H

∂q
+ (B(q)q)λ > 0

}
.

Theorem 2.1 Let the function L0−
1
2 fT A−1f have a local minimum (not necessarily

strict) at the point q = 0 and besides:

ω∗ =
{
q ∈ s∗ε = {q ∈ Dq, ‖q‖ < ε} : L̂0(q) > 0

}
6= ∅.

Then the equilibrium state q = q̇ = 0 of system (2.1), (2.2), (1.4) is unstable.

Before proving this theorem we need the following lemma.

Lemma 2.1 Under the assumptions of Theorem 2.1 the set

Ω0 =

{
(q, p) ∈ sε : H = 0,−q

∂H

∂q
> 0, B(q)q = 0

}

is not empty.

Proof On the basis of the theorem about the mean [23] we have the equality

H(q, p) − H(0, 0) = q
∂H

∂q
(θq, θp) + p

∂H

∂p
(θq, θp), θ ∈ (0, 1). (2.7)

First let us assume that L0 −
1
2 fT A−1f > 0. Then, taking into account the relation

L = pq̇ − H =
1

2
pT A−1p + L0 −

1

2
fT A−1f = p

∂H

∂p

∀ (q, p) ∈ Ω, q ∈ ω∗,

we conclude that the term q ∂H/∂q on the right-hand side of equality (2.7) is negative
∀ (q, p) ∈ Ω, q ∈ ω∗. Since the vectors q and θq are collinear, on the basis of (2.7) and
the definition of ω∗ we conclude that Ω0 6= ∅.

If L0 −
1
2 fT A−1f ≡ 0, then representing the Hamiltonian H as

H =
1

2
pT A−1(p − 2f) − (L0 −

1

2
fT A−1f)

and assuming p = 2f (‖f‖ 6= 0), we come to the similar conclusion.
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Corollary 2.1 Under the assumptions of lemma the set Ω+
1 is not empty.

Proof Let us fix a point (q0, p0) ∈ Ω0. Taking into account the fact that Ω is the
boundary for set Ω+, we carry out small perturbation of the point (q0, p0):

‖(q∗ − q0) ⊕ (p∗ − p0)‖ < η, 0 < η = const

such that the point (q∗, p∗) becomes the element of the set Ω+. Then owing to the
continuity of the product q ∂H/∂q and the equality (2.6) ∀(q, p) ∈ Ω0 the number η (and
consequently the appropriate perturbation) can be chosen small so that the inequalities

H(q∗, p∗) − q
∂H

∂q

∣∣∣∣
q=q∗, p=p∗

+ (B(q∗)q∗)λ > 0, H(q∗, p∗) > 0

are satisfied. This implies the validity of the corollary.

Proof of Theorem 2.1 Let us assume that the equilibrium state q = q̇ = 0 of the
initial system (2.1), (2.2), (1.4) is stable.

Following [6], we consider the function

V =
qp

S2
1 + 1

,

where

S1 = S∗

(
t, q, ∂H

∂p

)
= S∗

1(t, q, p) ∈ C
(1,1,1)
tqp (R × Dq × Rn

p ).

Its time derivative along the vector field defined by the equations (2.4) is of the form

dV

dt
=

L

S2
1 + 1

(1 − µ) +
(H − q ∂H/∂q + (B(q)q)λ)

S2
1 + 1

,

µ = 2qp
S1

S2
1 + 1

.

(2.8)

According to the assumption about equilibrium stability, there always exists the
positive semitrajectory γ+

1 ⊂ sε of the considered system passing through the point

(q∗, p∗) ∈ Ω+
1 . Let us integrate equality (2.8) over a segment of the semitrajectory γ+

1

which corresponds to the interval [t1, t2], where the numbers t1 and t2 are such that

γ+
1

∣∣t2
t1

⊂ Ω+
1 . (2.9)

We notice that as γ+
1 is a compact set, the absolute value of the velocity of the

appropriate representing point (q(t, q∗, p∗), p(t, q∗, p∗)) moving along γ+
1 is uniformly

bounded. Consequently, it is possible to specify a number a > 0 such that t2 − t1 ≥ a
irrespective of how large the values t1, t2 ∈ R are. In result of integration of equality
(2.8) we have

qp

S2
1 + 1

∣∣∣∣
t2

t1

= arctan S1

∣∣t2
t1

+ o
(
arctan S1

∣∣t2
t1

)
+

t2∫

t1

(H − q ∂H/∂q + (B(q)q)λ)

S2
1 + 1

dt. (2.10)
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Function arctan S1 appearing in the right-hand side of equality (2.10) is a multifunc-
tion with branch points S1 = ±∞. At the same time the intersection of the level set
of the Hamiltonian H = h > 0 and the small neighborhood of the equilibrium state is
the manifold, in any point of which the function S1 does not become infinite. Further,
without loss of generality, it is possible to consider that the inequality S1|t=t1 > 1 is
valid.

Under condition (2.9) we shall choose the length of the interval [t1, t2] small enough
to deal with the domain of principal values of the function arctan S1, using, for example,
the representation of the latter as

arctan S1 =
π

2
−

1

S1
+

1

3S3
1

− . . . .

Then from equality (2.10) when ε > 0 is sufficiently small we obtain

1

S1

∣∣∣∣
t2

t1

+ O

(
1

3S3
1

∣∣∣∣
t2

t1

)
+ o

(
1

S1

∣∣∣∣
t2

t1

)
=

t2∫

t1

(H − q ∂H/∂q + (B(q)q)λ)

S2
1 + 1

dt. (2.11)

Noticing that by (2.9) the right-hand side of equality (2.11) is positive, we come to the
contradiction, because according to structure (1.5) of the Lagrangian L:

dS1

dt
= pq̇ − H =

1

2
pT A−1p + L0 −

1

2
fT A−1f > 0 ∀ (q, p) ∈ γ+

1

∣∣t2
t1

the expression in its left-hand side is negative. Thus the assumption about stability of
the examined equilibrium state is false. Theorem 2.1 is proved.

Corollary 2.2 Let L0−
1
2 fT A−1f ≥ 0 ∀ q ∈ s∗ε and besides the function L0(q) have

a strict local minimum at the point q = 0.
Then the equilibrium state q = q̇ = 0 of system (2.1), (2.2), (1.4) is unstable.

Corollary 2.3 Under the assumptions of Corollary 2.2 the manifold M of the equi-
librium states of system (2.1), (2.2), (1.4) defined by the equations

∂L0(q)

∂q
+ BT (q)λ = 0, q̇ = 0

is unstable.

Proof According to Corollary 2.2 the equilibrium state q = q̇ = 0 of system (2.1),
(2.2), (1.4) is unstable. Let us show that the instability holds true relating to both
variables q and variables q̇. For this purpose we shall assume on the contrary that
instability of the equilibrium state under consideration motivates only the leave of q-
vector. Then, irrespective of the smallness of the initial perturbation, there is an orbit of
the system, whose representing point in a small enough neighborhood of the point q = 0
reaches some sphere ‖q‖2 = η2, η = const. Let integer ξ (0 < ξ = const) correspond to
the minimum of function L0(q) on this sphere. It is clear that ξ does not depend on the
smallness of perturbation.

On the basis of equality

L2(q, q̇) − L0(q) = h = const (2.12)
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we have
1

2
q̇T A(q)q̇ ≥ h + ξ. (2.13)

Since according to the proof of Theorem 2.1 the equilibrium state q = q̇ = 0 of the
examined system is unstable when h > 0, it follows from (2.13) that ‖q̇‖ ≥ ε > 0.
In this case the number ε does not depend on the smallness of the initial perturbation
and thus the instability of the equilibrium state is accompanied by leaving of q̇-vector.
Taking into account that q̇ = 0 on the manifold M of the equilibrium states of the system,
according to definition [24, p.34] we make conclusion about the validity of Corollary 2.3.

The sense of Corollary 2.3 is that it establishes a relationship between instability of
the fixed equilibrium state of nonholonomic system and that of the whole manifold of the
equilibrium states, the existence of which is a distinguishing property of nonholonomic
systems [25].

Corollary 2.4 In special case when the nonholonomic constraints are absent: B(q) =
0, it is possible to omit the condition ω∗ 6= ∅ in the Theorem 2.1 (cf. [6, 26, 27]).

As we see, if a system is nonholonomic then this fact is embodied in the character
of instability conditions, however it should be remembered that the latter are only suf-
ficient. Therefore, unfortunately, the question about the real influence of nonholonomic
constraints on the equilibrium stability remains still open.
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