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1 Introduction

After the seminal work of Lyapunov [1], stability theory was recognized as an indepen-
dent and important field of knowledge. Since that time of 1892, it counted spectac-
ular achievements such as Chetaev’s instability theorem, Malkin’s reduction principle,
Krasovskii-Lyapunov functionals for delay differential equations, stability with respect
to a part of variables, absolute stability of control systems, vector Lyapunov functions,
matrix Lyapunov functions, to name just a few. These fundamental developments and
some other important results can be found in [1 – 24], see also references therein.

This survey of some relatively recent developments concentrates on directions where
the author personally participated.

The bibliography of the survey is limited to the topics considered which are presented
in the order that relates to the areas of application and seems convenient for the reader.
Efforts have been made to make the paper self-contained.

c© 2002 Informath Publishing Group. All rights reserved. 1
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2 Generalized Perturbation Equation

This concept was proposed in the joint work [25] with V.V.Rumyantsev. In the classical
stability theory, for a given nonlinear system

x′ =
dx

dt
= f(x, t), x ∈ Rn, t ≥ a ≥ 0, x(a) = b (2.1)

under standard conditions ensuring the existence, uniqueness and extendibility of solu-
tions in some region of initial data, the Lyapunov methods [1] can be applied to investigate
stability of a certain particular solution of interest that corresponds to

x∗(t) = x(a, b, t), x∗(a) = b. (2.2)

Stability of solutions (2.2) is studied with the use of the perturbation equation which is
obtained from (2.1), (2.2) by the transformation

x(t) = x∗(t) + w(t). (2.3)

Substituting (2.3) into (2.1) and assuming the function f in (2.1) to be analytic with
respect to x , one can use the expansion

dx∗

dt
+

dw

dt
= f(x∗ + w, t) = f(x∗, t) + ∇f(x∗, t)w + g(w, t) (2.4)

yielding, after cancellation of the first terms, the perturbation equation

w′ = A(t)w + g(w, t), g(0, t) = 0, t ≥ a. (2.5)

Here A(t) is the Jacobian matrix of f(x, t), (2.1), calculated on the solution x∗(t), (2.2),
and g(w, t) are higher order terms with all partial derivatives calculated on the same
solution (2.2).

According to (2.3), the unperturbed motion x∗(t) of (2.2) corresponds to the trivial
solution w(t) = 0 of the perturbation equation (2.5). This allows us to substitute the
problem of stability of the motion x∗(t), (2.2), of the nominal equation (2.1) by the
problem of stability of trivial solution w = 0 of the perturbation equation (2.5). This
approach led to the powerful and elegant methods that constitute the classical stability
theory, see, e.g. [1 – 16] and further references therein.

Consideration of perturbation equation (2.5) with all its comfort of using linear ap-
proximation dw/dt = A(t)w and then, if necessary, successive higher order terms (in
critical cases) has, however, some specific qualities.

First, if a particular solution x∗(t), (2.2), is not given as an explicit function of a, b, t
(i.e. as a formula), then perturbation equation (2.5) cannot be determined.

Second, if the solution (2.2) and, thus, the perturbation equation (2.5) are known,
then the results of stability on that basis are applicable to that particular solution only.

To bypass these difficulties, let us not fix x(a) in (2.1) and consider x∗(t) of (2.2) as
unknown parameter-function. Then the deviation w(t) is governed by the equation

w′ =
dw

dt
= f(x∗ + w, t) − f(x∗, t) = q(w, x∗, t), t ≥ a (2.6)
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that follows from the first equality of (2.4). In contrast with equations (2.4), (2.5), the
composite function q in (2.6) contains an unknown solution x∗(t) as its argument. On
the other hand, q(0, x∗, t) = 0 for all x∗(t), t, thus w(t) = 0 is the solution of (2.6) for
any x∗(t). It means that trivial solution w = 0 can be put in correspondence to any
particular solution x∗(t), serving therefore, the whole region of possible initial data.

If f(.) in (2.1) is analytic with respect to x, then q(.) of (2.6) is analytic with respect
to w, yielding the generalized perturbation equation

w′ = A(x∗(t), t)w + g(w, x∗(t), t), g(0, x∗(t), t) = 0, t ≥ a. (2.7)

For some particular x∗(t), it is, of course, identical to (2.5) with corresponding A(t),
g(w, t), where we use the same notation A, g for different functions. However, without
fixing x∗(t), it represents a bundle of equations given on a continuum of different partic-
ular solutions. With this meaning, we shall drop sometimes the indication of a particular
solution, writing simply

w′ = A(x, t)w + g(w, x, t), t ≥ a (2.8)

with the understanding that (2.8) is a corresponding perturbation equation for every
solution x(t) of (2.1). It means that the form (2.8) is conserved while the terms are
different for different x(t).

Example 2.1 To illustrate the point, consider an example from [3, Sections 4, 44]:

x′ = x(α2 − x2), α > 0, t ≥ a. (2.9)

According to (2.6), we have

w′ = (α2 − 3x2)w − 3xw2 − w3, t ≥ a (2.10)

which is the generalized perturbation equation (2.8) in our case of (2.9).
With (2.10) we can do the standard stability analysis for (2.9) as follows. Equation

(2.9) has three stationary solutions x1 = 0, x2,3 = ±α. Substituting those solutions
in (2.10), we immediately obtain instability for x1 = 0 and asymptotic stability for
x2,3 = ±α, all by the first approximation in (2.10). These results can also be established
by considering the Lyapunov function V = w2/2 which has the following derivative on
trajectories of (2.10)

V ′ = w2(α2 − 3x2 − 3xw − w2). (2.11)

For x1 = 0, we have from (2.11) that V ′ > 0 if α2 − w2 > 0, asserting instability and
yielding domain of repulsion w ∈ (−α, α) with respect to nominal solution x1(t) = 0.

For x2,3 = ±α, we have from (2.11)

V ′
2,3 = w2(−2α2 ∓ 3αw − w2), (2.12)

asserting asymptotic stability of both solutions for small w. To find domain of attraction
for x2 = α, we take the upper sign in (2.12) and solve the inequality w2 +3αw+2α2 > 0,
yielding w > −α or w < −2α, which in coordinates t0x corresponds to x > 0 or
x < −α since in this case w = x − x2 = x − α. However, in the region x < −α
there is another attractor, namely, x3 = −α; hence, domain of attraction for x2 = α is



4 E.A. GALPERIN

x ∈ (0,∞). For x3 = −α, the same arguments with the lower sign in (2.12) yield domain
of attraction x ∈ (−∞, 0); details are left to the reader.

We see that generalized perturbation equation can be used for all known solutions
of the nominal equation. Moreover, it can be used for stability analysis of solutions
that cannot be expressed as explicit integrals and for which one cannot write the specific
perturbation equation (2.5) corresponding to a particular solution x∗(t) (see (2.2) – (2.3)),
not given as a formula. In such cases, the generalized perturbation equation represents
a new and important tool for stability analysis.

Example 2.2 Use of bundles of first integrals [25].
Chetaev’s method of construction of Lyapunov functions in the form of bundles of

first integrals [2] (see also [5, Section 10] and further references therein) can be used with
the generalized perturbation equation, that is, for stability analysis of sets of solutions.
Consider the classical example of the Euler case in the motion of a rigid body around
its fixed center of mass without external forces. Equations of such motion are usually
written in the form

Ap′ + (C − B)qr = 0, (2.13)

Bq′ + (A − C)rp = 0, (2.14)

Cr′ + (B − A)pq = 0, (2.15)

where t ≥ a and p, q, r are projections of the vector of angular velocity on coordinate
axes taken as principal axes of the ellipsoid of inertia, and A, B, C are principal moments
of inertia of the rigid body.

Suppose that p∗(t), q∗(t), r∗(t) is some particular solution of (2.13) – (2.15). Substi-
tuting p = p∗ + ξ, q = q∗ + η, r = r∗ + ζ into (2.13) – (2.15), eliminating terms that are
cancelled by virtue of nominal equations (2.13) – (2.15) and dropping the superscript, we
obtain the generalized perturbation equations

Aξ′ = (B − C)(rη + qζ + ηζ), (2.16)

Bη′ = (C − A)(pζ + rξ + ζξ), (2.17)

Cζ′ = (A − B)(qξ + pη + ξη). (2.18)

Here the prime (′) denotes time derivative, and p, q, r are fixed particular solutions of
(2.13) – (2.15) defined by certain initial conditions p(a) = p0, q(a) = q0, r(a) = r0.

By inspection, one can see that equations (2.13) – (2.15) have the following first inte-
grals

T = Ap2 + Bq2 + Cr2 = const, (2.19)

M = A2p2 + B2q2 + C2r2 = const. (2.20)

Case 1 A = B = C. In this case all solutions are stationary, p = p0, q = q0, r = r0,
and all are stable.

Case 2 p = q = r = 0. Equations (2.16) – (2.18) coincide with (2.13) – (2.15). There-
fore, integrals T , M with ξ, η, ζ instead of p, q, r are also first integrals of perturbed
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motions. Being positive definite, they can be used as Lyapunov functions to conclude
about stability of this trivial solution (at rest).

Case 3 A 6= B 6= C 6= A, and p2
0 + q2

0 + r2
0 > 0. In this case, and taking into account

(2.13) – (2.15), generalized perturbation equations (2.16) – (2.18) have the following first
integrals

T ∗ = A(p + ξ)2 + B(q + η)2 + C(r + ζ)2 = const, (2.21)

M∗ = A2(p + ξ)2 + B2(q + η)2 + C2(r + ζ)2 = const, (2.22)

where constants T ∗, M∗ are defined by initial data p0, q0, r0 and initial perturbations ξ0,
η0, ζ0. Since T ∗, M∗ do not vanish at ξ = η = ζ = 0, they cannot be taken as Lyapunov
functions.

Consider the function

V = (T ∗ − T )2 + (M∗ − M)2. (2.23)

This function is nonnegative, V ≥ 0; vanishes if ξ = η = ζ = 0, and its total derivative
on trajectories of perturbed motions (2.16) – (2.18) of the system (2.13) – (2.15) is zero,
V ′ = 0, since V is a bundle of integrals. If V were positive definite, one would conclude
about stability of all motions. Unfortunately, this is not the case.

If ξ, η, ζ are not all zero, |ξ| + |η| + |ζ| > 0, then V = 0 if and only if T ∗ = T and
M∗ = M . To find the manifold on which V = 0, we can write, by virtue of (2.19) – (2.22)

T ∗ − T = A(2pξ + ξ2) + B(2qη + η2) + C(2rζ + ζ2) = 0, (2.24)

M∗ − M = A2(2pξ + ξ2) + B2(2qη + η2) + C2(2rζ + ζ2) = 0. (2.25)

Denoting parentheses in (2.24), (2.25) as x, y, z, we obtain for the case A 6= B 6= C 6= A
the integral-invariant manifold in the ξηζ-space

x

BC(B − C)
=

y

CA(C − A)
=

z

AB(A − B)
= λ(t). (2.26)

Physically, it means that ξ, η, ζ satisfying (2.26) do not affect the energy nor the angular
momentum of the body.

From conservation property of integrals at the left-hand side of (2.24), (2.25), it follows
that perturbed trajectories either lie entirely on the manifold (2.26) or do not intersect it
at all. If for nominal motions p(t), q(t), r(t) there are no perturbed trajectories that lie
on the manifold (2.26), then those motions are stable by Lyapunov’s theorem on stability
[1, Section 16] with the function V of (2.23) which is positive definite if (2.26) does not
contain perturbed trajectories. Referring the reader to [25] for details, the conclusion is
as follows.

Summary The rest p = q = r = 0 and all motions in trivial case A = B = C
are stable. The motion p = q = 0, r(t) = r0 = const in cases A ≤ B < C or
A ≥ B > C (i.e. constant rotation around extreme axis C, including circular ellipsoids
of inertia) is also stable. From the above analysis, we see that all other motions in the
case A 6= B 6= C 6= A are unstable. In the case of circular ellipsoid of inertia (ellipsoid
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of revolution, A 6= B = C), constant rotation around an equatorial axis is unstable and
all other motions are stable.

Remark 2.1 The term “stability of sets of solutions” may sometimes be misinterpreted
and confused with the notion usually referred to as “stability of sets”, see, e.g., [26, 27]
and references therein. The term “globally asymptotically stable set” means the existence
of a globally contracting Lyapunov function acting outside of the set and bringing every
trajectory from the exterior of the set onto that set. Such “stability sets” are also
“viability sets”, i.e., sets from which a trajectory cannot escape (the last term does not
imply the global attraction of outside trajectories).

The stability of a set in this sense does not mean stability of solutions within that
set. The use of Lyapunov functions to establish the global attraction of trajectories to
some set has nothing to do with stability in the sense of Lyapunov. It means, in fact, a
control application, proving certain quality referred to as ultimate boundedness, viability,
practical stability, with some variations in terminology and definitions used by different
authors. The level sets V (x) ≤ c can be used for construction of so-called overvaluing
or comparison systems dz/dt = h(t, z) with the property z(t, t0, z0) ≥ x(t, t0, x0) if
z0 ≥ x0.

In contrast, the generalized perturbation equation serves to establish stability of so-
lutions in the sense of Lyapunov that start in some region of initial conditions.

3 Nonanalytic Lyapunov Functions

When N.N.Krasovskii (then my Ph.D. thesis supervisor) suggested the use of nonana-
lytic regulators for stabilization of nonlinear systems [28, 29], this naturally led to the
introduction of nonanalytic Lyapunov functions.

Since the right-hand sides of perturbation equation are represented as convergent
Maclaurin series around the trivial solution x(t) = 0, so the nonanalytic Lyapunov
functions are also taken as finite sums of special power terms, containing absolute values
and sign-functions of critical variables see [28 – 30]. Those sums are finite since asymptotic
stability and instability are usually decided by terms up to a certain finite order.

Clearly, nonanalytic Lyapunov functions can be used also for other purposes. For
example let us find the stability (viability) set in Example 1 of [27, p.248] for the system:

dx

dt
= x(1 − x2 − y2) + yf(t, x, y), |f(.)| ≤ 1;

dy

dt
= xg(t, x, y) + y(1 − x2 − y2), |g(.)| ≤ 1.

Taking V = |x| + |y|, we obtain on trajectories of the system

dV

dt
= (|x| + |y|)(1 − x2 − y2) + yf(.) sign x + xg(.) sign y

≤ (|x| + |y|)(1 − x2 − y2) + |y| + |x| = V (2 − x2 − y2) ≤ 0,

if x2 + y2 ≥ 2 which yields the circle of radius
√

2 as the global asymptotic stability set
for the above system.
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4 Extension of the Barbashin-Krasovskii Theorem unto Nonperiodic

Systems

This theorem presents a sufficient condition for establishing asymptotic stability making
use of a Lyapunov function V (x) > 0, x 6= 0; V (0) = 0 with nonpositive derivative
dV/dt ≤ 0 on the trajectories of the perturbation equation in a neighborhood of the
origin. Such Lyapunov functions are usually constructed in practical cases of nonlinear
systems. We reproduce the theorem in a simple formulation given by Barbashin [14, p.25].

Theorem 4.1 If there is a positive definite function V (x) such that dV/dt < 0
outside of a set M and dV/dt ≤ 0 on M , where M is a set not containing entire
trajectories (except for the origin), then the solution x = 0 is asymptotically stable.

Note that it is easy to verify that M does not contain entire semitrajectories of a
differential equation. Indeed, if a system is of the form

x′ = g(x, t), x(t0) = x0, x ∈ Rn, t ≥ t0 (4.1)

and a surface M is given by F (x) = 0, then M does not contain entire trajectories if for
some t > T ≥ t0 we have

dF

dt
= ∇Fg(x, t) 6= 0.

For stationary systems x′ = g(x), not depending explicitly on t, the theorem (for the
case of stability in the large) has been proved in [31] and is known as the Barbashin-
Krasovskii theorem. For systems (4.1) where g(x, t) is periodic in t, this theorem is
proved in [4, Section 14] and is known as Krasovskii’s theorem.

Further extension of this theorem follows from Theorem 4.1 for systems of class A, see
[32, pp.21 – 27], as described below.

Definition 4.1 System (4.1) is said to be of class A if and only if the function g(x, t)
is such that for every solution x(., x0, t0) of the equation (4.1) and for any fixed t̄ > t0
there is a sequence

αs > 0, lim αs = 0, (4.2)

such that there exists a sequence

τs = τs(x0, t0, t̄, αs) > 0, τs+1 > τs, s = 1, 2, . . . , lim τs = ∞ (4.3)

for which
‖x(t̄, xs, t0) − x(t̄ + τs, x0, t0)‖ ≤ αs, s = 1, 2, . . . , (4.4)

where
xs = x(t0 + τs, x0, t0), s = 1, 2, . . . . (4.5)

Remark 4.1 If one makes a drawing to illustrate conditions (4.2) to (4.5), it can be
seen that those conditions, in application to solutions of differential equations, resemble
the Cauchy criterion: a sequence xm ∈ Rn has a finite limit x0 = lim xm if and only
if for every ε > 0 there is a number N(ε) such that ‖xp − xq‖ < ε whenever p > N(ε)
and q > N(ε). In the above conditions, the role of ε is played by αs of (4.2), the role
of N(ε) is played by τs of (4.3), and p, q, are played by t0 + τs and t̄ + τs of (4.5),
(4.4). Thus, class A contains systems with asymptotically contracting translations of
every trajectory in some region, and if that region is a neighborhood of the origin, the
Barbashin-Krasovskii Theorem follows. Conversely, if the Barbashin-Krasovskii Theorem
is valid for some systems, those systems must be of the class A defined by (4.2) to (4.5).
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Definition 4.2 If in the context of Definition 4.1 we can take αs = 0, s = 1, 2, . . . ,
in (4, 6), then the system (4.1) is said to be of class A0.

Definition 4.3 If in the context of Definition 4.1 we can take αs = 0 and τs = sω,
s = 1, 2, . . . , with ω = const > 0 defined by the function g(x, t) in (4.1) but independent
of x0, t0, t̄, then the system (4.1) is said to be of class A∗.

It is clear that
A∗ ⊆ A0 ⊆ A. (4.6)

Lemma 4.1 The class A∗ is nonempty and contains, in particular, all stationary
systems and all systems where g(x, t) is periodic in t.

It is interesting and important that, in fact, classes A∗, A0, A do not coincide: A∗ 6=
A0 6= A. Let us denote by G the general class of systems in (4.1) such that g(x, t) satisfies
only standard conditions of existence, uniqueness and extendibility.

Lemma 4.2 Strictly: A∗ ⊂ A0 ⊂ A ⊂ G.

Proof It is sufficient to provide examples, which are given in [32].

In the theorem that follows, notation θ denotes a closed neighborhood containing the
origin, the sets Ω−, Ω+ are closed neighborhoods such that Ω− ⊆ θ ⊂ Ω+, the closed set
Cθ = Ω+ − Ω−, where Ω− is open, other sets are closed and the set Ω0(t) ⊆ Cθ plays
the role of M as in the Barbashin-Krasovskii Theorem above.

Theorem 4.2* If the system (4.1) is of class A and there is a function V (x) such
that for all (x, t) ∈ Cθ × [t0,∞) we have:

∇V · g(x, t) ≤ 0, (4.7)

where the equality is valid only at points of a set Ω0(t) ⊆ Cθ, t ∈ [t0,∞), that contains
no semitrajectories of (4.1), then there exists T (x0, t0) > 0 such that

x(t, x0, t0) ∈ Ω− ⊆ θ for all x0 ∈ Ω+ − θ

and all t ∈ [t0 + T (x0, t0),∞).
(4.8)

The proof of this theorem which is cast in the context of differential games can be
found in [32, pp.25 – 27]. Considering V (x) > 0, x 6= 0, V (0) = 0 in the case g(0, t) = 0,
{0} ∈ θ, and letting θ → {0}, we obtain the case of asymptotic stability for systems of
class A of which stationary and periodic systems present particular cases of the smaller
class A∗, A∗ ⊂ A0 ⊂ A. Thus, the Barbashin-Krasovskii Theorem is valid for far more
general systems than stationary and periodic ones.

Example 4.1 Let

S : x′ = −xt(1 + sin 2t), x(0) = x0, t ≥ 0. (4.9)

Consider V = x2, then on trajectories of (4.9) we have

V ′ = 2xx′ = −2x2t(1 + sin 2t) ≤ 0, t ≥ 0. (4.10)

*Acknowledgement — Fruitful discussions with George Leitmann, especially with respect to Lem-

ma 4.1 and Theorem 4.2, are gratefully acknowledged.
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Except for x = 0, which point is excluded from the complement Cθ for any θ → {0},
derivative V ′ = 0 only at isolated points t = 0 and tn = π/2 + πn, n = 0, 1, . . . , thus,
trivial solution x = 0 is asymptotically stable. Equation (4.9) has separable variables,
and it can be verified directly by Definitions 4.1, 4.2 that S ∈ A, S /∈ A0.

5 Lyapunov’s Approach in Use for Control and Identification

Lyapunov’s methods have been applied to control problems of different nature, see, e.g.
[5, 9, 10, 18, 19, 21, 26 – 30, 32, 33, 35 – 45] and references therein. An interesting general-
ization for control of motion is developed in the joint work with J.M.Skowronski [33].

Consider a non-linear differential equation with controls:

x′ =
dx

dt
= F (x, t, u), x ∈ RN , u ∈ U ⊂ Rm, t ∈ [0, tf ], (5.1)

x(t0) = x0 ∈ ∆1 ⊆ ∆ ⊂ RN , t0 ∈ [0, tf ], (5.2)

u = u(x, t) ∈ U ⊂ Rm, t ∈ [0, tf ]. (5.3)

Equation (5.1) with control (5.3) takes the form

x′ =
dx

dt
= f(x, t), f(x, t) = F (x, t, u(x, t)), t ∈ [0, tf ]. (5.4)

We assume that the functions F , u and the sets U , ∆ in (5.1) – (5.3) are such that the
function f in (5.4) satisfies standard conditions for the existence and uniqueness of a
solution x(t) with values in ∆, given initial condition (5.2) and a control function u(·)
with values in U . The sets U , ∆, ∆1 are open connected sets (domains) and the set of
control functions {u(·)} contains the function u(·) = 0. We allow tf = ∞.

With these hypotheses, the above relations are well defined and may be regarded in
two ways:

(a) as nominal equations of a dynamical system with the motion x(t) ∈ ∆, in phase
coordinates;

(b) as perturbation equations of certain dynamical system, whereby f(0, t) = 0 and
x(t) ∈ ∆ represents a deviation from some unperturbed nominal motion which
is not explicitly given; the nominal equations of the system are not written, but
x(t) = 0 designates precisely its nominal motion.

In his doctoral dissertation [1] A.M.Lyapunov gave a thorough study of the prob-
lem (b). The principal idea of the approach is decomposition of motion x(t) into two
motions: a motion along a certain surface V and a motion of the surface V itself. This
idea is not related to the kind of equation (the nominal or perturbation one), nor to
certain assumptions of the Lyapunov theory. This allows us to generalize the approach
in different directions.

The generalization for use in control is as follows.

(1) Equation (5.1) is regarded as a nominal equation and not as a perturbation one.
The condition f(0, t) = 0 is dropped.

(2) The sets U , ∆, ∆1 are not assumed to be small, on the contrary:

d(∆) ≥ d(∆1) = sup ‖x1 − x2‖ ≥ l > 0, (5.5)
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where ‖ · ‖ is a norm in Rn.
(3) The aim is to determine whether or not the motion x(t) tends to a certain given

domain M ⊂ ∆ which is not a neighbourhood of the origin. In control appli-
cations the function u(x, t) is to be chosen so as to make x(t) enter M in finite
time and remain there. We shall concentrate on sufficient conditions for the con-
vergence x(t) → M , and not on how to choose u(·). Consequently, the control
function is assumed to have been chosen, so that we start with (5.4). More on
how to choose u(·) can be found in [32, 35].

(4) Regarding the Lyapunov second method, the conditions V (x) > 0, x 6= 0,
V (0) = 0 are dropped, the condition dV/dt ≤ 0 modified, and certain other
conditions are imposed. The functions V (x) thus constructed are no longer Lya-
punov functions and, to avoid confusion, they are called simply V -functions. We
demonstrate, however, that stationary Lyapunov functions represent a subset in
the set of general stationary V -functions.

(5) The sets ∆, ∆1, M are explicitly introduced into the method, allowing us to
obtain quantitative results.

Such are the major changes that aim at the two-fold objective:

(a) to facilitate direct control applications of Lyapunov’s approach;
(b) to provide the means for investigation of nominal equations of a system and a

tool for quantitative design of desired motions.

5.1 Geometry of V-functions

5.1.1 V -surfaces. We consider real C1-functions V (x) : RN → R such that for each
constant ν0 ∈ B ⊂ R, B open, satisfy the following conditions:

(1∗) There exists a surface V (x) = ν0 which is unique (single-sheeted) and of a finite
measure.

(2∗) There exist x0 such that V (x0) < ν0 and x1 such that V (x1) > ν0.
(3∗) The set

Ω(ν0) = {x | V (x) < ν0} (5.6)

is bounded in RN .

We consider the closure of Ω, or the level set

clΩ(ν0) = {x | V (x) ≤ ν0}, (5.7)

its boundary
∂Ω(ν0) = {x | V (x) = ν0} (5.8)

and the open complement or the exterior of Ω:

C clΩ(ν0) = {x | V (x) > ν0} = ext cl Ω. (5.9)

The condition (2∗) means that the interior and exterior of cl Ω are not empty. If V (x)
is defined everywhere in RN , then by (5.6), (5.8) (5.9) we have Ω + ∂Ω + C cl Ω = RN .
Also extΩ = ∂Ω + C cl Ω ⊃ ext cl Ω = C clΩ.

Lemma 5.1 The boundary ∂Ω separates RN into disjoint open sets:

Ω = int cl Ω and C cl Ω = ext cl Ω, Ω ∩ Ccl Ω = ∅.
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Lemma 5.2 Any continuous curve L in RN , joining x0 ∈ Ω and x1 ∈ extΩ,
intersects the boundary ∂Ω = {x | V (x) = ν0}.

Lemma 5.3 If v′0 < v0, then for the same V (x) the surfaces ∂Ω(v′0) and ∂Ω(v0) are
strictly enclosed:

clΩ(ν′
0) ⊂ Ω = Ω(ν0). (5.10)

Remark 5.1 The requirements of uniqueness and a finite measure of a V -surface are
imposed in (1∗) to avoid unnecessary complications. Such pathological cases do exist,

for example, the function V = (x2
1 + x2

2) sin2(x2
1 + x2

2) with nice properties: V (x) = 0
for ‖x‖2 = x2

1 + x2
2 = πn, n = 0, 1, . . . , otherwise V (x) > 0, presents for each ν0 > 0

a countable (denumerable) set of surfaces V = ν0 in R2 which can be constructed

by the equation sin2(x2
1 + x2

2) = ν0/(x2
1 + x2

2). Such functions are not allowed by the
condition (1*).

The set of C1-functions satisfying (1∗) – (2∗) – (3∗) is not empty. Any real ellipsoid
centered at the origin

V =
∑

aix
2
i = ν0, ai > 0, i = 1 ÷ n

presents such a V -function for v0 > 0, that is, v0 ∈ B = R+, thereby with additional
properties: V (x) > 0 for all x 6= 0, V (0) = 0, that are not required in this research.
The property V (0) = 0 disappears for ellipsoids centered not at the origin.

Non-sign-definite functions of the type:

Vk =
∑

ai(xi − αi)
2k + β, k = 1, 2, . . . , ai > 0, i = 1 ÷ n,

where β, αi are real constants, are also allowed. Planes, cylinders, cones, paraboloids
are not allowed since Ω is unbounded. Functions of the type

Vk =
∑

ai|xi − αi|2k + β, k = 1, 2, . . . , ai > 0, i = 1 ÷ n

satisfy (1∗), (2∗), (3∗) for an appropriate interval B ⊂ R but are not differentiable at
xi = αi. If however special care is taken at those corners, such functions can be allowed
and were actually used for nonlinear stabilization in [28 – 30].

In some problems one might be interested in a bounded open region ∆ ⊂ RN only.
In this case one can consider those B ⊂ R and ν0 ∈ B = B(∆) for which the conditions
(1∗), (2∗), with x, x0, x1 all in ∆ ⊂ RN are satisfied and define the sets Ω∆, Ccl Ω∆

by the relations:

Ω∆ = {x | V (x) < ν0, x ∈ ∆} = Ω(ν0, ∆),

C cl Ω∆ = {x | V (x) > ν0, x ∈ ∆}.

Clearly, Ω∆ ⊂ ∆ and is, therefore, always bounded so that (3∗) is automatically satisfied.
To preserve the separation property in this case, we have to introduce it either directly
by the condition:

(4∗a) The sets Ω∆ and CΩ∆, nonempty by (2∗), are disjoint, that is

Ω∆ ∩ Ccl Ω∆ = ∅;
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or indirectly, by the condition:

(4∗b) There exists x1 ∈ Ccl Ω∆ such that x1 /∈ clΩ∆.

Condition (4∗a) replaces Lemma 5.1 and it follows from (4∗b) by Lemma 5.2. Ge-
ometrically it is clear that one of these conditions is necessary to exclude spiral and
other surfaces that do not partition ∆ into two disjoint subsets. Now planes, cylinders,
paraboloids are allowed. We shall see, however, that this vast collection of V -functions
is restricted by further considerations.

5.1.2 Moving V -surfaces. Suppose x = x(t) is a C1-function of time on [t0,∞). Using
one and the same V (x), we can define the level function

ν0(t) = V (x(t)). (5.11)

If this function is considered in (5.8) instead of a constant v0, then we obtain a moving
boundary

∂Ω(t) = {x | V (x) = ν0(t)} (5.12)

and so in (5.12) x ∈ RN is any point on the surface and not the same as x(t) in (5.11).
Take any t1 ∈ [t0, tf ] and let the total derivative be negative:

dν0

dt
=

dV

dt
= ∇V x′ < 0, t = t1. (5.13)

Since V (x) ∈ C1, then by continuity there exists δ > 0 such that

t2 = t1 + δ < tf and
dν0

dt
< 0 for all t ∈ [t1, t1 + δ]. (5.14)

The continuous function dv0/dt is uniformly continuous on a closed segment [t1, t2] and
attains there its maximum:

max
dν0

dt
= c, c < 0, t ∈ [t1, t2]. (5.15)

Now, (5.14) can be strengthened:

dν0

dt
≤ −|c| < 0 for all t ∈ [t1, t2]. (5.16)

Integrating (5.16) over [t1, t2] yields

ν0(t2) ≤ ν0(t1) − |c|(t2 − t1) < ν0(t1). (5.17)

Thus, the new (moved) boundary δΩ(t2) lies entirely in the interior of the old Ω(t1), cf.
Lemma 5.3:

δΩ(t2) ∈ Ω(t1) (5.18)

and is separated from δΩ(t1) by a band of the width (in terms of V -levels)

∆ν0 = ν0(t1) − ν0(t2) ≥ |c|(t2 − t1). (5.19)
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Of course, here c = c(δ). Suppose now that (5.16) holds over the entire closed segment
[t0, tf ]. Then c = const < 0 and by the same argument we obtain that the curve x(t)
in finite time ∆t = tf − t0 crosses the band between δΩ(t0) and δΩ(tf ) at the moment
t = tf +0 and stays there for a sufficiently small interval (tf , tf +ε), ε > 0. If in addition

dν0

dt
= ∇V x′ < 0 for x(t) ∈ δΩ(tf ), t ≥ tf , (5.20)

where (5.20) is understood to hold every moment t ≥ tf when the curve touches the
boundary ∂Ω(tf ), then the curve x(t) is not leaving the closure Ω(tf ), ∀ t ≥ tf .

5.1.3 Carrying V -surfaces (V -carriages). Suppose that a family of trajectories x(x0, t0, ·)
is given by a differential equation

x′ =
dx

dt
= f(x, t), x0 = x(t0), t ≥ t0. (5.21)

Then (5.20) takes the simple form

∇V f(x, t) = σ(x, t) < 0 (5.22)

and can be evaluated at every point of a region in space and time, in our case in Ω(t0)×
[t0, tf ], Ω(t0) ⊂ RN , without integration of the equation (5.21). If x0 ∈ Ω(t0) and (5.22)
holds for the closed region:

x ∈ Ω(t0) − Ω(tf ), Ω(tf ) ⊂ Ω(t0) (closed band in RN )

t ∈ [t0, tα], tα ≥ tf (closed segment in time)

then the same argument holds and the entire family of solutions of (5.21) once trapped
in Ω(t0) crosses the band Ω(t0) − Ω(tf ) in finite times (depending on x0)

∆t(x0) ≤
1

|c| [ν0(t0) − ν0(tf )], (5.23)

where
c = max σ(x, t) = const < 0, x ∈ Ω(t0) − Ω(tf ), t0 ≤ t ≤ tf

and every solution stays in Ω(tf ) at least until t = tα.
The construction resembles the well-known Lyapunov design. However, we do not

require that V (x) be sign-definite, nor that V (0) = 0.

5.2 The control theorem

Consider the set of all V -functions. Given ∆ ⊂ RN , M ⊂ ∆ and a function V (x), define
the following constants and sets (∂∆, ∂M denote the boundaries of ∆, M):

ν+ = supV (x) | x ∈ ∂∆, (5.24)

Ω+ = {x | V (x) < ν+}, (5.25)

ν− = inf V (x) | x ∈ ∂M, (5.26)

Ω− = {x | V (x) < ν−}. (5.27)
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Unless otherwise stated, Ω− is assumed to be non-empty. We assume f(x, t) of (5.4) to
be defined and solutions to exist in the closure Ω+. Suppose that Ω+ and Ω− are simply
connected. Discard all V -functions for which either ν− ≥ ν+ or ∆ 6⊆ Ω+, or Ω− 6⊆ M .
The remaining subset Π which is assumed to be non-empty contains only those V (x) for
which the following inclusions hold:

Ω− ⊆ M ⊂ ∆ ⊆ Ω+. (5.28)

Denote the closed complement
CM = Ω+ − Ω−, (5.29)

non-empty since M 6= ∆.

Theorem 5.1 Given M ⊂ ∆, x0 = x(t0) ∈ ∆ − M and a constant T , tf − t0 >
T > 0, the motion x(x0, t0, t) enters M not later than at the moment t∗ = t0 + T and
stays there, if there is a function V ∈ Π such that for all (x, t) ∈ CM × [t0, tf ) we have

∇V f(x, t) ≤ −c, (5.30)

where

c =
ν+ − ν−

T
= const > 0. (5.31)

Proof follows from the above considerations, see [33].

Remark 5.2 One cannot substitute M for Ω− in (5.29).
It is apparent that the above theorem is well in the spirit of Lyapunov, with the

difference that it presents sufficient conditions for guaranteed transfer from a given point
into a given domain in finite time specified beforehand. This theorem can be specified to
include the limit operation as t → ∞ for the case of the perturbation equation in (5.4)
with tf = ∞, f(0, t) = 0, and to deduce the well known classical results of Lyapunov [1]
in stability theory, see [34]. This makes clear that the set Π of V -functions is non-empty
and contains positive definite functions used by Lyapunov. It also opens a way to apply
known methods of constructing Lyapunov functions to more general functions V ∈ Π.

In [32] this approach is applied for differential games, cf. Theorem 4.2 above where θ
is the target set. In [35] it is applied for asymptotic observer design in differential games
with incomplete information.

In control applications, usually a part of coordinates of the state vector x ∈ RN

are directly measured, or a function thereof that constitute the information vector y =
g(x, t) + γ, y ∈ Rk, k < n, containing measurement noise γ(t). In this case, a controller
is taken either in the form u = u(y, t) for the output feedback control, or in the form
u = u(z, t), where z(t) is the observer, that is, an approximation to x(t) computed from
a model

dz

dt
= h(y, u, t), z(t0) = z0, t ≥ t0 (5.32)

constructed in such a way that the error

ǫ(t) = z(t) − x(t) (5.33)

does not leave some neighborhood of the origin and is attracted to the origin sufficiently
fast. This way of obtaining an acceptable estimate of x(t) for use in control is called
asymptotical observation or adaptive identification [35, 37 – 44].
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For a linear stationary control system

dx

dt
= Ax + Bu, y(t) = Cx (5.34)

the construction of a model (5.32) is very simple [38, 39]:

dz

dt
= Hz + Qy + Bu, H = A − QC. (5.35)

Subtracting (5.34) from (5.35), we get the error equation, cf. (5.33):

dǫ

dt
= Hz − Ax + Qy = H(z − x) = Hǫ(t). (5.36)

The matrices A, B, C are known, and it remains to provide appropriate eigenvalues for
the matrix H in (5.35), (5.36) by the choice of the matrix Q, see [40, 44].

For a nonlinear control system, the construction of the model (5.32) is not so sim-
ple and Lyapunov’s approach should be used for a proper asymptotic observer design
[35, 37, 41 – 43].

6 Stability by Time-Space Mosaic with Discontinuous Lyapunov Function

By a theorem of Massera [46], if the trivial solution x = 0 of a perturbation equation
with Lipschitzian right-hand side is uniformly asymptotically stable in the large, then
there exists a Lyapunov function V (x, t) that guarantees this type of stability.

In practical cases, a particular solution may be uniformly asymptotically stable but not
in the large. Too, stability in the large as well as uniform stability, though comfortable,
are not usually required in practice.

Even if the existence of a Lyapunov function is established, there is no universal
method for constructing Lyapunov functions, and its construction is difficult in almost
all nontrivial cases. These difficulties led to the development of vector [22, 23] and matrix
[24] Lyapunov functions which act on regions of the subdivided state space through which
trajectories are passing.

The generalized perturbation equation described in Section 2 opens a way to use
different contracting Lyapunov functions for different periods of time. The surfaces
defined by such Lyapunov functions form a time-space mosaic, or in other words, a
discontinuous Lyapunov function, which is easier to construct and which can serve for
establishing stability of motion. This approach was developed in the joint work [25] with
V.V.Rumyantsev.

In stability analysis, deviations w(t) are studied in a neighborhood H of the origin
and one is interested to determine whether or not for every η > 0 there exists δ(η) > 0
such that if

‖w0‖ ≤ δ(η), (6.1)

then
‖w(t)‖ < η for all t > t0, (6.2)

where ‖·‖ is the Euclidean norm. If the answer to this question is in the affirmative, then
the motion w(t) = 0 is called stable, otherwise, unstable. It means that if there exists
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η0 > 0 such that, whatever small δ > 0 may be, there is a moment t∗ > t0 at which
‖w(t∗)‖ = η0, then the motion is unstable. If at some moments t∗i > t0, perturbations
grow to a fraction of the magnitude of a nominal coordinate, |wj(t

∗
i )| = αj |xj(t

∗
i )|,

αj = const ≥ 1, 1 ≤ j ≤ n, then the motion is unstable.
A stable motion with the additional property

lim ‖w(t)‖ = 0, t → ∞ (6.3)

is called asymptotically stable. These are the classical definitions of stability given by
Lyapunov [1]. With the notation (2.3), it refers, of course, to the stability of the solution
x0(t). Let us not fix the initial condition x0(t0) = x0 ∈ ∆0, considering instead a
collection of nominal solutions {x0(t)} = x0({x0}, t0, t) corresponding to a set {x0} ⊆
∆0 of initial conditions; the notation {x0} may mean a finite collection or a set, a
continuum.

To study and solve the problem by Lyapunov’s second (direct) method, C1-functions
V (w, t), W (w), W 1(w), W ∗(w) are considered that vanish if w = 0,

V (0, t) = W (0) = W 1(0) = W ∗(0) = 0, t ≥ t0, (6.4)

and have some additional properties.
Recall the basic theorems of Lyapunov’s second method.

Theorem 6.1 (Lyapunov [1]) If there exists a function V (w, t) satisfying the condi-
tions

(a) V (w, t) ≥ W (w) > 0, w ∈ H, w 6= 0, t ≥ t0; (6.5)

(b)
dV

dt
=

∂V

∂t
+ ∇V · q(w, x0, t) ≤ 0, w ∈ H, t ≥ t0 (6.6)

on the trajectories of the perturbation equation, then the solution w(t) = 0 is stable.

Theorem 6.2 (Lyapunov [1]) If there is a function V (w, t) satisfying condition (a)
and the strengthened (cf. (b)) conditions:

(c)
dV

dt
=

∂V

∂t
+ ∇V · q(w, x0, t) ≤ −W 1(w) < 0, (6.7)

w ∈ H, w 6= 0, t ≥ t0;

(d) W ∗(w) ≥ V (w, t), w ∈ H, t ≥ t0, (6.8)

then the solution w(t) = 0 is asymptotically stable.

Theorem 6.3 (Chetaev [2]) If there exists a function V (w, t) satisfying the condi-
tions:

(e) the set Σt
η = {w ∈ H | V (w, t) > 0, t ≥ t0}
∩ {‖w‖ < η, η > 0} 6= ∅ (6.9)

is nonempty for all t ≥ t0 and any small η > 0;

(f) V (w, t) is bounded within Σt
η; (6.10)

(g)
dV

dt
=

∂V

∂t
+ ∇V · q(w, x0, t) > 0, w ∈ Σt

η, w 6= 0, (6.11)
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on the trajectories of the perturbation equation, meaning that dV/dt is positive definite
in Σt

η, in the sense that for every small ε > 0 there is γ > 0 such that if V (w, t) ≥ ε,
then

dV

dt
≥ γ for all t ≥ t0, (6.12)

then the motion w(t) = 0 is unstable.

Geometrically, condition (6.11) together with (6.12) mean that if w(t) ∈ Σt
η is uni-

formly separated from the boundary ∂Σt
η for all t ≥ t0, then dV/dt ≥ γ > 0 is uniformly

separated from zero for all t ≥ t0, see [2, Section 13]. As distinct from (6.5), a function
V (w, t) in (6.9) need not be positive definite.

Of course, stability, asymptotic stability or instability of the solution w(t) = 0 implied
by Theorems 6.1 – 6.3 means the same property of all nominal solutions {x0(t)} for which
(6.6), or (6.7), or (6.11) – (6.12), respectively, are fulfilled.

Consider x0 in (2.6), (2.7) and x in (2.8) not as a particular solution, but as a param-
eter. Then inequalities (6.6), (6.7), (6.11) become characteristics of a domain (simply
connected open set)

E = D × (t′, t′ + T ), D ⊆ ∆ ⊆ Rn, t′ ≥ t0 fixed, T > 0, (6.13)

where D may vary with t ∈ (t′, t′ + T ).
With x, t considered as independent variables, the left-hand side of (6.6), (6.7), (6.11)

becomes a function F : Rn × Rn × R → R of three arguments

F (w, x, t) =
∂V

∂t
+ ∇V · q(w, x, t), (6.14)

which coincides with the total derivative V ′ = dV/dt of a chosen function V (w, t) on
trajectories w(t) of the perturbation equation (2.6).

Consideration of such functions (6.14) and domains (6.13) is motivated by the need
to evaluate the rate of attraction of perturbed motions to a nominal solution of (2.1)
within a finite time interval, and for all nominal trajectories passing through domain E
of (6.13). For processes evolving in a finite space-time region, such information may be
useful irrespective of stability properties on [t0,∞). In such considerations, perturbations
w do not have to be small.

Definition 6.1 If for a chosen V (w, t) satisfying (6.5) on an interval (t′, t′ + T ),
the condition (6.6) or (6.7) holds for (x, t) ∈ E, then domain E is called neutral or
contractive, respectively.

Definition 6.2 If for a chosen V (w, t) satisfying (6.9), (6.10) on an interval (t′, t′+T ),
the condition (6.11) holds for (x, t) ∈ E, then domain E contains a repulsive sector Σt

η;
such domain E is called repulsive.

The statement that a certain domain E is contractive, neutral or repulsive means
that there is a function V (w, t) mentioned in Definitions 6.1, 6.2 which renders the
corresponding property of E. The availability of such a function defines the corresponding
domains. For example, if V (w, t) satisfies (6.5), (6.7) for all t ≥ t0, then our domain
becomes a contractive band E = D × [t0,∞) with one sole Lyapunov function which is
the classical case.
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Remark 6.1 The names contractive or repulsive domain relating to the (x, t)-space
should not be confused with the names domain of attraction or repulsion relating to the
w-space, as in Example 2.1.

To illustrate the geometry corresponding to Definitions 6.1, 6.2, we can use the stan-
dard argument of the Lyapunov stability theory [1, 2]. Consider, for example, a neutral
domain E1 = D1 × [t0, t1). For a given η > 0, let

γ1 = inf W1, ‖w‖ = η; due to (6.5), γ1 > 0. (6.15)

Since V1(w, t0) does not depend on t, so due to (6.4) and to the continuity of V1 there
is δ > 0 such that for ‖w‖ ≤ δ we have V1(w0, t0) < γ1. Choosing such initial conditions
and due to the relation

V1 − V1(w0, t0) =

t∫

t0

V ′
1 dt, V ′

1 ≤ 0 as of (6.6), t ∈ [t0, t1], (6.16)

we obtain that w(t) is such that the following conditions are satisfied

W1 ≤ V1(w, t) ≤ V1(w0, t0) < γ1, t ∈ [t0, t1] (6.17)

implying ‖w(t)‖ < η for t ∈ [t0, t1].
It means that, over a neutral domain, perturbations within a ball ‖w‖ < η, where

(6.4) – (6.6) are satisfied cannot escape this ball whatever (x, t) ∈ E1 = D1 × [t0, t1). If
t1 = ∞, stability follows.

If we have strict inequality V ′
1 < 0 in (6.16), compare with (6.7), then domain E1

is contractive. If t1 = ∞ and we use the additional condition (6.8), then asymptotic
stability follows by the standard argument [1, 2].

However, if we consider two adjacent domains with different functions V1, V2 (with
one common function it would be one single domain), then neutrality or contractivity
of the union does not follow from the same property for component domains. Indeed,
continuing the argument (6.13) – (6.17) for E2 = D2 × [t1, t2], we denote η1 = ‖w(t1)‖.
Clearly, η ≥ η1 > 0 since, otherwise, the value w(t1) = 0 of the solution w(t) 6≡ 0
would contradict the uniqueness of a solution emanating from the point (t1, 0) due to the
existence of the trivial solution w(t) ≡ 0. Let

γ2 = inf
‖w‖=η1

W2. (6.18)

Since V2(w, t1) does not depend on t so due to (6.4) and to the continuity of V2, there
is δ2 > 0 such that for ‖w1‖ ≤ δ2 we have V2(w1, t1) < γ2. However, w1 = w(t1) =
w(w0, t0, t1) comes from E1 and cannot be chosen so as ‖w1‖ ≤ δ2 for appropriate
δ2 > 0. Hence, to continue the argument and to assure that finite or countable union of
adjacent neutral (contractive) domains be also neutral (contractive), we have to impose
the following condition.

Consistency condition. A sequence of adjacent or overlapping neutral (contractive)
domains E1, E2, . . . with functions V1, V2, . . . , acting on [t0, t1), [t1, t2), . . . , and satis-
fying (6.4) – (6.6), or (6.7) for contractive domains, is called consistent if the functions
V1, V2, . . . are such that, with the initial condition ‖w‖ ≤ δ(γ1) for a given η > 0
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in (6.15), we have V2(w1, t1) < γ2 for w1 = w(w0, t0, t1) and any x ∈ D2(t1), then
V3(w2, t2) < γ3 for w2 = w(w1, t1, t2) = w(w0, t0, t2) and any x ∈ D3(t2), etc., for all
Vn, n = 2, 3, 4, . . . in the sequence. It simply means that the solution w(w0, t0, t) at times
t = t1, t2, . . . , tn, . . . is picked by the next function with the same properties as previous
functions plus the property of no escape from the sphere (ball) already attained. Con-
sistent domains do exist, for example, if Vn = cn‖w‖2 or if Vn are considered as pieces
on [tn−1, tn) of one single Lyapunov function V (w, t), t ∈ [t0,∞), existing under certain
conditions [4, 46].

Definition 6.3 If there is a band E0 = D0 × (t0,∞), D0 ⊆ ∆, that can be covered
by a finite or countable chain of consistent neutral (respectively, contractive) domains,
such a band is called neutral (respectively, contractive).

Theorem 6.4 Every solution which is entirely in a neutral band is stable.

Proof There is a sequence of functions V1, V2, . . . acting on [t0, t1), [t1, t2), . . . and
satisfying (6.4) – (6.6) that corresponds to a cover by a finite or countable chain of con-
sistent neutral domains. If the chain is finite, we prove the theorem after a number of
repetitions of the above argument (6.13) – (6.17) since the last tk = ∞. If the chain is
countable, then tn → ∞, thus, for every t ∈ [t0,∞) there is a subsegment to which it
belongs, yielding ‖w(t)‖ < η for all t ≥ t0.

A solution which is entirely in a contractive band may not be asymptotically stable
though its stability follows from Theorem 6.4 since (6.6) is implied by (6.7). If the chain
is finite and for the last function Vk(w, t) acting on [tk,∞) the condition (6.8) is satisfied,
then asymptotic stability follows from the classical Lyapunov Theorem [1].

For a countable chain of consistent contractive domains, consider a sequence of corre-
sponding functions

Vi(w, t), t ∈ [ti−1, ti), ti → ∞ as i → ∞, i = 1, 2, . . . , (6.19)

each acting over corresponding domain Ei of finite time length ∆ti = ti − ti−1 ≥ τ > 0.
Functions (6.19) may be regarded as components of a piecewise continuous function
V (w, t) acting on [t0,∞), which components should satisfy the consistency condition
stated above.

Now, condition (6.8) can be extended onto the sequence (6.19) as follows. From (6.5),
(6.8) we have

W ∗(w) ≥ V (w, t) ≥ W (w) > 0, w ∈ H, w 6= 0, (6.20)

where V (w, t) represents Vi(w, t) over each [ti−1, ti) of (6.19). Since W ∗(w) → 0 as
‖w‖ → 0, so for appropriate η > η∗ > 0 the surface V (w, t) = γ is enclosed in the
spherical ring

η ≥ ‖w‖ ≥ η∗, (6.21)

provided that η > γ > η∗ and the ring (6.21) is in the region H . Indeed, it is sufficient to
take such η, η∗ that the sphere ‖w‖ = η is circumscribed around W ∗(w) = η1 ≤ η, and
the sphere ‖w‖ = η∗ is inscribed in W (w) = η2 ≥ η∗, η1 > η2. Since η1 = W ∗(w) → 0,
as ‖w‖ → 0, we can take η → 0. Vice versa, if (6.8) holds, then for any spherical ring
(6.21) in the region H , by virtue of (6.20), (6.8), there exist functions of (6.19) acting
over this ring (we say in such case that ring (6.21) is covered by consistent contractive
domains).



20 E.A. GALPERIN

Take a decreasing sequence η = η1 > · · · > ηk > ηk+1 > . . . , lim ηk = 0, and consider
rings Rk = {w ∈ H | ηk ≥ ‖w‖ ≥ ηk+1}, k = 1, 2, . . . . Consider all functions Vi(w, t)
from (6.19) acting over the ring Rk. By (6.7) every V ′

i < 0 which means that there exists
W 1

i (w) such that over the segment of definition of Vi(w, t) we have definite negative and
bounded from zero total derivatives

−V ′
i (w, x, t) ≥ W 1

i (w) > 0, w ∈ H, w 6= 0,

(x, t) ∈ Ei = Di × [ti−1, ti).
(6.22)

Let
γik = inf W 1

i (w) ≥ γk > 0, w ∈ Rk. (6.23)

The uniform bound γk > 0 exists for all Vi acting over Rk since otherwise W 1
i (w) would

not be separated from zero within closed Rk, not containing zero, in contradiction with
definition of a positive definite function.

Now, integrating the piecewise continuous function V (w, t) with components (6.19)
along a trajectory (or a part thereof) lying entirely within Rk, we obtain by (6.22),
(6.23)

V − V (w∗, t∗) =

t∫

t∗

V ′ dt ≤ −
∑

i

γik(ti − ti−1) ≤ −γk(t − t∗), (6.24)

where the sum covers all components Vi(w, t) acting over Rk and t∗ is the starting time
of a perturbed trajectory. From (6.5), (6.24), we get

0 < V (w, t) ≤ V (w∗, t∗) − γk(t − t∗), γk > 0, (6.25)

meaning that there is only finite time (t − t∗) ≤ Tk < ∞ during which a trajectory
can stay within Rk. Since the band is contractive, the perturbed trajectory w(t) will
leave Rk, approaching zero, so that for t > t∗ + Tk we have ‖w(t)‖ < ηk+1. By (6.8),
for any ring Rk, k = 1, 2, . . . , there are Vi from (6.19) that act over that ring, hence
lim

t→∞
‖w(t)‖ = lim

k→∞
ηk = 0. This proves the following theorem.

Theorem 6.5 If a contractive band is such that for any η > 0 there is N(η) such
that for all i ≥ N(η) functions Vi(w, t) of (6.19) satisfy the condition η ≥ Vi(w, t) > 0,
w ∈ H, w 6= 0, t ∈ [ti−1, ti), ti → ∞, as i → ∞, then every solution passing entirely
within such a band is asymptotically stable.

Remark 6.2 The above arguments resemble the analysis based on property (A) or
(B) in [4, Sections 4, 5], under which there exists a Lyapunov function V (w, t) acting on
[t0,∞) with sign definite derivative that renders asymptotic stability of certain nominal
solution x0(t). However, it may be difficult to find such a function and, if found, it serves
one particular solution only. Functions (6.19) may be easier to construct, and they serve
all solutions passing through corresponding domains Ei. If considered as components
of one function V (w, t), this function, though generally discontinuous, renders, under
certain conditions, the same conclusions about stability or asymptotic stability as a
classical Lyapunov function.

Remark 6.3 In contrast and similarity with vector Lyapunov functions introduced, e.g.
in [22, 23], that create a space mosaic based on the idea that each subsequent function
(all acting on [t0,∞)) covers a manifold (or a part thereof) where preceding functions
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are inconclusive (e.g. where V ′ = 0), the functions (6.19) correspond to a time-space
mosaic of consistent domains which domains, if forming a band extending over [t0,∞),
deliver the same stability properties as a conventional Lyapunov function.

Functions Vi of (6.19) corresponding to a chain of consistent contractive domains can
be used to obtain quantitative results concerning the measure of contraction within every
domain Ei, see [25].

7 Conclusions

Developments presented in this survey complement the classical stability theory in differ-
ent directions. First, it seems important that investigation of stability should be possible
without integration of equations of motion. This possibility is provided by the general-
ized perturbation equation which implicitly contains trajectories of the nominal equation
passing through the x-space included as parameter-space in the generalized perturbation
equation acting in the w-space of perturbations. As a by-product, such relaxation of a
fixed particular solution around which the classical perturbation equation is constructed
allows us to investigate stability of all nominal solutions passing through the x-space.
Thus, the explicit integration of the nominal equation which is difficult if not impossible
in many practical cases becomes unnecessary. This also opens the avenue for numerical
investigation of stability.

Second, Lyapunov functions usually constructed as smooth functions do not have to
be differentiable. They can be even discontinuous, if certain consistency condition is
respected. This expansion of the class of possible Lyapunov functions is of much interest
in view of difficulties encountered in attempts to construct a Lyapunov function for a
more complicated practical system.

Further, the extension of the Barbashin-Krasovskii theorem onto nonperiodic systems
has been long overdue. Indeed, it was puzzling that this important and much used
theorem should be valid only for systems with such easy-to-see fashionable property as
being stationary or with a periodic right-hand side. The result presented in Section 4
extends the validity of this theorem to systems of class A whose solutions satisfy a
condition that resembles the Cauchy compactness criterion.

Another generalization was to apply the idea of decomposition of motion (embodied
in Lyapunov’s approach) to the controller and observer design for nominal systems. This
development required the relaxation or modification of classical Lyapunov conditions,
leading, in fact, to new functions and to a different framework. Well in the spirit of
Lyapunov, this approach can be used for new classes of problems such as motion con-
trol, dynamic games and asymptotic observer design. Quite naturally, in application to
stability and stabilization it brings us back to the classical Lyapunov results.

Using this framework and the generalized perturbation equation, it became possible to
develop a time-space mosaic method, a sort of Lyapunov-like assembly line along the time
axis, that allows us to substitute a single continuous Lyapunov function acting on [t0,∞)
by separate independent functions easier to construct, provided the consistency condition
is satisfied. Apart from analytical advantages in stability analysis, it opens a way to
“practical stability” evaluations (on a finite interval of time, cf. [17, 27]) through on-line
computations of the rate of attraction. If combined with the space-splitting furnished
by vector and matrix Lyapunov functions, see [22 – 24], this presents a complete time-
space mosaic in Rn ×R which could provide a powerful tool for solution of complicated
practical problems.
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Abstract: This paper is concerned with a three-species food chain whose
populations interact with a mutualist. The mutualism is obligate for one of
the predators, and is modeled by a system of autonomous ordinary differential
equations. Persistence and extinction criteria are developed in the cases of
trivial, periodic and almost periodic dynamics.
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1 Introduction

The main thrust of this paper is to model obligate mutualism with the middle and top
predators of a three-species food chain. The cases of facultative mutualism with the prey
and middle predator populations have been considered in [24].

Previously, models of mutualism with predator-prey systems have been considered in
[2, 12, 16, 24, 27, 34]. Models of obligate mutualism have been discussed in [7, 12, 13, 14].
For general discussions of mutualism the reader is referred to [1, 7, 11, 32].

Most models of mutualism are two dimensional. There has been a fair amount of
work recently on three dimensional models, where the mutualism occurs between prey
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(see eg. [2, 15, 27]); predators (see [2, 13, 14, 15, 27]), perhaps both [30], or competitors
(see [2, 9, 27, 29, 33]), etc. However, to date the only results dealing with mutualism in
food chains are contained in [24].

Our main concern in this paper will be to develop criteria for the persistence or
extinction of populations considered in our model. Persistence and extinction criteria for
food chains and/or mutualism models have been discussed in [13, 15, 16, 17, 18, 21, 24].

At this time we give definitions of extinction, persistence and nonpersistence. First
we define extinction. We say that N(t) > 0 exhibits extinction if lim

t→∞
N(t) = 0. We

note that nonpersistence (defined below) does not necessarily imply extinction for all
initial values N(0). If lim

t→∞
N(t) = 0 for all N(0) > 0, we say that our system exhibits

total extinction with respect to the N(t) population. We will employ the notation R+
v

to denote the positive v-axis and R̄+
v for its closure, for any variable v. R+

vw denotes the
positive v − w plane and R̄+

vw its closure etc.
Further if populations N1, . . . , Nk exhibit total extinction in the space R+

v1,...,vℓ
,

we denote this by EN1,...,Nk
→ 0. Here N1, . . . , Nk and v1, . . . , vℓ are subsets of the

set {u, x, y, z}.
We now define persistence with respect to the positive orthant in Rn (see [4, 5] for more

general definitions). We say that N(t), N(0) > 0, persists if N(t) > 0 for all t > 0 and
lim inf
t→∞

N(t) > 0. We say that N(t) uniformly persists if, further, lim inf
t→∞

N(t) ≥ δ > 0

for all N(0) ∈
◦

R+, where
◦

R+ is the interior of Rn
+. Finally, we say that a vector

(N1(t), . . . , Nn(t)) ∈ Rn
+ (uniformly) persists if each component (uniformly) persists. If

any component fails to persist, we say that nonpersistence occurs.
In Section 2, we discuss our model. Section 3 contains an equilibrium analysis and a

review of known persistence criteria. Section 4, gives persistence and extinction criteria
for the total model including reversal of outcome. In particular, criteria are developed
for the first time to the best of our knowledge for the case of almost periodic dynam-
ics. Included in this are examples to illustrate our results. Section 5 contains a brief
discussion.

2 The Models

In this section we describe a general model of interactions between a mutualist population
and populations of a food chain. The mathematical formulation of obligate relationships
between the mutualist and two different trophic levels of the food chain are also described.
Finally, we estimate the region of attraction in each case, showing that the models are
well-behaved.

We consider the autonomous system,

du

dt
= uh(u, x, y, z),

dx

dt
= αxg(u, x) − yp1(u, x) − zp2(u, x),

dy

dt
= y[−s1(u, y) + c1(u)p1(u, x)] − zq(u, y),

dz

dt
= z[−s2(u, z) + c2(u)p2(u, x) + c3(u)q(u, y)],

u(0) = u0 ≥ 0, x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0,

(2.1)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(1) (2002) 25–44 27

as a model of a mutualist-food chain interaction with continuous birth and death pro-
cesses. The variable u(t) represents the density of the mutualist at time t and x(t), y(t),
z(t) denote the prey, predator, and superpredator densities respectively.

The function h(u, x, y, z) represents the specific growth rate of the mutualist popula-
tion. We assume that h(u, x, y, z) possesses the following properties.

(H1) h(0, x, y, z) > 0, ∂h
∂u

(u, x, y, z) ≤ 0.
(H2) There exists a unique function L(x, y, z) > 0, such that h(L(x, y, z), x, y, z) = 0.

The function g(u, x) is the specific growth rate of the prey x in the absence of any
predation. We assume that

(G1) g(u, 0) > 0, ∂g
∂x

(u, x) ≤ 0.
(G2) There exists a unique K(u) > 0 such that g(u,K(u)) = 0.

(G3) ∂g
∂u

(u, x) ≥ 0.

Next, the functions pi(u, x), i = 1, 2 and q(u, y) denote the predator’s functional
response to the prey and mutualist densities. We assume that,

(P1) pi(u, 0) = 0, ∂pi

∂x
(u, x) > 0, i = 1, 2, q(u, 0) = 0, ∂q

∂y
(u, y) > 0.

The functions s1(u, y) and s2(u, z) are the specific death rates of the predators y and
z, in the absence of predation. We assume that

(S1) ∂s1(u,y)

∂y
> 0, ∂s2(u,z)

∂z
> 0.

(S2) ∂s1(u,y)

∂u
≤ 0, ∂s2(u,z)

∂u
≥ 0, c′1(u) ≥ 0, c′i(u) ≤ 0, i = 2, 3.

The non-negative functions ci(u), i = 1, 2, 3 are the conversion rates of prey biomass to
the predator biomass. The implications of the above conditions are described in detail in
[24]. Finally, we assume that all the functions are smooth enough so that existence and
uniqueness of initial value problems hold and any required analysis can be carried out.

In model (2.1), we will think of α as a bifurcation parameter.

2.1 Obligate mutualism with the bottom-predator

In this section we consider the case of obligate mutualism between the mutualist u and
the predator y. In addition to H(1-2), we assume the following for the specific growth
rate h(u, x, y, z) of the mutualist:

(H3) ∂h
∂x

(u, x, y, z) ≤ 0, ∂h
∂y

(u, x, y, z) > 0, ∂h
∂z

(u, x, y, z) ≤ 0.

(H4) lim
y→∞

L(0, y, 0) = L̃ <∞.

The condition (H3) implies that u derives benefit from the predator population and
that there might be a cost to the mutualist due to its interactions with the predators.
The condition (H4) implies that u has a finite carrying capacity, no matter how much
benefit it derives.

Further we assume

(P2) ∂p1(u,x)

∂u
≥ 0, ∂p2(u,x)

∂u
≤ 0, ∂q(u,y)

∂u
≤ 0.

This condition implies that the mutualist can benefit the bottom-predator by increas-
ing its predator’s response and/or by decreasing the response of the superpredator.

In order for system (2.1) to exhibit obligate mutualism between u and y, the food
chain must collapse in the absence of the mutualist and the predator y must become
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extinct. Thus we require that the subsystem:

dx

dt
= αxg(0, x) − yp1(0, x) − zp2(0, x),

dy

dt
= y[−s1(0, y) + c1(0)p1(0, x)] − zq(0, y),

dz

dt
= z[−s2(0, z) + c2(0)p2(0, x) + c3(0)q(0, y)],

(2.2)

with x(0) > 0, y(0) > 0 and z(0) > 0, exhibits extinction and lim
t→∞

y(t) = 0. As

observed in [11] this happens when either

(S3a) lim
x→∞

p1(0, x) ≤ s1(0,0)

c1(0)

or

(S3b) p1(0, x̂) = s1(0,0)

c1(0)
and x̂ ≥ K(0).

In conclusion whenever hypotheses H(1-4), G(1-3), P(1,2) and S(1-3) hold, mutualism
occurs between u and y and is obligate for the predator y.

The following result establishes that under the above hypotheses, system (2.1) pos-
sesses a region of attraction. The proof is similar to one given in [24].

Theorem 2.1 Let the hypotheses H(1-4), G(1-3), P(1,2), S(1-3) hold. Then the set

C = {(u, x, y, z) : 0 ≤ u ≤ L̃, 0 ≤ x ≤ K̃, 0 ≤ c̃1x+ y ≤ M̃,

0 ≤ c2(L̃)x+ c3(L̃)y + z ≤ Ñ, 0 ≤ c2(0)x+ c3(0)y + z ≤ Ñ},
(2.3)

where

K̃ = max
0≤u≤L̃

K(u), c̃1 = max
0≤u≤L̃

c1(u),

M̃ =
c1(L̃)K̃

s1(L̃, 0)
[αg(L̃, 0) + s1(L̃, 0)],

Ñ =
1

s2(0, 0)

[
c2(0)K̃

(
αg(L̃, 0) + s2(0, 0) + c3(0)M̃

(
c1(L̃)

L̃ K̃ + s2(0, 0)

)]
(2.4)

and
p̃1 = max

0≤u≤L̃

p1(u, K̃),

is positively invariant and attracts all solutions starting with nonnegative initial-values.

2.2 Obligate mutualism with the top-predator

The system (2.1) exhibits mutualism between u and z, which is obligate for the top-
predator z, whenever in addition to H(1-2), G(1-3), P1, S(1,3), the following assumptions
hold:

(H3∗) ∂h(u,x,y,z)

∂x
≤ 0, ∂h(u,x,y,z)

∂y
≤ 0, ∂h(u,x,y,z)

∂z
> 0.

(H4∗) lim
z→∞

L(0, 0, z) = L̃ <∞.

(P2∗) ∂p2(u,x)

∂u
≥ 0, ∂q(u,y)

∂u
≥ 0.

(S2∗) ∂s2(u,y)

∂u
≤ 0, c′2(u) ≥ 0, c′3(u) ≥ 0.
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The following condition ensures that in the absence of u, z will become extinct.

(S4∗a) c2(0) lim
x→∞

p2(0, x) + c3(0) lim
y→∞

q(0, y) ≤ s2(0, 0).

or

(S4∗b) c2(0)p2(0, x) + c3(0)q(0, y) = s2(0, 0), for some x and y, where x ≥ K(0).

Finally the mutualist can indirectly benefit the predator z, by affecting the death rate,
the predator response function or the conversion rate of prey biomass to the predator
biomass of the predator y.

Under the above stated hypotheses by similar arguments as for Theorem 2.1, we can
prove the following by using standard techniques (see e.g. [17]).

Theorem 2.2 Let the hypotheses H(1,2,3∗, 4∗), G(1-3), P(1,2∗), S(1,2∗,4∗) hold.
Then the set

D = {(u, x, y, z) : 0 ≤ u ≤ L̃, 0 ≤ x ≤ K̃, 0 ≤ c̃1x+ y ≤ M̃,

0 ≤ c2(L̃)x + c3(L̃)y + z ≤ Ñ},
(2.5)

where the constants are given in (2.4), and

p̃1 = max
0≤u≤L̃

p1(u, K̃),

is positively invariant and attracts all solutions starting with nonnegative initial-values.

3 The Equilibria

The question of existence and non-existence of various equilibria of system (2.1) and
their stabilities are discussed in detail in [24]. Below we describe the information needed
to study the question of reversal of outcome in our system for the two cases under
consideration.

Case I: Obligate mutualism between u and y

The system (2.1) possesses the equilibrium E0(0, 0, 0, 0) and one dimensional equilibria
E1(L0, 0, 0, 0), E2(0,K0, 0, 0), where L0 = L(0, 0, 0) and K0 = K(0). The two dimen-
sional equilibrium E3(ũ, x̃, 0, 0) always exists. The equilibrium E5(0, x2, 0, z2) in the x−z
plane may or may not exist. The three dimensional equilibria, if they exist are of the
form E6(u3, x3, y3, 0) and E7(u4, x4, 0, z4). We note that a three dimensional submodel
has an equilibrium if it is uniformly persistent (see [4]).

Case II: Obligate mutualism between u and z

In this case the equilibria E0(0, 0, 0, 0), E1(L0, 0, 0, 0), E2(0,K0, 0, 0), E3(ũ, x̃, 0, 0) always
exist. The equilibrium E4(0, x1, y1, 0) in the x−y plane may or may not exist. The three
dimensional equilibria if they exist are of the form E6(u3, x3, y3, 0) and E7(u4, x4, 0, z4).

Next, we list information regarding the eigenvalues of the variational matrix, computed
at the various equilibria so that their stabilities may be discussed.

The eigenvalues of E2 in the y and z-directions are

αi , −si(0, 0) + ci(0)pi(0,K0), i = 1, 2. (3.1)
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The eigenvalues of E3 in the y and z directions are

βi , −si(ũ, 0) + ci(ũ)pi(ũ, x̃), i = 1, 2. (3.2)

The eigenvalues of E4 in the z-direction and of E5 in the y-direction are

γ , −s2(0, 0) + c2p2(0, x1) + c3(0)q(0, y1), (3.3)

and
δ , −s1(0, 0) + c1(0)p1(0, x2) − z2qy(0, 0), (3.4)

respectively.
The eigenvalues of E6 and E7 in the z and y directions are

ξ , −s2(u3, 0) + c2(u3)p2(u3, x3) + c3(u3)q(u3, y3) (3.5)

and
η , −s1(u4, 0) + c1(u4)p1(u4, x4) − z4qy(u4, 0), (3.6)

respectively.
The above values are computed in a straightforward manner using standard techniques

of ordinary differential equations.

4 Reversal of Outcome

Case I: Obligate mutualism between u and y

Suppose that for the system (2.1) the hypotheses H(1-4), G(1-3), P(1-2), S(1-3) hold.
The obligate relationship between u and y implies that Ey→0 in R+

xy and R+
xyz, that is,

in the absence of mutualism, the predator y becomes extinct. However, we will show
that with mutualism present, system (2.1) can exhibit uniform persistence resulting in
a reversal of the outcome exhibited by the food chain submodel. The following result
specifies a set of conditions leading to such a reversal. The proof follows using techniques
similar to those used in [24] and is thus omitted. First we assume the following additional
hypotheses for technical mathematical reasons.

(H5) Let E5 (if it exists) be globally asymptotically stable with respect to solutions

initiating in
◦

R+
xz.

(H6) Let the equilibria E6 and E7 be globally asymptotically stable in
◦

R+
uxy and

◦

R+
uxz,

respectively.

Theorem 4.1 Let the hypotheses H(1-6), G(1-3), P(1,2) and S(1-3) hold. Then the
system (2.1) is uniformly persistent whenever ξ > 0 and η > 0, where ξ and η are given
by (3.5) and (3.6), respectively.

The above theorem can be interpreted as follows. If the predator y is unable to survive
on its own, then the mutualist could help the predator population to survive. As observed
in [13], the mutualist can benefit the mutualist predator in several ways: by increasing
the prey growth rate, by increasing the rate of predation of its prey x, by providing
an alternate food source for the mutualist-predator and by enhancing the efficiency of



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(1) (2002) 25–44 31

utilization of the prey by the mutualist-predator. Below we illustrate each of these cases
with an example. All examples considered are of the form

du

dt
= u

(
1 − u

L+ ℓy

)
,

dx

dt
= αx

(
1 − x

K + ku

)
− (γ0 + γ1u)xy − δ0

1 + δ1u
xz,

dy

dt
= y

[
− s10 + s11u− s12y + (c10 + c11u)(γ0 + γ1u)x− ξ0z

]
,

dz

dt
= z

[
− s20 − s21u− s22z +

c20
1 + c21u

δ0
1 + δ1u

x+
c30ξ0

1 + c31u
y

]
,

(4.1)

where all the constants are assumed to be nonnegative.
In the absence of the mutualist u, there will be an equilibrium in R+

xy,

(x, y) =

(
K(s10γ0 + αs12)

αs12 +Kc10γ2
0

,
α(Kc10γ0 − s10)

αs12 +Kc10γ2
0

)
,

unless Kc10γ0 ≤ s10. Thus for obligate mutualism we require

Kc10γ0 ≤ s10. (4.2)

Example 4.1 When γ1 = δ1 = s11 = c11 = s21 = c21 = c31 = 0 and k > 0, mutualism
occurs by means of the mutualist enhancing the prey growth rate.

The region of attraction for the system is contained in the set

B = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓM̃, 0 ≤ x ≤ K + k(L+ ℓM̃),

0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ},
(4.3)

where

M̃ =
−s10 + c10γ0(K + kL)

s12 − c10γ0kℓ
,

Ñ =
1

s22

(
− s20 +Kc20δ0 +K(L+ ℓM̃) + c30ξ0M̃

)
.

We assume that M̃ and Ñ are positive, otherwise the system will always exhibit

extinction. The equilibria in R
+

ux are E0(0, 0, 0, 0), E1(L, 0, 0, 0), E2(0,K, 0, 0),

E3(L,K+kL, 0, 0, 0). The equilibrium E5

(
0, K(δ0s20+αs22)

αs22+Kc20δ2

0

, 0, α(−s20+Kc20δ0)

αs22+Kc20δ2

0

)
exists pro-

vided Kc20δ0 > s20.
The subsystem in R+

uxy is uniformly persistent whenever

β1 = −s10 + c10γ0(K + kL) > 0, (4.4)

in which case the equilibrium in R+
uxy is given by

E6(u3, x3, y3, 0) = (L+ ℓy3,
s10 + s12y3
c10γ0

, y3, 0),
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where

y3 =
b +

√
b2 + 4kℓc10γ2

0β1

2kℓc10γ2
0

and
b = αkℓc10γ0 − αs12 − c10γ

2
0(K + kL).

The subsystem in R+
uxz is uniformly persistent provided

β2 = −s20 + c20δ0(K + kL) > 0, (4.5)

and then the equilibrium in R+
uxz is given by

E7(u4, x4, 0, z4) =

(
L,

(αs22 + δ0s20)(K + kL)

αs22 + (K + kL)c20δ20
, 0,

αβ2

αs22 + (K + kL)c20δ20

)
.

The symmetric matrix B(u, x, y) corresponding to E6 is given by

b11 =
1

(L+ ℓy3)
,

b12 =
−αkc10x

2(K + ku)(K + k(L + ℓy3))
,

b13 = − ℓu

2(L+ ℓy)(L+ ℓy3)
,

b22 =
βc10

K + k(L+ ℓy3)
,

b23 = 0 and b33 = s12.

It is positive definite in the region of attraction of the subsystem in R+
uxy, whenever

s12

(
αc10

L+ ℓy3
− α2k2c210(K + k(L+ ℓM̃))2

4K2(K + k(L+ ℓy3))

)
− αc10ℓ

2(L+ ℓM̃)2

4L2(L+ ℓy3)2
> 0. (4.6)

The matrix D(u, x, z) corresponding to E7 is given by

d11 =
1

L
, d12 =

αkc20x

2(K + kL)(K + ku)
, d13 = 0,

d22 =
αc20

K + kL
, d23 = 0, d33 = s22.

It is positive definite whenever

1

L
− αk2c20(K + kL)2

4(K + kL)K2
> 0. (4.7)

Thus the system (4.1) will be uniformly persistent whenever (4.4) – (4.7) hold and

ξ = −s20 + c20δ0x3 + c30ξ0y3 > 0, (4.8)

and
η = −s10 + c10γ0x4 − ξ0z4 > 0. (4.9)
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Example 4.2 When k = δ1 = s11 = c11 = s21 = c21 = c31 = 0 and γ1 > 0, the
mutualist enhances the rate of predation of the mutualist-predator y. Here the region of
attraction is contained in the set

B = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓM̃, 0 ≤ x ≤ K, 0 ≤ y ≤ M̃,

0 ≤ z ≤ 1

s22
(−s20 +Kc20δ0 + c30ξ0M̃)},

(4.10)

where

M̃ = −s10 +Kc10(γ0 + γ1L)

s12 −Kc10γ1ℓ
.

The equilibria inR
+

ux are given byE0(0, 0, 0, 0), E1(L, 0, 0, 0), E2(0,K, 0, 0), E3(L,K, 0, 0).
The subsystem in R+

uxy is uniformly persistent whenever

β1 = −s10 +Kc10(γ0 + γ1L) > 0, (4.11)

in which case the equilibrium E6(u3, x3, y3, 0) = (L+ℓy3,
1

α
[α−(γ0+γ1(L+ℓy3))y3], y3, 0),

where from Descartes’ rule of signs y3 is the unique positive root of the equation

y3 +
2

γ1ℓ
(γ0 + γ1L)y2 +

(
Kc10(γ0 + γ1L)2 + αs12 − αKc10γ1ℓ

)
y − αβ1 = 0. (4.12)

The subsystem in R+
uxz is uniformly persistent provided

β2 = −s20 + c20δ0K > 0, (4.13)

in which case E7(u4, x4, 0, z4) =
(
L, K(αs22+δ0s20)

αs22+Kc20δ2

0

, 0, αβ2

αs22+Kc20δ2

0

)
. Now we consider the

global asymptotic stability of E6 and E7 in R+
uxy and R+

uxz, respectively.

The symmetric matrix B(u, x, y) corresponding to E6(u3, x3, y3, 0) is given by

b11 =
1

u3

, b12 =
γ1y

2
, b13 = −1

2

(
ℓu

u3(L+ ℓy)
+ c10γ1x− s11

)
,

b22 =
c10
K
, b23 = 0, b33 = s12.

It is positive definite in its region of attraction whenever

4

s12

(
1

Ku3

− γ2
1c10M̃

2

4

)
− 1

K

(
ℓ(L+ ℓM̃)

u3L
+Kc10γ1 − s11

)
> 0, (4.14)

where M̃ is given by (4.10). The symmetric matrix D(u, x, z) corresponding to E7 is
given by

d11 =
1

u4

, d12 = 0, d13 =
1

2
s21,

d22 =
αc20
K

, d23 = 0, d33 = s22.

It is positive definite in its region of attraction whenever

4s22 − Ls221 > 0. (4.15)

Thus whenever (4.11), (4.13) – (4.15) hold and

ξ = −s20 + c20δ0x3 + c3ξ0y3 > 0, (4.16)

and
η = −s10 + c10(γ0 + γ1u4)x4 − ξ0z4 > 0, (4.17)

the system (4.1) is uniformly persistent.
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Example 4.3 When k = γ1 = δ1 = c11 = s21 = c21 = c31 = 0 and s11 > 0, the
mutualist provides the mutualist-predator with an alternate food source.

The region of attraction is contained in the set

B = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓM̃, 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.18)

where

M̃ = −s10 + s11L+ c10γ0K

s12 − s11ℓ
,

Ñ =
1

s22
(−s20 +Kc20δ0 + c3ξ0M̃).

(4.19)

The equilibria in R
+

ux are E0(0, 0, 0, 0), E1(L, 0, 0, 0), E2(0,K, 0, 0) and E3(L,K, 0, 0).
The subsystem in R+

uxy is uniformly persistent whenever

β1 = −s10 + s11L+Kc10γ0 > 0. (4.20)

The subsystem in R+
uxz is uniformly persistent whenever

β2 = −s20 +Kc20δ0 > 0. (4.21)

Whenever the inequalities (4.20) and (4.21) hold the equilibria in R+
uxy and R+

uxz are
given by

E6(u3, x3, y3, 0) =

(
L+ ℓy3,

K(s10γ0 + αs12 − αs11ℓ+ s11Lγ0)

Kc10γ
2
0
− αs11ℓ+ αs12

,
αβ1

Kc10γ
2
0
− αs11ℓ+ αs12

, 0

)

and

E7(u4, x4, 0, z4) =

(
L,
s20 + s22z4
c20δ0

, 0,
αβ2

Kc20δ20 + αs22

)
.

The symmetric matrix B(u, x, y) corresponding to E6 is given by

b11 =
1

u3

, b12 = 0, b13 = − ℓu

2u3

,

b22 =
αc10
K

, b23 = 0, b33 = s12.

It is positive definite in the region of attraction whenever

s12 −
ℓ2

4u3

(L + ℓM̃)2 > 0. (4.22)

The matrix corresponding to E7, D(u, x, z) = diag
(

1

u4

, αc20

K
, s22

)
is always positive

definite.
Thus the system (4.1) will be uniformly persistent whenever inequalities (4.20) – (4.22)

hold and
ξ = −s20 + c20δ0x3 + c30ξ0y3 > 0, (4.23)

and
η = −s10 + s11u4 + c10γ0x4 − ξ0z4 > 0. (4.24)
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Example 4.4 When k = γ1 = δ1 = s11 = s21 = c21 = c31 = 0 and c11 > 0, the
mutualist enhances the efficiency of the utilization of the prey by the mutualist-predator.
Here the region of attraction is contained in the set

B = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓM̃, 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.25)

where

M̃ =
−s10 +Kγ0(c10 + c11L)

s12 −Kγ0c11ℓ
,

Ñ =
−s20 +Kc20δ0 + c30ξ0M̃

s22
.

The equilibrium in R+
ux is E3(L,K, 0, 0). The subsystems in R+

uxy and R+
uxz are uniformly

persistent provided
β1 = −s10 + (c10 + c11L)γ0K > 0, (4.26)

and
β2 = −s20 +Kc20δ0 > 0. (4.27)

The equilibrium

E6(u3, x3, y3, 0) =

(
L+ ℓy3,

K

α
(α− γ0y3),

b+
√
b2 + 4αβ1

2Kc11γ2
0ℓ

, 0

)
,

where
b = α(ℓKc11γ0 − s12) −Kγ2

0(c10 + c11L).

The equilibrium

E7(u4, x4, 0, z4) =

(
L,
K(αs22 + δ0s21)

αs22 +Kc20δ20
, 0, αβ2

)
.

The symmetric matrix B(u, x, y) corresponding to E6 is given by

b11 =
1

u3

, b12 = 0, b13 = − ℓu

2u3(L+ ℓy)
− 1

2
c11γ0x,

b22 =
α

K
(c10 + c11u3), b23 = 0, b33 = s12.

It is positive definite in its region of attraction whenever

4s12
u3

−
(
ℓ(L+ ℓM̃)

u3L
+Kc11γ0

)2

> 0. (4.28)

The symmetric matrix corresponding to E7 is given by

D(u, x, z) = diag

(
1

L
,
αc20
K

, s22

)
.
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Thus whenever inequalities (4.26) – (4.28) hold and

ξ = −s20 − s21u3 + c20δ0x3 + c30ξ0y3 > 0, (4.29)

and

η = −s10 + (c10 + c11u4)γ0x4 − ξ0z4 > 0, (4.30)

the given system is uniformly persistent.

In the above examples, all boundary equilibria of predator-prey type were globally
asymptotically stable in their respective predator-prey planes, i.e. we assumed that
hypotheses (H5) and (H6) hold.

We now allow for the possibility that (H5) and/or (H6) be violated, in which case there

could be periodic solutions in
◦

R+
xz and periodic, almost periodic, or recurrent motions in

◦

R+
uxz and

◦

R+
uxy.

Persistence criteria have been obtained in three dimensional systems when periodic
solutions occur in the predator-prey planes. To the best of our knowledge the almost
periodic case for four dimensions has not yet been considered.

Hence we next demonstrate that uniform persistence can occur even when one or more
of the three-dimensional subsystems have almost periodic solutions. We note that the
closure Σ of an almost periodic orbit is a compact, minimal set and every solution in Σ
is almost periodic (see [26]).

We state and prove a theorem for persistence in the case where almost periodic solu-

tions occur in R+
uxy, but that E7 is globally stable with respect to

◦

R+
uxz. Let there be k

nontrivial almost periodic solutions in R+
uxy, denoted (φi(t), ψi(t), ξi(t), 0), with disjoint

closures
∑
i

, i = 1, . . . , k.

Theorem 4.2 Let the hypotheses H(1-5), G(1-3), P(1,2) and S(1-3) hold, and E7

be globally stable with respect to
◦

R+uxz. Also let the omega limit sets of all solutions

initiating in R+
uxy lie in the acyclic set

{ k⋃
i=1

Σi∪E6

}
. Then the system (2.1) is uniformly

persistent whenever ξ > 0, η > 0 and

lim
t→∞

1

t

t∫

0

[−s2(φi(r), 0) + c2(φi(r))p2(φi(r), ψi(r))

+ c3(φi(r))q(φi(r), ξi(r))] dr > 0, i = 1, . . . , k.

(4.31)

Proof First we observe that the limit in the inequality (4.31) exists. Also as each
Σi is a compact minimal set, it lies in R+

uxy and the subsystem in R+
uxy is uniformly

persistent. The uniform persistence of (2.1) will follow (see [5]) if we can show that the
stable sets, W s(Σi) and W s(Ej) do not intersect R+

uxyz and each of them is isolated

in R
+

uxyz.

First, we show that W s(Σi) ∩R+
uxyz = φ, 1 ≤ i ≤ k. Let Φ(t) = (φ(t), ψ(t), ξ(t), 0)T

be any almost periodic solution in Σi0 and X(t) = (u(t), x(t), y(t), z(t))T , X(0) = X0 ∈
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R+
uxyz be any solution starting sufficiently close to Φ(t). Linearizing X(t) about Φ(t) we

obtain

Y ′(t) = A(t)Y (t), (4.32)

where Y (t) = (u1(t), x1(t), y1(t), z1(t))
T is the linearized vector variable, and

A(t) =




φhu + h φhx φhy φhz

αψg − ψp1 αg + αgx − ξp1x
−p1 −p2

−ψ(−s1u + c′1p1u) ψc1p1x −s1 + c1p1 − ξs1y −q

0 0 0 −s2 + c2p2 + c3q


 ,

where all the functions are evaluated at Φ(t). Solving the last equation in (4.32) we
obtain

z1(t) = z1(0) exp

t∫

0

[−s2(φ(r), 0) + c2(φ(r))p2(φ(r), ψ(r)) + c3(φ(r))q(φ(r), ξ(r))] dr.

Now since Φ(t) lies in Σi0 and the solutions through Σi0 are uniformly stable in both
directions in Σi0 , the inequality (4.31) (with i = i0) implies that z1(t) > 0 for t ≥ 0
and is an increasing function for sufficiently large t. Thus any solution in R+

uxyz, starting
sufficiently close to Σi0 eventually gets away from it.

Hence, Ω(X0) 6⊂ Σi0 . Thus W s(Σi0) ∩R+
uxyz = φ, 1 ≤ i ≤ k.

Since all boundary equilibria are hyperbolic we conclude as in [24] that W s(Ei) ∩
R+

uxyz = ∅, 1 ≤ i ≤ 7.

Now suppose that for some i0, Σi0 is not an isolated invariant set in R+
uxyz. Then

there must exist closed invariant sets in arbitrarily close neighbourhoods of Σi0 . Let
M ⊃ Σi0 be such a closed invariant set. Then by repeating the arguments, given above
we conclude that Σi0 repels the solutions starting in M/Σi0 and hence they must leave
M . However this contradicts the fact that M is invariant. Hence the proof.

Remark 4.3 The acyclic condition of the above theorem is always satisfied when each
Σi is either asymptotically stable or completely unstable in R+

uxy and there do not exist

any homoclinic orbits in R+
uxy.

Remark 4.4 In the event that almost periodic solutions exist for the subsystems in
R+

uxz a criterion similar to the one given by the above theorem can be obtained.

Case II: Obligate mutualism between u and z

The system (2.1) exhibits obligate mutualism between the mutualist u and the top-
predator z, whenever the hypotheses H(1,2,3∗,4∗), G(1-3), P(1,2∗) and S(1,2∗,4∗) hold.

Also from the hypothesis S(4∗) the mutualism is obligate for the predator. Hence
Ez→0 in R+

xz and R+
xyz and the equilibrium E5 does not exist. To obtain the persistence

criteria in this case, we need to introduce the following additional hypothesis:

(H5∗) Let the equilibrium E4 (if it exists) be globally asymptotically stable with respect

to solutions initiating in
◦

R+
xy.

The following result holds for system (2.1).
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Theorem 4.3 Let the hypotheses H(1,2,3∗,4∗,5∗,6), G(1-3), P(1,2∗), S(1,2∗,4∗) hold.
Then system (2.1) is uniformly persistent whenever ξ > 0 and η > 0.

Persistence in system (2.1) can result in any of the following ways.
The mutualist u can directly benefit the mutualist-predator z, by enhancing the growth

rate of the prey x, by providing an alternate food supply, by increasing its rate of preda-
tion or by enhancing the efficiency of utilization of the prey(s). Below we illustrate each
of these cases with an example. We also note that the mutualist’s interaction with the
predator y can also lead to a beneficial effect for the top-predator.

Consider the system

u′ = u

(
1 − u

L+ ℓz

)
,

x′ = αx

(
1 − x

K + ku

)
− γ0

1 + γ1u
xy − (δ0 + δ1u)xz,

y′ = y

[
− s10 + s12y +

c1γ0

1 + γ1u
xy

]
− (ξ0 + ξ1u)yz,

z′ = z[−s20 − s21u− s22z + (c20 + c21u)(δ0 + δ1u)x+ c3(ξ0 + ξ1u)y],

(4.33)

where all the constants are assumed to be nonnegative.

It is easily seen that in the absence of the mutualist, y(t) ≤ −s10+Kc1γ0

s12

. Hence assume

that

s10 < Kc1γ0, (4.34)

otherwise Ey→0 in R+
uxyz. Furthermore for obligate mutualism to occur we require that

Kc20δ0 + c3ξ0
(−s10 +Kc1γ0)

s12
≤ s20. (4.35)

Example 4.5 When γ1 = δ1 = ξ1 = s21 = c21 = 0 and k > 0, mutualism occurs by
means of mutualist enhancing the rate of growth of the prey x.

The region of attraction is contained in the set

C = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓÑ, 0 ≤ x ≤ K + k(L+ ℓÑ),

0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ},
(4.36)

where

M̃ =
−s10 + c1γ0(K + k(L+ ℓÑ))

s11

and

Ñ =
−s20 + c20δ0(K + kL) + c3ξ0M̃

s22 − c20δ0 +Kℓ
.

The equilibrium in R+
ux is (L,K + kL). The subsystems in R+

uxy and R+
uxz are uniformly

persistent whenever

β1 = −s10 + c1γ0(K + kL) > 0, (4.37)
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and
β2 = −s20 + c20δ0(K + kL) > 0. (4.38)

The equilibrium

E6(u3, x3, y3, 0) =

(
L,

(K + kL)(γ0s10 + αs11)

αs11 + (K + kL)γ2
0c1

,
αβ1

αs11 + (K + kL)γ2
0c1

, 0

)
,

E7(u4, x4, 0, z4) = (L+ ℓz4, x4, 0, z4),

where

x4 =
1

α
(α− δ0z4)(K + kL+ kℓz4),

z4 =
b4 +

√
b20 + 4c20δ20αkℓβ2

2c20δ20kℓ
,

and b0 = α(−s22 + c20δ0kℓ) − c20δ
2
0(K + kL). The symmetric matrix B(u, x, y) corre-

sponding to E8 is given by

b11 =
1

u3

, b12 =
−c1αkx

2(K + ku3)(K + ku)
, b13 = 0,

b22 =
αc1

K + ku3

, b23 = 0, b33 = s11.

Thus B(u, x, y) is positive definite in its region of attraction whenever

4K2(K + ku3) − αu3c1k
2(K + kL)2 > 0. (4.39)

The symmetric matrix D(u, x, z) corresponding to E7 is given by

d11 =
1

u4

, d12 =
−αkc20x

2(K + ku4)(K + ku)
, d13 = −1

2

ℓu

u4(L + ℓz)
,

d22 =
αc20

(K + ku4)
, d23 = 0, b33 = s22.

The region of attraction of the subsystem in R+
uxz is contained in the set

C1 = {(u, x, z) : 0 ≤ u ≤ L+ ℓN1, 0 ≤ x ≤ K + k(L+ ℓN1), 0 ≤ z ≤ N1},

where N1 = β2

s22−c20δ0kℓ
. The matrix D(u, x, z) is positive definite in B1 whenever

4c20s22 −
αu4c

2
20s22k

2

(K + ku4)K2
(K + kL+ kℓN1)

2 − ℓ2

L2u4

(L+ ℓN1)
2 > 0. (4.40)

Thus the system (4.31) is uniformly persistent whenever the inequalities (4.35) – (4.38)
hold and

ξ = −s20 + c20δ0x3 + c3ξ0y3 > 0 (4.41)

and
η = −s10 + c1γ0x4 − ξ0z4 > 0. (4.42)
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Example 4.6 When k = γ1 = δ1 = ξ1 = c21 = 0 and s21 > 0, mutualism occurs by
means of providing an alternate food source to the top-predator. The region of attraction
is contained in the set

C = {(u, x, z) : 0 ≤ u ≤ L+ ℓÑ, 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.43)

where

M̃ =
−s10 +Kc1γ0

s11
and Ñ =

−s20 + s21L+Kc20δ0 + c3ξ0M̃

s22 − ℓs21
.

The equilibrium in R+
ux is (L,K, 0, 0). The subsystems in R+

uxy and R+
uxz are uniformly

persistent whenever
β1 = −s10 + c1γ0K > 0, (4.44)

and
β2 = −s20 + s21L+ c20δ0K > 0, (4.45)

respectively, in which case the equilibria are

E6(u3, x3, y3, 0) =

(
L,

K(γ0s10 + αs12)

Kc1γ2
0 + αs12

,
α(−s10 +Kc1γ0)

Kc1γ2
0 + αs12

, 0

)

and

E7(u4, x4, 0, z4) =

(
L+ ℓz4,

K((s20 − s21L)δ0 + (s22 − s21ℓ)α)

Kc20δ
2
0

+ α(s22 − s21ℓ)
, 0,

αβ2

Kc20δ
2
0

+ α(s22 − s21ℓ)

)
.

The symmetric matrix corresponding to E6 is B(u, x, y) = diag
(

1

u3

, αc1

K
, s12

)
. The sym-

metric matrix D(u, x, z), corresponding to E7 is given by

b11 =
1

u4

, b12 = 0, b13 =

(
ℓu

u4(L + ℓz)
+ s21

)
,

b22 =
αc20
K

, b23 = 0, b33 = s22.

The region of attraction of the subsystem in R+
uxz is contained in the set

C1 =

{
(u, x, z) : 0 ≤ u ≤ L+

ℓβ2

s22 − s21ℓ
, 0 ≤ x ≤ K, 0 ≤ z ≤ β2

s22 − s21ℓ

}
.

The matrix D(u, x, z) is positive definite in C1 whenever

s22 − u4

(
s21 +

ℓ

Lu4

(
L+

ℓβ2

s22 − s21ℓ

))2

> 0. (4.46)

Therefore the system (4.31) will be uniformly persistent whenever inequalities (4.42) –
(4.44) hold and

ξ = −s20 + s21u3 + c20δ0x3 + c3ξ0y3 > 0, (4.47)

and
η = −s10 + c1γ0x4 − ξ0z4 > 0. (4.48)
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Example 4.7 When k = γ1 = δ1 = ξ1 = s21 = 0 and c21 > 0, mutualism occurs by
mutualist enhancing the utilization of the prey by the top-predator. Here the region of
attraction is contained in

C = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓÑ , 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.49)

where

M̃ =
−s10 +Kc1γ0

s11
and Ñ =

−s20 + (c20 + c21L)δ0K + c3ξ0M̃

s22 −Kc21ℓδ0
.

The equilibrium in R+
ux is E3(L,K, 0, 0). The subsystems in R+

uxy and R+
uxz are uni-

formly persistent whenever
β1 = −s20 +Kc1γ0 > 0, (4.50)

and
β2 = −s20 + (c20 + c21L)Kδ0 > 0. (4.51)

The equilibrium E6(u3, x3, y3, 0) in R+
uxy is the same as in Example 4.6 and the corre-

sponding matrix B(u, x, y) = diag
(

1

u3

, αc1

K
, s12

)
. The equilibrium

E7(u4, x4, 0, z4) =

(
L+ ℓz4,

s20 + s22z4
δ0(c20 + c21u4)

, 0,
−b0 +

√
b20 + 4Kℓαβ2δ20c21
2δ20Kℓc21

)
,

where b0 = αs22 −Kℓαδ0c21 +Kδ20(c20 + c21L). The symmetric matrix D(u, x, z) corre-
sponding to E7 is given by

d11 =
1

u4

, d12 = 0, d13 = −1

2

(
ℓu

(L+ ℓz)u4

+ c21δ0x

)
,

d22 =
α

K
(c20 + c21u4), d23 = 0, d33 = s22.

The region of attraction for the subsystem in R+
uxz is contained in the set

C1 =

{
(u, x, z) : 0 ≤ u ≤ L+ ℓN1, 0 ≤ x ≤ K, 0 ≤ z ≤ β2

s22 −Kℓδ0c21
= N1

}
.

The matrix D(u, x, z) is positive definite in A1 whenever

4s22 − u4

(
ℓ(L+ ℓN1)

Lu4

+ c21δ0K

)2

> 0. (4.52)

Thus if inequalities (4.48) – (4.50) hold and

ξ = −s20 + (c20 + c21u3)δ0x3 + c3ξ0y3 > 0 (4.53)

and
η = −s10 + c1γ0x4 − ξ0z4 > 0, (4.54)

then the system will be uniformly persistent.
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Example 4.8 When k = γ1 = ξ1 = s21 = c21 = 0 and δ1 > 0, mutualism occurs by
means of the mutualist increasing the rate of predation by the predator z on the prey x.

C = {(u, x, y, z) : 0 ≤ u ≤ L+ ℓÑ , 0 ≤ x ≤ K, 0 ≤ y ≤ M̃, 0 ≤ z ≤ Ñ}, (4.55)

where

M̃ =
−s10 +Kc1γ0

s11
and Ñ =

−s20 + c20(δ0 + δ1L)K + c3ξ0M̃

s22 −Kc20ℓδ1
.

The equilibrium in R+
ux is E3(L,K, 0, 0). The subsystem in R+

uxy is uniformly persistent
if

β1 = −s10 + c1γ0K > 0. (4.56)

The equilibrium E6 in R+
uxy is the same as in Example 4.7 and is always globally asymp-

totically stable with respect to solutions initiating in R+
uxy.

The subsystem in R+
uxz will be uniformly persistent whenever

β2 = −s20 + c20(δ0 + δ1L)K > 0. (4.57)

The equilibrium in R+
uxz is

E7(u4, x4, 0, z4) =

(
L+ ℓz4,

K

α
(α− (δ0 + δ1u4)z4), 0, z4

)
,

where z4 is the unique positive root of the cubic equation

kℓ2c20δ
2
1z

3 + 2Kℓc20δ1(δ0 + δ1L)z2 + (αs22 − αKℓc21δ1 +Kc20(δ0 + δ1L)2)z − αβ2 = 0.

The symmetric matrix D(u, x, z) corresponding to E7 is given by

d11 =
1

u4

, d12 =
1

2
c20δ1z, d13 = −1

2

(
ℓu

u4(L+ ℓz)
+ c20δ1x

)
,

d22 =
α

K
c20, d23 = 0, d33 = s22.

The region of attraction for the subsystem in R+
uxz is contained in

C1 =

{
(u, x, z) : 0 ≤ u ≤ L+ ℓN1, 0 ≤ x ≤ K, 0 ≤ z ≤ β2

s22 −Kℓc20δ1
= N1

}
.

The matrix D(u, x, z) is positive definite in A1 provided

s22

(
4α

u4

−Kc20δ
2
1N1

)
− α

(
ℓ

u4L
(L + ℓN1) +Kc20δ1

)2

> 0. (4.58)

Thus whenever the inequalities (4.54) – (4.56) hold and

ξ = −s20 + c20(δ0 + δ1u3)x3 + c3ξ0y3 > 0, (4.59)
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and

η = −s10 + c1γ0x4 − ξ0z4 > 0, (4.60)

the given system is uniformly persistent.

5 Discussion

The main focus in this paper is to examine the possible effects of an obligate mutualist on
the middle and top predator in a food chain. In particular, it was shown how a mutualist
could reverse the outcome of extinction in the case of no mutualism to persistence in the
case of mutualism.

Such mutualisms occur in nature. Examples are cleaner mutualists. The large iguanas
of the Galapagos Islands may be thought of as either middle predators or top predators
depending on whether or not their eggs are subject to predation [10]. Similarly for
the giant tortoises [8]. Both have evolved a mutualism with finches which act as cleaner
mutualists by removing ticks and other pests from the iguanas and tortoises. Such cleaner
mutualism has been shown to be obligate in the Carribean [28]. in that if the cleaning
is not performed, the individuals (in this case certain fish) will soon die.

A remaining problem to be analyzed is the case where the mutualism is obligate on
both mutualists. This is left to future work.
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1 Introduction

In the present paper we consider an uncertain discrete-time system

x(τ + 1) = Ax(τ) + f(x(τ), α), (1.1)

where x ∈ Rn, τ ∈ N = {t0 + k, k = 0, 1, 2, . . .}, t0 ∈ R, A is a constant n × n matrix,
f : Rn × S → Rn, α ∈ S ⊆ Rd, d > 1 is a compact set. Under specific conditions
(we don’t cite them here) dynamics of the system (1.1) are topologically equivalent with
dynamics of the system

x(τ + 1) = (A + E)x(τ), (1.2)

where A is the same matrix, as in system (1.1), and E is an uncertain n × n matrix,
about which it is known that it lies in some compact set S1 ⊂ Rn×n. Further we will
investigate the system (1.2).

Our purpose is to compare the results of estimating the robust bounds of discrete
system obtained in terms of three approaches involving scalar, vector and hierarchical

c© 2002 Informath Publishing Group. All rights reserved. 45
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Lyapunov function. In the paper it is shown that the hierarchical Lyapunov function
provides more wide bounds for estimation of the uncertain matrix.

2 Scalar Approach

We assume that for the matrix A the condition |σi(A)| < 1 is realized for all i =
1, 2, . . . , n. In this case the Lyapunov equation

ATPA − P = −G (2.1)

has a unique solution P ∈ Rn×n for arbitrary symmetric and positive definite matrix
G ∈ Rn×n. Moreover the matrix P is symmetric and positive definite. According to the
results of paper [6], we apply the function

v(x) = (xTPx)
1

2 . (2.2)

in robustness analysis of the system (1.2). Let us denote by σm(P ), σM (P ) the maximum
and minimum eigenvalues of the matrix P .

Following the paper [6] we get the assertion.

Theorem 2.1 Let the nominal system

x(τ + 1) = Ax(τ)

be asymptotically stable. If
‖E‖ < µ(G), (2.3)

where

µ(G) =
σm(G)

σ
1

2

M (P − G)σ
1

2

M (P ) + σM (P )
,

then the uncertain system (1.2) is asymptotically stable.

Here ‖E‖ = sup
‖x‖61

‖Ex‖, ‖x‖ = (xTx)
1

2 is the Euclidean norm of vector x.

It is known [6], that µ(G) takes the largest value, if G = I in (2.1). The expression
(2.3) is a robust bound for the system (1.2), obtained in the framework of scalar approach
with the function (2.2).

3 Vector Approach

We decompose system (1.2) into two interconnected subsystems

Ŝi : xi(τ + 1) = (Ai + Ei)xi(τ) + (Bj + Uj)xj(τ), i, j = 1, 2 and i 6= j. (3.1)

Here xi ∈ Rni , Ai and Bi are submatrices of the known matrix

A =

(
A1 B1

B2 A2

)
, (3.2)

Ei and Ui are submatrices of the uncertain matrix

E =

(
E1 U1

U2 E2

)
, (3.3)

where B1, U1 ∈ Rn1×n2 , B2, U2 ∈ Rn2×n1 , and Ai, Ei ∈ Rni×ni , i = 1, 2.
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Assumption 3.1 We assume that:

(1) the nominal subsystems

xi(τ + 1) = Aixi(τ) (3.4)

are asymptotically stable, i.e. there exist unique symmetric and positive definite
matrices Pi ∈ Rni×ni , which satisfy the Lyapunov matrix equations

AT
i PiAi − Pi = −Gi, i = 1, 2, (3.5)

where Gi are arbitrary symmetric and positive definite matrices;
(2) there exists a constant γ ∈ (0, 1) such that

‖B1‖ ‖B2‖ < γ2µ1µ2

where µi = (σ
1

2

M (Pi − Ii)σ
1

2

M (Pi) + σM (Pi))
−1, Pi are solutions of the Lyapunov

matrix equations (3.5) for the matrices Gi = Ini
, Ini

are ni × ni identity ma-
trices, i = 1, 2.

We define the constants

a = σ
1

2

M (P1)σ
1

2

M (P2), b = σ
1

2

M (P1)σ
1

2

M (P2)(‖B1‖ + ‖B2‖),

µi = (σ
1

2

M (Pi − Ii)σ
1

2

M (Pi) + σM (Pi))
−1, i = 1, 2,

αi = σ
1

2

M (Pi)µi = (σ
1

2

M (Pi − Ii) + σ
1

2

M (Pi))
−1, i = 1, 2,

c = γ2α1α2 − σ
1

2

M (P1)σ
1

2

M (P2)‖B1‖ ‖B2‖,

ǫ =
1

2a
((b2 + 4ac)

1

2 − b),

where Pi are solutions of the Lyapunov matrix equations (3.5) for the matrices Gi =
Ini

, i = 1, 2.

Theorem 3.1 Assume that for the uncertain system (1.2) the decomposition (3.1) –
(3.3) takes place and all conditions of Assumption 3.1 are satisfied. If the submatrices
Ei and Ui satisfy the inequalities

‖Ei‖ 6 (1 − γ)µi, ‖Ui‖ < ǫ, i = 1, 2, (3.6)

then the equilibrium x = 0 of (1.2) is asymptotically stable.

Proof For the nominal subsystems (3.4) by (3.5) we construct the normlike functions

vi(xi) = (xT
i Pixi)

1

2 , i = 1, 2, (3.7)

and the scalar function
v(x) = d1v1(x1) + d2v2(x2), (3.8)

where d1, d2 are some positive constants.
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For the first forward differences ∆vi(xi) of the functions (3.7) with respect to τ along
the solutions of (3.1) we have the estimates:

∆vi(xi)
∣∣
Ŝi

= vi(Aixi) − vi(xi) + vi((Ai + Ei)xi) − vi(Aixi) + vi((Ai + Ei)xi

+ (Bi + Ui)xj) − vi((Ai + Ei)xi) 6 (xT
i AT

i PiAixi)
1

2 − (xT
i Pixi)

1

2 + σ
1

2

M (Pi)‖Eixi‖

+ σ
1

2

M (Pi)‖(Bi + Ui)xj‖ 6
xT

i AT
i PiAixi − xT

i Pixi

(xT
i AT

i PiAixi)
1

2 + (xT
i Pixi)

1

2

+ σ
1

2

M (Pi)‖Ei‖ ‖xi‖

+ σ
1

2

M (Pi)(‖Bi‖ + ‖Ui‖)‖xj‖ 6 −(αi − σ
1

2

M (Pi)‖Ei‖)‖xi‖ + σ
1

2

M (Pi)(‖Bi‖ + ‖Ui‖)‖xj‖,

i, j = 1, 2, i 6= j. Here we use the known inequality [6]

(pTPp)
1

2 − (qTPq)
1

2 6 σ
1

2

M (P )‖p − q‖

for all p, q ∈ Rn, P ∈ Rn×n is a symmetric and positive definite matrix. From here we
arrive to the following inequality

∆v(x)
∣∣
(Ŝ1,Ŝ2)

6 d1∆v1(x1)
∣∣
Ŝ1

+d2∆v2(x2)
∣∣
Ŝ2

6 −d̃TWz, (3.9)

where d̃ = (d1, d2)
T, z = (‖x1‖, ‖x2‖)T, W = (wij) is a 2× 2 matrix with the elements

wij =

{
αi − σ

1

2

M (Pi) ‖Ei‖ if i = j,

−σ
1

2

M (Pi)(‖Bi‖ + ‖Ui‖) if i 6= j.

As all conditions of Theorem 3.1 are satisfied, it is not difficult to verify that the
matrix W is the M -matrix [8]. Really

w11w22 − w12w21 = [α1 − σ
1

2

M (P1)‖E1‖][α2 − σ
1

2

M (P2)‖E2‖] − σ
1

2

M (P1)σ
1

2

M (P2)

× (‖B1‖ + ‖U1‖)(‖B2‖ + ‖U2‖) > [α1 − σ
1

2

M (P1)(1 − γ)µ1][α2 − σ
1

2

M (P2)(1 − γ)µ2]

− σ
1

2

M (P1)σ
1

2

M (P2)(‖B1‖ + ǫ)(‖B2‖ + ǫ)

= γ2α1α2 − σ
1

2

M (P1)σ
1

2

M (P2)(‖B1‖ + ǫ)(‖B2‖ + ǫ)

= −σ
1

2

M (P1)σ
1

2

M (P2)ǫ
2 − σ

1

2

M (P1)σ
1

2

M (P2)(‖B1‖ + ‖B2‖)ǫ + γ2α1α2 − σ
1

2

M (P1)σ
1

2

M

× (P2)‖B1‖ ‖B2‖ = −aǫ2 − bǫ + c.

By condition (2) of Assumption 2.1

c = γ2α1α2 − σ
1

2

M (P1)σ
1

2

M (P2)‖B1‖ ‖B2‖ = σ
1

2

M (P1)σ
1

2

M (P2)
[
γ2µ1µ2 − ‖B1‖ ‖B2‖

]
> 0

and therefore −aǫ2 − bǫ + c = 0, and w11w22 − w12w21 > 0.
It is clear that the function (3.8) is positive definite and it’s first forward difference

(3.9) is negative definite. These conditions are sufficient [9] for the asymptotic stability
of the equilibrium x = 0 of (1.2).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(1) (2002) 45–55 49

The proof of Theorem 3.1 is complete.

Thus the inequalities (3.6) are the robust bounds for the system (1.2), obtained in
terms of the vector approach.

4 Hierarchical Approach

As is known [7], the essence of this method is as follows: beginning from the constructing
an auxiliary Lyapunov function, we take into account a hierarchical structure of the
system (1.2) or realize a multilevel decomposition of the initial system. Further the
second approach is applied precisely.

We decompose each subsystems (3.1) into two interconnected components

C̃ij : xij(τ +1) = (Aij +Eij)xij(τ)+(Bij +Uij)xik(τ), i, j, k = 1, 2, j 6= k, (4.1)

where xij ∈ Rnij , Rni = Rni1 × Rni2 , Aij , Eij ∈ Rnij×nij , Bi1, Ui1 ∈ Rni1×ni2 ,
and Bi2, Ui2 ∈ Rni2×ni1 ,

Ai =

(
Ai1 Bi1

Bi2 Ai2

)
, Ei =

(
Ei1 Ui1

Ui2 Ei2

)
.

Assume that the matrices Bi and Ui have a block structure:

Bi =

(
M

(i)
11 M

(i)
12

M
(i)
12 M

(i)
22

)
, Ui =

(
F

(i)
11 F

(i)
12

F
(i)
12 F

(i)
22

)
,

where M
(i)

jk , F
(i)

jk ∈ Rnij×nlk , i, j, k, l = 1, 2, i 6= l.

We extract from (4.1) the independent components

Cij : xij(τ + 1) = (Aij + Eij)xij(τ), i, j = 1, 2,

with the same designations of variables as in system (4.1).
In order to state the robust bounds we require the following assumptions.

Assumption 4.1 The nominal components

xij(τ + 1) = Aijxij(τ), i, j = 1, 2,

are asymptotically stable, i.e. there exist unique symmetric and positive definite matrices
Pij , which satisfy the Lyapunov matrix equations

AT
ijPijAij − Pij = −Gij , i, j = 1, 2, (4.2)

where Gij are arbitrary symmetric and positive definite matrices.

Let Pij be solutions of the Lyapunov matrix equations (4.2) for the identity matrices
Gij = Iij . We define the constants

αij = σ
1

2

M (Pij)µij = (σ
1

2

M (Pij − Iij) + σ
1

2

M (Pij))
−1,

µij = (σ
1

2

M (Pij − Iij)σ
1

2

M (Pij) + σM (Pij))
−1,

ǫi =
1

2ai

((b2
i + 4aici)

1

2 − bi),

ai = σ
1

2

M (Pi1)σ
1

2

M (Pi2),

bi = σ
1

2

M (Pi1)σ
1

2

M (Pi2)(‖Bi1‖ + ‖Bi2‖),

ci = γ2
i αi1αi2 − σ

1

2

M (Pi1)σ
1

2

M (Pi2)‖Bi1‖ ‖Bi2‖, i, j = 1, 2.
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Assumption 4.2 There exist constants γi ∈ (0, 1) such that

‖Bi1‖ ‖Bi2‖ < γ2
i µi1µi2, i = 1, 2.

Let us construct an auxiliary function on the base of the functions

vij(xij) = (xT
ijPijxij)

1

2 ,

by formular
vi(xi) = di1vi1(xi1) + di2vi2(xi2), i = 1, 2,

where dij are some positive constants. We introduce 2 × 2 matrices Wi = (w
(i)

jk ) with

the elements

w
(i)

jk =

{
γiαij if j = k,

−σ
1

2

M (Pij)(‖Bij‖ + ǫi) if j 6= k.

Here 0 < ǫi < ǫi.
Further we need the following proposition.

Lemma 4.1 We assume that

(1) discrete system (1.2) is decomposed on the first level to the system (3.1) and on
the second level to the systems (4.1);

(2) all conditions of Assumptions 4.1 and 4.2 are satisfied;
(3) for the submatrices Eij , Uij of the matrices Ei, i = 1, 2, the estimates

‖Eij‖ 6 (1 − γi)µij , ‖Uij‖ 6 ǫi, i, j = 1, 2.

are realized.

Then there exist vectors d̂1, d̂2 ∈ R2 with positive components such that the first forward
differences ∆vi(xi)

∣∣
Cij

for the functions vi(xi) satisfy the estimates

∆vi(xi)
∣∣
Cij

6 −d̂T
i Wizi, i = 1, 2 (4.3)

and the matrices Wi are the M -matrices.

Here d̂i = (di1, di2)
T and zi = (‖xi1‖, ‖xi2‖)T.

The proof of Lemma 4.1 is analogous to that of Theorem 3.1.
Under the hypotheses of Lemma 4.1 the matrices Wi are the M -matrices and, ac-

cording to [8], the vectors d̂T
i Wi = (di1w

(i)
11 + di2w

(i)
21 , di1w

(i)
12 + di2w

(i)
22 ) have positive

components.
Let us denote

πi = min{di1w
(i)
11 + di2w

(i)
21 ; di1w

(i)
12 + di2w

(i)
22 }, i = 1, 2,

m =
1

2

(
π1π2

(d11σ
1

2

M (P11) + d12σ
1

2

M (P12)) (d21σ
1

2

M (P21) + d22σ
1

2

M (P22))

) 1

2 (4.4)

and give a method of optimal choice of the constants di1, di2, i = 1, 2.
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Lemma 4.2 Let the matrices W1 and W2 be the M -matrices and w
(i)
12 , w

(i)
21 < 0,

then

sup
d∈D

m(d) = m(d∗1, 1, d∗2, 1) =
1

2

(
w

(1)

11 w
(1)

22 − w
(1)

12 w
(1)

21

σ
1

2

M (P11)(w
(1)

22 − w
(1)

21 ) + σ
1

2

M (P12)(w
(1)

11 − w
(1)

12 )
×

× w
(2)

11 w
(2)

22 − w
(2)

12 w
(2)

21

σ
1

2

M (P21)(w
(2)

22 − w
(2)

21 ) + σ
1

2

M (P22)(w
(2)

11 − w
(2)

12 )

) 1

2

,

(4.5)
where

D =

{
d = (d11, d12, d21, d22)

T ∈ R4 : −w
(1)

21

w
(1)

11

<
d11

d12

< −w
(1)

22

w
(1)

12

, −w
(2)

21

w
(2)

11

<
d21

d22

< −w
(2)

22

w
(2)

12

}
,

d∗1 =
w

(1)

22 − w
(1)

21

w
(1)

11 − w
(1)

12

, d∗2 =
w

(2)

22 − w
(2)

21

w
(2)

11 − w
(2)

12

.

Proof As the matrices W1 and W2 are the M -matrices, then w
(i)
11 , w

(i)
22 > 0, w

(i)
12 , w

(i)
21

< 0 and consequently, −w
(i)

22

w
(i)

12

> −w
(i)

21

w
(i)

11

> 0. On computing of the constant πi and m we

can set d12 = d22 = 1, d11 = d1, d21 = d2 and di ∈ Di =
{
di ∈ R : − w

(i)

21

w
(i)

11

< di <

−w
(i)

22

w
(i)

12

}
, i = 1, 2. Let us denote

mi(di) =
πi

diσ
1

2

M (Pi1) + σ
1

2

M (Pi2)
i = 1, 2,

and note that

sup
d∈D

m(d) =
1

2

(
sup

d1∈D1

m1(d1) sup
d2∈D2

m2(d2)
)
. (4.6)

By (4.4) for the function mi(di) we get the expressions

mi(di) =




diw
(i)

11
+w

(i)

21

diσ
1

2

M
(Pi1)+σ

1

2

M
(Pi2)

, if − w
(i)

21

w
(i)

11

< di 6 d∗i ,

diw
(i)

12
+w

(i)

22

diσ
1

2

M
(Pi1)+σ

1

2

M
(Pi2)

, if d∗i 6 di < −w
(i)

22

w
(i)

21

.

For the first derivatives m′
i(di) we have

m′
i(di) =




w
(i)

11
σ

1

2

M
(Pi2)−w

(i)

21
σ

1

2

M
(Pi1)(

diσ
1

2

M
(Pi1)+σ

1

2

M
(Pi2)

)
2

, if − w
(i)

21

w
(i)

11

< di < d∗i ,

w
(i)

12
σ

1

2

M
(Pi2)−w

(i)

22
σ

1

2

M
(Pi1)(

diσ
1

2

M
(Pi1)+σ

1

2

M
(Pi2)

)
2

, if d∗i < di < −w
(i)

22

w
(i)

21

,
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therefore m′
i(di) > 0 for −w

(i)

21

w
(i)

11

< di < d∗i and m′
i(di) < 0 for d∗i < di < −w

(i)

22

w
(i)

21

. From

here it follows that

sup
di∈Di

mi(di) = mi(d
∗
i ) =

w
(i)
11 w

(i)
22 − w

(i)
12 w

(i)
21

σ
1

2

M (Pi1)(w
(i)
22 − w

(i)
21 ) + σ

1

2

M (Pi2)(w
(i)
11 − w

(i)
12 )

.

Substituting by the values of mi(d
∗
i ) into (4.6), we get the identity (4.5). Lemma 4.2 is

proved.

Assumption 4.3 Let for the submatrices M
(i)

jk of the matrices Bi the inequalities

m = max ‖M (i)

jk ‖ < m

be realized for all i, j, k = 1, 2.

The following proposition is basic in the method of hierarchical Lyapunov functions
in the robust stability problem of the system (1.2).

Theorem 4.1 We assume that for the uncertain system (1.2) the two-level decom-
position (3.1), (4.1) is realized and all conditions of Assumptions 4.1 – 4.3 are satisfied.
If the inequalities

‖Eij‖ 6 (1 − γi)µij , ‖Uij‖ 6 ǫi, ‖F (i)

jk ‖ < m − m

are fulfilled for all i, j, k = 1, 2, then the equilibrium x = 0 of the system (1.2) is
asymptotically stable.

Proof Under the hypotheses of Lemma 4.1 there exist constants dij > 0 for which

d̂T
i Wizi > 0. In view of designations (4.4), we get from estimate (4.3)

∆vi(xi)
∣∣
Si

6 −πi

(
‖xi1‖2 + ‖xi2‖2

) 1

2 = −πi‖xi‖, i = 1, 2.

Since for i 6= k the estimates

∆vi1(xi1)
∣∣
Ŝi

6 ∆vi1(xi1)
∣∣
Si

+σ
1

2

M (Pi1)(2m + ‖F (i)
11 ‖ + ‖F (i)

12 ‖)‖xk‖,

∆vi2(xi2)
∣∣
Ŝi

6 ∆vi2(xi2)
∣∣
Si

+σ
1

2

M (Pi2)(2m + ‖F (i)
21 ‖ + ‖F (i)

22 ‖)‖xk‖,

are true, then

∆vi(xi)
∣∣
Ŝi

= di1∆vi1(xi1)
∣∣
Si

+di2∆vi2(xi2)
∣∣
Ŝi

6 −πi‖xi‖+
[
di1σ

1

2

M (Pi1)
(
2m+

+ ‖F (i)
11 ‖ + ‖F (i)

12 ‖
)

+ di2σ
1

2

M (Pi2)
(
2m + ‖F (i)

21 ‖ + ‖F (i)
22 ‖

)]
‖xk‖.

(4.7)

For the function
v(x) = d1v1(x1) + d2v2(x2)

in view of estimates (4.7) we get

∆v(x)
∣∣
S
= d1∆v1(x1)

∣∣
Ŝ1

+d2∆v2(x2)
∣∣
Ŝ2

6 −d̂TW z, (4.8)
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where d̂ = (d1, d2)
T, z = (‖x1‖, ‖x2‖)T and W is a 2 × 2-matrix with the elements

wjk =




πj for j = k,

−dj1σ
1

2

M (Pj1)(2m + ‖F (j)
11 ‖) + ‖F (j)

12 ‖)−
−dj2σ

1

2

M (Pj2)(2m + ‖F (j)
21 ‖) + ‖F (j)

22 ‖) for j 6= k.

Under the hypotheses of Theorem 4.1 the matrix W in the estimate (4.8) is the M -
matrix. Thus the matrices W1, W2, W are the M -matrices and it is sufficient [3] for
asymptotic stability of the system (1.2).

5 Discussion and Some Applications

The hierarchical approach in robust stability problem permits a more complete allowance
for the dynamic characteristics of the nominal system on each hierarchical level and thus
a more exact definition of robust bounds for the system (1.2). We illustrate efficiency of
the approach proposed in the paper by a simple example.

Let us assume that in the system (1.2) the matrix A has the form

A =




0.5 0.01 0.03 0
0.01 0.125 0 0.03
0.03 0 0.25 0.005
0 0.03 0.005 0.125


 . (5.1)

5.1 Scalar approach

Let us compute the matrices and constants occurring in the framework of the scalar
approach (see Theorem 2.1):

P =




1.336149 0.008512 0.032104 0.000737
0.008512 1.017019 0.000708 0.007761
0.032104 0.000708 1.068495 0.002057
0.000737 0.007761 0.002057 1.016891


 ;

σ(P ) ≈ 1.340176; σM (P − I) ≈ 0.340176; µ ≈ 0.496185.

Here I is a 4 × 4 - unit matrix. From here the robust bound for the system (1.2) with
the matrix (5.1) is determined by the inequality

‖E‖ < 0.496185 (5.2)

for all matrices E ∈ S1.

5.2 Vector approach

According to this approach we decomposed the matrix (5.1) and denote

A1 =

(
0.5 0.01
0.01 0.125

)
, A2 =

(
0.25 0.005
0.005 0.125

)
, B1 = B2 =

(
0.03 0
0 0.03

)
.
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The uncertain matrix E is represented in the form (3.3). The matrices and constants
occurring in the framework of vector the approach are:

P1 ≈
(

1.333581 0.008469
0.008469 1.016029

)
, P2 ≈

(
1.066699 0.002031,
0.002031 1.015902

)
,

σM (P1) ≈ 1.333807, σM (P2) ≈ 1.066780, µ1 ≈ 0.449733, µ2 ≈ 0.749800.

Hence we have the estimates of submatrices norms in the form

‖E1‖ 6 0.499733(1− γ), ‖E2‖ 6 0.749800(1− γ), γ ∈ (0, 1). (5.3)

Let γ = 0.25. Besides ǫ ≈ 0.012303.
Finally, for the matrix E represented in the form (3.3), we get the estimates:

‖E1‖ 6 0.374800, ‖E2‖ 6 0.562350, ‖Ui‖ < 0.012303, i = 1, 2. (5.4)

For example the matrix

Ẽ = diag {0.37, 0.37, 0.56, 0.56}

satisfies the inequalities (5.4). But ‖Ẽ‖ = 0.56, and consequently, the norm of uncertain

matrix Ẽ does not satisfy the inequality (5.2).

5.3 Hierarchical approach

According to the proposed algorithm we accomplish the two-level decomposition of sys-
tem (1.2) with the matrix (5.1) and as a result we get:

A11 = 0.5, A12 = 0.125, A21 = 0.25, A22 = 0.125.

Let
γ1 = 0.5, γ2 = 0.125.

Numerical values of corresponding constants are:

σM (P11) ≈ 1.333333, σM (P12) ≈ 1.015873, µ11 = 0.5, µ12 = 0.875,

σM (P21) ≈ 1.066666, σM (P22) ≈ 1.015873, µ21 = 0.75, µ22 = 0.875,

ǫ1 ≈ 0.320718, ǫ2 ≈ 0.096261.

We shall set ǫ1 = 0.05, and ǫ2 = 0.006. In this case for the matrices W1 and W2 we get
the expressions

W1 ≈
(

0.288675 −0.069282
−0.060474 0.440958

)
, W2 ≈

(
0.096824 −0.011360

−0.011086 0.110239

)
.

The matrices W1 and W2 are the M -matrices as their non-diagonal elements are negative
and their principal minors are positive.
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The constant m is computed by the formular (4.5): m ≈ 0.038392. Thus, the following
restrictions are imposed on submatrices of E:

‖E11‖ 6 0.25, ‖E12‖ 6 0.4375, ‖E21‖ 6 0.65625, ‖E22‖ 6 0.765625,

‖U1j‖ 6 0.05, ‖U2j‖ 6 0.006, ‖F (i)

jk ‖ < 0.008392.
(5.5)

For example the matrix

E = diag {0.25, 0.43, 0.65, 0.76}

satisfies the inequalities (5.5). Since ‖E‖ = 0.76, the matrix E does not satisfy condition

(5.2). Moreover ‖ diag {0.65, 0.76}‖ = 0.76 > 0.75 and it means that for the matrix E
conditions (5.3) are not satisfied for any γ ∈ (0, 1).

Thus, the general conclusion from this example is: the hierarchical Lyapunov function
allows a more complete use of the potential possibilities of direct Lyapunov method in
robustness analysis of discrete system (1.2).
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[7] Ikeda, M. and Šiljak, D.D. Hierarchical Liapunov functions. J. Math. Anal. Appl. 112(1)
(1985) 110–128.
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1 Introduction

Let f : R
N → R

N be locally Lipschitz and consider the system

ẋ = f(x). (1)

By [1, Theorem 52.1], if (1) has an asymptotically stable (that is, Lyapunov stable and
attractive) equilibrium ξ, then the (isolated) zero ξ of −f has index ind(−f, ξ) = 1
and so, for all ǫ > 0 sufficiently small, degB(−f, Bǫ(ξ), 0) = 1, where degB denotes
Brouwer degree and Bǫ(ξ) denotes the open ball of radius ǫ centred at ξ. Therefore,
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by properties of Brouwer degree, f(RN ) contains an open neighbourhood of 0. Now let
f : R

N × R
M → R

N be locally Lipschitz and consider the controlled system

ẋ = f(x, u). (2)

If (2) is stabilizable in the sense that there exists a time-invariant locally Lipschitz feed-
back u = k(x) that renders some point of R

N an asymptotically stable equilibrium of
the feedback system ẋ = f(x, k(x)), then, by the above result, the image of f contains an
open neighbourhood of 0. This is Brockett’s necessary condition for stabilizability, origi-
nally proved in [2, Theorem 1]; for discussions on variants and ramifications of Brockett’s
condition, see, for example, [3 – 11]. In either case of an uncontrolled (1) or controlled
(2) system, if f : D → R

N is such that f(D) contains an open neighbourhood of 0, we
say that f has the BKZ (Brockett-Krasnosel’skĭı-Zabrĕıko) property.

In this paper, the necessity of the BKZ property is investigated in a wider context of
differential inclusions under hypotheses weaker than asymptotic stability/stabilizability
of equilibria. For example, amongst other consequences for (1), the results of the paper
imply that, if any of the following hold, then f has the BKZ property:

(a) some compact set C is globally attractive for solutions of (1);
(b) some closed ball is a locally asymptotically stable (Lyapunov stable and locally

attractive) set for (1);
(c) (1) is Lp-stable for some 1 ≤ p < ∞ (in the sense that every maximal solution

has interval of existence R+ and is of class Lp).

Within the control framework of (2), these observations have natural counterparts: f
has the BKZ property if there exists a (possibly discontinuous) feedback k such that the
feedback-controlled system (a) has a globally attractive compact set, or (b) has a locally
asymptotically stable closed ball, or (c) is Lp-stable (in the above sense).

2 Notation and Terminology

For a Banach space X and non-empty C ⊂ X , dC denotes the distance function given
by

dC(x) := inf
c∈C

‖x − c‖ ∀ x ∈ X.

For non-empty B, C ⊂ X ,
d(B, C) := sup

b∈B

dC(b).

The open ball of radius r ≥ 0 centred at z ∈ R
N is denoted Br(z) (with closure Br(z)),

to which the conventions B0(z) := ∅ and B0(z) := {z} apply; if z = 0, then we simply

write Br (respectively, Br) in place of Br(0) (respectively, Br(0)). The boundary of a set
Ω is denoted ∂Ω. We write R+ := [0,∞).

Throughout, a sequence (xn) is regarded as synonymous with a map n 7→ xn with
domain N. We shall frequently extract subsequences of sequences. In order to avoid
proliferation of subscripts, the notation (xσ(n)), where σ : N → N is a strictly increasing

map, is adopted to indicate a subsequence of (xn). If
(
(xσk(n))

)
k∈N

is a sequence of

subsequences of (xn) nested in the following sense

(xn) ⊃ (xσ1(n)) ⊃ · · · ⊃ (xσk(n)) ⊃ · · · ,
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then σk is to be interpreted as a k-fold composition of strictly increasing maps N → N,
with σk = σ̂k ◦ σk−1 for all k ≥ 2: the sequence (xσn(n)) ⊂ (xn) will be referred to as
the diagonal sequence.

AC(I; RN ) denotes the space of functions I → R
N defined on an interval I and

absolutely continuous on compact subintervals thereof.
U(D) denotes the space of upper semicontinuous maps x 7→ F (x) ⊂ R

N , defined on
D ⊂ R

N , with non-empty convex compact values: if D = R
N , then we simply write U .

We record the following well-known facts (see, for example, [12]):

Proposition 2.1 Let F ∈ U(D).

(i) If K ⊂ D is compact, then F (K) is compact.
(ii) For each ǫ > 0, there exists locally Lipschitz fǫ : D → R

N such that

d(graph (fǫ), graph (F )) < ǫ

(any such fǫ is said to be an ǫ-approximate selection for F ).

3 Set-Valued Maps: Degree and the BKZ Property

If F ∈ U(D) is such that F (D) contains an open neighbourhood of 0, then F is said to
have the BKZ property.

Let M := {(F, Ω, p) | F ∈ U(D), Ω an open bounded subset of D, p ∈ R
N\F (∂Ω)}.

As discussed in [8] within the framework of [13] (see, also, [14 – 16]), there exists a map
deg : M → Z with the properties:

P1. deg(F, Ω, p) = degB(fǫ, Ω, p) for all ǫ > 0 sufficiently small, where degB denotes

Brouwer degree and fǫ : Ω → R
N is any ǫ-approximate selection for F

∣∣
Ω
;

P2. if q : [0, 1] → R
N\F (∂Ω) is continuous, then deg(F, Ω, q(t)) is independent of t;

P3. if deg(F, Ω, p) 6= 0, then p ∈ F (x) for some x ∈ Ω.

Lemma 3.1 Let (F, Ω, 0) ∈ M. If deg(F, Ω, 0) 6= 0, then F has the BKZ property.

Proof Since 0 /∈ F (∂Ω), dF (x)(0) > 0 for all x ∈ ∂Ω. Let (xn) ⊂ ∂Ω be a convergent

sequence with limit x ∈ ∂Ω. Let (xσ(n)) be a subsequence with

lim
n→∞

dF (xσ(n))
(0) = lim inf

n→∞
dF (xn)(0).

For each n, let zn be a minimizer of ‖ · ‖ over compact F (xσ(n)) (and so ‖zn‖ =

dF (xσ(n))
(0)). By upper semicontinuity of F , for each ǫ > 0,

zn ∈ F (xσ(n)) ⊂ F (x) + Bǫ.

By compactness of F (x) and since ǫ > 0 is arbitrary, we may conclude that (zn) has a
convergent subsequence (which we do not reliabel) with limit z ∈ F (x). Therefore,

dF (x)(0) ≤ ‖z‖ = lim
n→∞

‖zn‖ = lim inf
n→∞

dF (xn)(0)

and so x 7→ dF (x)(0) is lower semicontinuous and positive-valued on compact ∂Ω. It

follows that there exists µ > 0 such that p /∈ F (∂Ω) for all p ∈ Bµ. By properties P2
and P3,

p ∈ Bµ =⇒ p ∈ F (x) for some x ∈ Ω.
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Therefore, F has the BKZ property.

4 Differential Inclusions

Let F ∈ U and consider the differential inclusion (subsuming (1))

ẋ(t) ∈ F (x(t)). (3)

By an F -arc, we mean a function x ∈ AC(I; RN ) that satisfies (3) for almost all t ∈ I.
The following is a particular case of [17, Theorem 3.1.7].

Proposition 4.1 Let F ∈ U , let K ⊂ R
N be compact, let I := [a, b], let (ǫn) ⊂

(0,∞) be a decreasing sequence with ǫn ↓ 0 as n → ∞ and, for each n ∈ N, define
Fn : x 7→ F (x) + Bǫn

.
Let sequence (xn) ⊂ AC(I; RN ) be such that, for each n ∈ N, xn is an Fn-arc

with xn(I) ⊂ K. Then (xn) has a subsequence that converges uniformly to an F -arc
x ∈ AC(I; RN ).

Next, we prove (by arguments similar to those used in establishing [18, Lemma 5
(p.8)], see also remarks on page 78 therein) a variant of the above, tailored to our later
purposes.

Proposition 4.2 Let F ∈ U and let (sn) ⊂ [a, b] be a convergent sequence with
limit s ∈ (a, b]. If (xn) ⊂ AC([a, b]; RN ) is a sequence of F -arcs and there exists r > 0
such that, for all n ∈ N, ‖xn(t)‖ ≤ r for all t ∈ [a, sn], then (xn) has a subsequence
(xσ(n)) such that (xσ(n)|[a,s]) converges to an F -arc x ∈ AC([a, s]; RN ).

Proof Let (δk) ⊂ (0, s − a) be a decreasing sequence with δk ↓ 0 as k → ∞. Write
Ik := [a, s−δk]. By Proposition 4.1, the sequence (xn) has a subsequence, which we label
(xσ1(n)), such that (xσ1(n)|I1) converges uniformly to an F -arc x1 ∈ AC(I1; R

N). Again
by Proposition 4.1, the sequence (xσ1(n)) has a subsequence, which we label (xσ2(n)), such

that (xσ2(n)|I2) converges uniformly to an F -arc x2 ∈ AC(I2; R
N ) (with x2|I1 = x1).

By induction, we generate a sequence of subsequences of (xn),

(xn) ⊃ (xσ1(n)) ⊃ · · · ⊃ (xσk(n)) ⊃ · · ·
such that, for all k,

(
xσk(n)|Ik

)
converges to an F -arc xk ∈ AC(Ik; RN ) with xk|Ik−1

=

xk−1 for all k ≥ 2. Therefore, the diagonal sequence of restrictions to [a, s), that is, the

sequence (xσn(n)|[a,s)), converges to the F -arc x : [a, s) → Br defined by the property:

∀ k ∈ N x(t) = xk(t) ∀ t ∈ Ik = [a, s − δk].

By compactness of F (Br), it follows that the bounded F -arc x is uniformly continuous
and so extends to an F -arc on the closed interval [a, s] by defining x(s) := lim

t↑s
x(t).

4.1 The initial-value problem

Let F ∈ U . For each x0 ∈ R
N , the initial-value problem

ẋ(t) ∈ F (x(t)), x(0) = x0 (4)

has a solution and every solution can be extended to a maximal solution. By a solution,
we mean an F -arc x ∈ AC([0, ω); RN ), with 0 < ω ≤ ∞ and x(0) = x0; by a maximal
solution, we mean a solution having no proper right extension which is also a solution.
Moreover, if x : [0, ω) → R

N is maximal and ω < ∞, then lim sup
t↑ω

‖x(t)‖ = +∞.
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Proposition 4.3 Let non-empty K ⊂ R
N be compact. Assume that, for each x0 ∈

K, every maximal solution of (4) has interval of existence R+. For T > 0, define

ΣT (K) :=
⋃

t∈[0,T ]

{
x(t) | x ∈ AC([0, T ]; RN)

is an F -arc with x(0) ∈ K
}
⊂ R

N

and write Σ∞(K) :=
⋃

T>0

ΣT (K).

(a) For all T > 0, the set ΣT (K) is compact.
(b) Let non-empty C1, C2 ⊂ R

N be compact, with C1 ⊂ C2 ⊂ K and C1 ∩ ∂C2 =
∅ = K ∩ ∂C2. Assume that, for every maximal solution x of (4) with x0 ∈ K,
dC1

(x(t)) → 0 as t → ∞. Then there exists T > 0 such that ΣT (K) = Σ∞(K)
and, for all x0 ∈ Σ∞(K), every maximal solution x of (4) has interval of existence
R+ and has the properties:

(i) x(R+) ⊂ Σ∞(K);
(ii) x(t) ∈ C2 for some t ∈ [0, T ].

Proof (a) Let T > 0 be arbitrary. Seeking a contradiction, suppose that ΣT (K) is
unbounded. Then there exist a constant δ > 0, a sequence (tn) ⊂ [0, T ] and a sequence
(xn) of maximal solutions of (4) such that

xn(0) ∈ K and ‖xn(tn)‖ > (n + 1)δ ∀n ∈ N.

By continuity of the solutions, it follows that, for each n ∈ N, there exist sk
n, k = 1, . . . , n,

such that

‖xn(sk
n)‖ = (k + 1)δ and ‖xn(t)‖ < (k + 1)δ ∀ t ∈ [0, sk

n) (5)

and s1
n < s2

n < · · · < sn
n for all n ≥ 2.

From (s1
n), extract a convergent subsequence (s1

σ1(n)
) with limit s1 ∈ [0, T ]. By

compactness of F (B2δ(0)), s1 > 0. Write I1 := [0, s1]. By Proposition 4.2, and passing
to a subsequence if necessary, we may assume that (xσ1(n)|I1) converges uniformly to

an F -arc x1 ∈ AC(I1; R
N ); moreover, by (5), ‖x1(s1)‖ = 2δ. From (s2

σ1(n)
), extract

a subsequence (s2
σ2(n)

) with limit s2 ∈ [0, T ]. By compactness of F (B3δ(0)), s2 > s1.

Write I2 := [0, s2]. By Proposition 4.2, and passing to a subsequence if necessary, we
may assume that (xσ2(n)|I2) converges uniformly to an F -arc x2 ∈ AC(I2; R

N ) with

x2|I1 = x1; moreover, by (5), ‖x2(s2)‖ = 3δ. By induction, we generate a strictly
increasing sequence (sk) ⊂ [0, T ], with limit s ∈ [0, T ], and a sequence of subsequences
of (xn),

(xn) ⊃ (xσ1(n)) ⊃ · · · ⊃ (xσk(n)) ⊃ · · ·
such that the diagonal sequence of restricted functions (xσn(n)|I), where I := [0, s),

converges to the F -arc x ∈ AC(I; RN ) defined by the property that, for each k ∈ N,

x(t) = xk(t) ∀ t ∈ Ik := [0, sk].

Clearly, x(0) ∈ K. Furthermore, ‖x(sk)‖ = (k + 1)δ for all k ∈ N and so x has no
proper right extension that is also an F -arc. This contradicts the hypothesis that all
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maximal solutions of (4), with x0 ∈ K, have interval of existence R+. Therefore, ΣT (K)
is bounded.

Let (yn) ⊂ ΣT (K) be a convergent sequence with limit y. Then yn = xn(tn) for
some sequence (tn) ⊂ [0, T ] and some sequence of F -arcs (xn) ⊂ AC([0, T ]; RN) with
xn(0) ∈ K for all n. Without loss of generality, we may assume that (tn) is convergent,
with limit t ∈ [0, T ]. By boundedness of ΣT (K), there exists compact C such that
xn([0, T ]) ⊂ C for all n. By Proposition 4.1, passing to a subsequence if necessary,
we may assume that (xn) converges uniformly to an F -arc x ∈ AC([0, T ]; RN), with
x(0) ∈ K. Therefore,

y = lim
n→∞

yn = lim
n→∞

xn(tn) = x(t) ∈ ΣT (K),

and so ΣT (K) is closed.

(b) It suffices to show that there exists T > 0 such that, for every maximal solution
x of (4), with x0 ∈ K, x(t) ∈ C2 for some t ∈ [0, T ] (in which case, ΣT (K) =
Σ∞(K)). Seeking a contradiction, suppose that no such T exists. Then there is a
sequence (xn) ⊂ AC(R+; RN ) such that, for each n ∈ N, xn(0) ∈ K and dC2

(xn(t) > 0
for all t ∈ In := [0, n]. By part (a) above, for each k ∈ N, the sequence (xn|Ik

)
is bounded. Therefore, repeated application of Proposition 4.1 yields a sequence of
subsequences (xn) ⊃ (xσ1(n)) ⊃ (xσ2(n)) · · · such that, for each k ∈ N, the sequence

(xσk(n)|Ik
) converges uniformly to an F -arc xk ∈ AC(Ik ; RN) with dC2

(xk(t)) ≥ 0

for all t ∈ Ik. It follows that the diagonal sequence (xσn(n)) converges to the F -arc

x ∈ AC(R+; RN) defined by the property that, for each k ∈ N, x(t) = xk(t) for all
t ∈ Ik. Therefore, dC2

(x(t)) ≥ 0 for all t ∈ R+, which contradicts the hypothesis that
every maximal solution approaches C1 ⊂ C2 (recall that C1 ∩ ∂C2 = ∅).

Remark 4.1 Proposition 4.3(a) is closely akin to [18, Theorem 3 (p.79)]. Proposi-
tion 4.3(b-i) is essentially an assertion that Σ∞(K) is compact and is an invariant set
for (4) in the sense that, for each x0 ∈ Σ∞(K), every maximal solution of (4) has
trajectory in Σ∞(K). A similar observation occurs in the proof of [7, Theorem 11].

4.2 Persistence of the BKZ property

The following is essentially Theorem 1 of [8].

Theorem 4.1 Let F ∈ U . If there exist 0 < τ < δ < ρ and T > 0 such that

‖x0‖ ≤ δ =⇒
{

‖x(t)‖ ≤ ρ ∀ t ∈ [0, T ]

‖x(t)‖ ≤ τ ∀ t ∈ [T, 2T ]

for every maximal solution x of (4), then F has the BKZ property.

In view of Lemma 3.1, to prove this result it suffices to show that deg(F, Bδ , 0) 6= 0.
In the Appendix, we provide a proof which incorporates minor corrections to the proof
in [8].

In what follows, several specific consequences of the above result are highlighted:
simply stated, the first of these (Theorem 4.2) asserts that, if there exists a compact set
that attracts all maximal solutions of (4), then F has the BKZ property.
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A non-empty set C ⊂ R
N is said to be attractive for (4) if there exists an open

neighbourhood N of C (that is, an open set containing the closure of C) with the property
that, for each x0 ∈ N , every maximal solution x : [0, ω) → R

N of (4) is such that
dC(x(t)) → 0 as t ↑ ω (if C is compact, then ω = ∞): C is globally attractive if the
latter property holds with N = R

N . Non-empty C is said to be stable for (4) if, for each
open neighbourhood N1 of C, there is an open neighbourhood N2 of C such that, for
each x0 ∈ N2, every maximal solution of (4) has trajectory in N1.

Theorem 4.2 Let F ∈ U . Let C ⊂ R
N be non-empty and compact. If C is globally

attractive for (4), then F has the BKZ property.

Proof By global attractivity of compact C, every maximal solution of (4) has interval

of existence R+. Fix r > 0 such that Br ⊃ C. By Proposition 4.3, the set Σ∞(B3r) is
compact and positively invariant.

Let τ > 3r be sufficiently large so that Σ∞(B3r) ⊂ Bτ and choose δ > τ . By
Proposition 4.3(b), there exists T > 0 such that, for every F -arc x ∈ AC(R+; RN ) with

‖x(0)‖ ≤ δ, ‖x(t)‖ ≤ 3r for some t ∈ [0, T ]. Since B3r ⊂ Σ∞(B3r), it follows that, for
each x0,

‖x0‖ ≤ δ =⇒ x(t) ∈ Σ∞(B3r) for some t ∈ [0, T ]

for every maximal solution of (4). Therefore, by (positive) invariance of Σ∞(B3r) ⊂ Bτ ,

‖x0‖ ≤ δ =⇒ ‖x(t)‖ ≤ τ ∀ t ∈ [T,∞)

for every maximal solution of (4).
By Proposition 4.3(a), there exists ρ > δ such that

‖x0‖ ≤ δ =⇒ ‖x(t)‖ ≤ ρ ∀ t ∈ [0, T ].

Therefore, the hypotheses of Theorem 4.1 hold and so the result follows.

Next, we highlight a further consequence of the above theorem which, for example,
implies that, if (1) generates a global semiflow and is Lp stable in the sense that all
solutions are of class Lp for some 1 ≤ p < ∞, then f has the BKZ property.

Corollary 4.1 Let F ∈ U . Let g : R
N → R+ be lower semicontinuous with the

properties:

(a) C := g−1(0) is compact;
(b) inf

z∈K
g(z) > 0 for any closed set K ⊂ R

N with K ∩ C = ∅.

If, for each x0 ∈ R
N , every maximal solution of (4) has interval of existence R+ and

∞∫
0

g(x(t)) dt < ∞, then F has the BKZ property.

Proof By [19, Theorem 10 (i)], the compact set C = g−1(0) is globally attractive
for (4) and the result follows by Theorem 4.2.

In Theorem 4.2, in order to conclude that F has the BKZ property, hypotheses of a
global nature were imposed (global in the sense that, for each x0 ∈ R

N , every maximal
solution was posited to approach C). The following theorem imposes hypotheses of a
local nature under which the BKZ property again persists: in particular, if there exists
a closed ball that is locally asymptotically stable for (4), then F has the BKZ property.
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Theorem 4.3 If there exists a closed ball Br(z) =: B which is both stable and
attractive for (4), then F has the BKZ property.

Proof Without loss of generality, we may assume z = 0 and so B = Br ≡ Br(0).
By stability and attractivity of compact B, there exist α, β ∈ R+ such that, for all
x0 ∈ R

N ,

dB(x0) ≤ α =⇒
{

dB(x(t)) ≤ β ∀ t ∈ R+

dB(x(t)) → 0 as t → ∞
for every maximal solution of (4). Let γ ∈ (0, α) be arbitrary. By stability of B, there
exists µ ∈ (0, γ) such that, for all x0,

dB(x0) ≤ µ =⇒ dB(x(t)) ≤ γ ∀ t ∈ R+ (6)

for every maximal solution of (4). By Proposition 4.3(b), there exists T > 0 such that,
for all x0,

dB(x0) ≤ α =⇒ dB(x(t)) ≤ µ for some t ∈ [0, T ]

which, together with (6), yields

dB(x0) ≤ α =⇒ dB(x(t)) ≤ γ ∀ t ≥ T

for every maximal solution x of (4). We may now conclude that the hypotheses of
Theorem 4.1 hold (with τ = γ + r, δ = α + r and ρ = β + r) and the proof is complete.

5 Feedback Control

We now turn to the main concern of the paper, namely, the consequences of the above
results in a context of feedback control systems.

Let f : R
N × R

M → R
N be continuous and consider the controlled system

ẋ = f(x, u). (7)

Henceforth, we assume that f has the property that, for every non-empty convex set
C ⊂ R

M , the set f(x, C) ⊂ R
N is convex for all x ∈ R

N .
As admissible feedback controls for (7), we take the class K of upper semicontinuous

maps x 7→ k(x) ⊂ R
M on R

N , with non-empty convex and compact values. Therefore,
for every feedback k ∈ K, the map Fk : x 7→ f(x, k(x)) is of class U .

5.1 Persistence of the BKZ property in feedback systems

For system (7), a feedback k ∈ K is said to render a compact set C ⊂ R
N stable

(respectively, attractive) if C is stable (respectively, attractive) for (4) with F = Fk.
The following theorem and corollary are immediate consequences of Theorem 4.2 and

Corollary 4.1.

Theorem 5.1 Let k ∈ K and let C ⊂ R
N be non-empty and compact. If either of

the following holds, then f has the BKZ property:

(i) k renders C globally attractive for (4);
(ii) k renders some closed ball B stable and attractive for (4).
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Corollary 5.1 Let k ∈ K and let g : R
N → R+ be as in Corollary 4.1. If, for each

x0 ∈ R
N , every maximal solution of (4) with F = Fk has interval of existence R+ and

g ◦ x ∈ L1(R+), then f has the BKZ property.
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Appendix: Proof of Theorem 4.1

Let D := Bρ and let F̂ ∈ U(D) denote the restriction of F ∈ U to D.

Observe that 0 /∈ F̂ (∂Bδ) (otherwise, there exists a constant solution t 7→ x0 of (4) with

‖x0‖ = δ, contradicting the hypotheses). Therefore deg(F̂ , Bδ, 0) is well-defined and, in view

of Lemma 3.1, to complete the proof it suffices to show that deg(F̂ , Bδ, 0) 6= 0.
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By Proposition 2.1(ii) and property P1 of degree, there exists a sequence (fn) of locally

Lipschitz functions D → R
N such that:

deg(F̂ , Bδ, 0) = degB(fn, Bδ, 0) ∀n ;

d(graph (fn), graph (F̂ )) → 0 as n → ∞.
(8)

By compactness of F̂ (D), the functions fn are bounded and so, for each n, the equation

ẋ = fn(x) generates a semiflow ϕn : R+ × R
N → R

N .

Write I := [0, 2T ] and X := C(I; RN ) (with the uniform norm). On Bδ define

F : x0 7→
{
x ∈ X | x an F̂ -arc with x(0) = x0

}

with graph (F) := {(x0, x) | x0 ∈ Bδ, x ∈ F(x0)}. For each n, define φn : Bδ → X by

(φn(x0))(t) := ϕn(t, x0) ∀ t ∈ I.

Fix ǫ such that 0 < ǫ < δ − τ . We claim that

d(graph (φm), graph (F)) < ǫ for some m ∈ N. (9)

Suppose otherwise. Then there exists a sequence (x0
n) ⊂ Bδ such that

dgraph (F)((x
0
n, φn(x0

n))) ≥ ǫ ∀n. (10)

By Proposition 4.1, we may assume (without loss of generality) that (φ(x0
n)) ⊂ X converges

uniformly to an F̂ -arc x ∈ AC(I; RN ) with x(0) ∈ Bδ (and so (x(0), x) ∈ graph (F)),
which contradicts (10). Therefore, (9) is true.

Let x0 ∈ Bδ be arbitrary. By (9), there exists y0 ∈ Bδ , with ‖x0−y0‖ < ǫ, and y ∈ F(y0)

such that ‖ϕm(t, x0) − y(t)‖ < ǫ for all t ∈ I . Since the set {y(t) | y ∈ F(Bδ)} lies in the

ball Bτ for all t ∈ [T, 2T ], we may conclude:

for all x0 ∈ Bδ, ϕm(t, x0) ∈ Bδ for all t ∈ [T, 2T ]. (11)

Define continuous h : [0, 1] × Bδ → R
N by

h(s, x0) :=

{
fm(x0), s = 0

1

sT

[
(φm(x0))(sT ) − x0

]
, 0 < s ≤ 1.

We conclude that h(s, x0) 6= 0 for all (s, x0) ∈ [0, 1] × ∂Bδ by the following argument.

Suppose h(0, x0) = fm(x0) = 0 for some x0 ∈ ∂Bδ . Then, ϕm(t, x0) = x0 ∈ ∂Bδ for all

t ∈ I , which contradicts (11). Now suppose h(s, x0) = 0 for some (s, x0) ∈ (0, 1] × ∂Bδ .

Then ϕm(nsT, x0) = x0 ∈ ∂Bδ for all n ∈ N with ns ≤ 2. In particular, there exists n ∈ N

such that 1 ≤ ns ≤ 2 and ϕm(nsT, x0) = x0 ∈ ∂Bδ. This contradicts (11).

Therefore, by (8) and the homotopic invariance property of the Brouwer degree,

deg(F̂ , Bδ, 0) = degB(fm, Bδ, 0) = degB(h(0, ·), Bδ, 0)

= degB(h(1, ·), Bδ, 0) = degB(gm, Bδ, 0),
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where, for notational convenience, gm denotes the function

gm : x0 7→ [(φm(x0))(T ) − x0]/T.

Now consider the continuous map

h0 : [0, 1]× Bδ, (s, x0) 7→ (1 − s)gm(x0) − sx0.

Noting that h0 is a homotopic connection of the function gm and the odd map o : x0 7→ −x0

and h0(s, x
0) 6= 0 for all (s, x0) ∈ [0, 1] × ∂Bδ by properties of the Brouwer degree, we may

now conclude that

deg(F̂ , Bδ, 0) = degB(o, Bδ, 0) 6= 0.

This completes the proof.
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0 Introduction

The most vulnerable area of researches on stability of systems based on the application of
the Liapunov second method is the problem of finding a Liapunov function (including its
analogues and modifications), especially if the problem is not solved in the framework of
linear approximation. For this reason relevant stability (instability) theorems involving
auxiliary functions, whose construction remains a problem, are actually inefficient or
even useless.

In view of the above, the approach has become of theoretical and practical significance
when beforehand the class of considered systems (for example conservative, reversible,
with constant phase volume, etc.) is defined, for which the construction of a Liapunov
function or its analogue is possible. Thus, the solution of the problem about stability
(instability) passes into constructive direction at once for the whole class of systems.
Just such idea can be realized concerning the class of conservative systems

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (0.1)

whose Lagrangian L can retain its sign at least on some set of motions.

c© 2002 Informath Publishing Group. All rights reserved. 69
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Within the framework of the proposed approach the Liapunov second method should
be interpreted somewhat wider in comparison with the classical approach. In particular,
the ideas incorporated in the second method are put in the forefront instead of the specific
theorems covered by it. Also allowing for the peculiarities of the examined systems takes
an important place.

1 About Hamilton Action as a Function of Phase Variables

In the construction of a Liapunov function analogue for conservative systems it is pro-
posed to use the Hamilton action S as a function of phase coordinates and time. The
possibility to obtain the equations of conservative systems from the condition for the
Hamilton action S being stationary

δS = δ

t1∫

0

L(q, q̇) dτ = 0, (1.1)

enables the action S to be recognized as a carrier of information on conservative systems.
In view of this fact, we replace the fixed value t1 by the current value t in the expression
for the action S and consider S as a magnitude which characterizes the true motion of
the system, i.e. as the action function

S =

t∫

0

L(q, q̇) dτ. (1.2)

It means that the values

q = q(t, q0, q̇0), q̇ = q̇(t, q0, q̇0), (1.3)

q0 = q(t = 0), q̇0 = q̇(t = 0)

in the integrand of equality (1.2) satisfy the equations (0.1). Let us assume further that
the Lagrangian L(q, q̇) ∈ C2(Dq × Rn

q̇ ) and

L(q, q̇) = L2(q, q̇) + L1(q, q̇) + L0(q)

=
1

2
q̇T A(q)q̇ + f(q)

T
q̇ + L0(q),

(1.4)

where the quadratic form L2(0, q̇) is positive definite, the point q = q̇ = 0 corresponds
to the equilibrium state of system (0.1), (1.4), f(0) = 0, L0(0) = 0. Besides, let the
solution (1.3) satisfy the definition of a flow [1]. This does not limit generality of the
consideration, since the instability of the equilibrium state is dealt with below.

Replacing t by τ in (1.3) and carrying out integration in equality (1.2), we obtain

S = S̃(τ, q0, q̇0)|t0 ∈ C
(1,1,1)
tq0 q̇0

(R × sδ), (1.5)
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where the vector (q0, q̇0) belongs to the neighborhood sδ = {(q0, q̇0) ∈ Dq × Rn
q̇ ,

‖q0 ⊕ q̇0‖ < δ} of the point q = q̇ = 0. Taking into account that the solution (1.3)
defines a flow and thus

q0 = q(−t, q, q̇), q̇0 = q̇(−t, q, q̇), (1.6)

we have from (1.5)

S = S∗(τ, q(τ), q̇(τ))|t0 ∈ C
(1,1,1)

tqq̇ (R × Dq × Rn
q̇ ). (1.7)

The use of the Hamilton action function S in the form of (1.7) as an analogue of
the Liapunov function provides greater possibility for more complete representation of
the internal properties of the system in question than the standard approach within
the Liapunov second method. Actually, this is confirmed by the investigations of the
inversion of the Lagrange-Dirichlet and Routh theorems [2 – 8]. Sufficient conditions of
instability obtained in these investigations are more general in comparison with the ones
known earlier (see the reviews [7, 9 – 11]. In particular, the following result is true

Theorem 1.1 [6] Let a number ε > 0 (D ⊃ s∗ε) exist such that:

(1) ω = {q ∈ s∗ε : L0(q) > 0} 6= ∅, 0 ∈ ∂ω;
(2) ∂L0/∂q 6= 0 ∀q ∈ ω;
(3) L0 − 1

2
fT A−1f ≥ 0 ∀q ∈ ω.

Then the equilibrium state q = q̇ = 0 of system (0.1), (1.4) is unstable.

Corollary 1.1 Let the system be natural (L2 = T , L1 ≡ 0, L0 = −Π, where the
functions T and Π are kinetic energy and potential energy of system respectively) and let
a number ε > 0 (D ⊃ s∗ε) exist such that:

(1) ω = {q ∈ s∗ε : Π(q) < 0} 6= ∅, 0 ∈ ∂ω;
(2) ∂Π/∂q 6= 0 ∀q ∈ ω.

Then the equilibrium state q = q̇ = 0 of the system is unstable.

Corollary 1.2 [2] The isolated equilibrium state q = q̇ = 0 of a natural system is
unstable if in this state the potential energy Π(q) has not a local minimum.

Corollary 1.3 [3] Let the Lagrangian L in the neighborhood of the point q = q̇ = 0
be analytical function. Then the equilibrium state q = q̇ = 0 of a natural system is
unstable if the potential energy Π(q) at the point q = 0 has not a local minimum.

Remark 1.1 In special case when the expression L0 − 1

2
fT A−1f has the local mini-

mum (not necessarily strict) at the point q = 0, the restriction (2) in Theorem 1.1 (and
the restriction (2)) in Corollary 1.1 respectively) can be omitted.

Remark 1.2 The statement of the problem about the equilibrium instability of a
natural system under the assumptions of Corollary 1.3 is due to Liapunov [12].

2 The Application of the Hamilton’s Action Function S to the

Investigation of Stability of Conservative Nonholonomic Systems

The use of the Hamilton’s action function S can also appear to be useful in analysing the
equilibrium stability of nonholonomic systems. As it is well known [11, 13], the equilibria
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set of a nonholonomic system is larger than a set of critical points of the appropriate
Lagrangian L. Restricting the investigation to stability analysis of the equilibria of
nonholonomic systems which are critical points of the Lagrangian L, Whittaker [14]
somewhat narrowed the class of considered nonholonomic systems. However this more
narrow class is of interest first of all because many of the approaches characteristics of
stability investigation of holonomic systems [15 – 19] are applicable to it. It turns out
that for the systems in question, the application of the Hamilton’s action function S is
efficient as well as for the holonomic ones.

So, we shall consider a nonholonomic system written as

d

dt

∂L

∂q̇
− ∂L

∂q
= BT (q)λ, λ = (λ1, . . . , λl)

T , (2.1)

B(q)
dq

dt
= 0, (2.2)

where B(q) = (bij(q)) is a l × n matrix (i = 1, . . . , l, j = 1, . . . , n, l < n), λ is the

l-vector of the Lagrange multipliers, L(q, q̇), B(q) ∈ C2(Dq × Rn
q̇ ) and the Lagrangian

L is defined by expression (1.4).
Let the quadratic form q̇T A(0)q̇ be positive definite as before, the point q = q̇ = 0

correspond to the equilibrium state of system (2.1), (2.2), (1.4) and f(0) = 0, L0(0) = 0.
Nonintegrable relations (2.2) which restrict the generalized velocities of the system

(rankB(q) = l) are nonholonomic constraints.
It is well known [20, 21] that the equations of motion of nonholonomic system can be

obtained on the basis of the Hamilton principle in the Hölder form

t1∫

0

δL(q, q̇) dτ = 0. (2.3)

In contrast to the holonomic systems, the Hamilton principle in the form of (2.3) is
no longer the principle of stationary action when equality (1.1) is valid. Apparently, it
was Hertz [22], who first called his attention to the fact that equality (1.1) ceases to be
true for nonholonomic systems. Nevertheless the indisputable fact is that in the case of
nonholonomic systems the Lagrangian L(q, q̇) is still the key characteristics of the system.
Taking this into account, we shall consider the action function of the form of (1.2) for
nonholonomic system too.

By analogy with the case of holonomic systems it is assumed that the solution of the
considered nonholonomic system is extendable on the whole axis t ∈ R and so in view of
the assumptions on smoothness of L(q, q̇) and B(q) satisfies the definition of a flow. This
fact, as above, does not restrict generality of the consideration and enables the action
function S to be represented in the form of (1.7).

In what follows system (2.1), (2.2), (1.4) will be written as

q̇ =
∂H

∂p
,

ṗ = −∂H

∂q
+ BT (q)λ,

B(q)
∂H

∂p
= 0,

(2.4)
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where

H(q, p) =
1

2
pT A−1p − pT A−1f − L0 +

1

2
fT A−1f = h = const . (2.5)

Let us consider in Rn the set π which is defined by the equations

B(q)q = 0. (2.6)

Since rankB(q) = l, the equations (2.6) can always be solved with respect to any l

components of the vector of generalized coordinates q. Let us designate by Ψ̂(q) the
restriction of an arbitrary function Ψ(q) to the set π.

Alongside the set π we shall also define the sets

Ω =
{
(q, p) ∈ sε = {(q, p) ∈ Dq × Rn

p , ‖q ⊕ p‖ < ε} : H = h = 0
}
,

Ω+ = {(q, p) ∈ sε : H = h > 0
}
,

Ω+
1 =

{
(q, p) ∈ sε : H = h > 0, H − q

∂H

∂q
+ (B(q)q)λ > 0

}
.

Theorem 2.1 Let the function L0− 1

2
fT A−1f have a local minimum (not necessarily

strict) at the point q = 0 and besides:

ω∗ =
{
q ∈ s∗ε = {q ∈ Dq, ‖q‖ < ε} : L̂0(q) > 0

}
6= ∅.

Then the equilibrium state q = q̇ = 0 of system (2.1), (2.2), (1.4) is unstable.

Before proving this theorem we need the following lemma.

Lemma 2.1 Under the assumptions of Theorem 2.1 the set

Ω0 =

{
(q, p) ∈ sε : H = 0,−q

∂H

∂q
> 0, B(q)q = 0

}

is not empty.

Proof On the basis of the theorem about the mean [23] we have the equality

H(q, p) − H(0, 0) = q
∂H

∂q
(θq, θp) + p

∂H

∂p
(θq, θp), θ ∈ (0, 1). (2.7)

First let us assume that L0 − 1

2
fT A−1f > 0. Then, taking into account the relation

L = pq̇ − H =
1

2
pT A−1p + L0 −

1

2
fT A−1f = p

∂H

∂p

∀ (q, p) ∈ Ω, q ∈ ω∗,

we conclude that the term q ∂H/∂q on the right-hand side of equality (2.7) is negative
∀ (q, p) ∈ Ω, q ∈ ω∗. Since the vectors q and θq are collinear, on the basis of (2.7) and
the definition of ω∗ we conclude that Ω0 6= ∅.

If L0 − 1

2
fT A−1f ≡ 0, then representing the Hamiltonian H as

H =
1

2
pT A−1(p − 2f) − (L0 −

1

2
fT A−1f)

and assuming p = 2f (‖f‖ 6= 0), we come to the similar conclusion.
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Corollary 2.1 Under the assumptions of lemma the set Ω+
1 is not empty.

Proof Let us fix a point (q0, p0) ∈ Ω0. Taking into account the fact that Ω is the
boundary for set Ω+, we carry out small perturbation of the point (q0, p0):

‖(q∗ − q0) ⊕ (p∗ − p0)‖ < η, 0 < η = const

such that the point (q∗, p∗) becomes the element of the set Ω+. Then owing to the
continuity of the product q ∂H/∂q and the equality (2.6) ∀(q, p) ∈ Ω0 the number η (and
consequently the appropriate perturbation) can be chosen small so that the inequalities

H(q∗, p∗) − q
∂H

∂q

∣∣∣∣
q=q∗, p=p∗

+ (B(q∗)q∗)λ > 0, H(q∗, p∗) > 0

are satisfied. This implies the validity of the corollary.

Proof of Theorem 2.1 Let us assume that the equilibrium state q = q̇ = 0 of the
initial system (2.1), (2.2), (1.4) is stable.

Following [6], we consider the function

V =
qp

S2
1 + 1

,

where

S1 = S∗
(
t, q, ∂H

∂p

)
= S∗

1(t, q, p) ∈ C
(1,1,1)
tqp (R × Dq × Rn

p ).

Its time derivative along the vector field defined by the equations (2.4) is of the form

dV

dt
=

L

S2
1 + 1

(1 − µ) +
(H − q ∂H/∂q + (B(q)q)λ)

S2
1 + 1

,

µ = 2qp
S1

S2
1 + 1

.

(2.8)

According to the assumption about equilibrium stability, there always exists the
positive semitrajectory γ+

1 ⊂ sε of the considered system passing through the point

(q∗, p∗) ∈ Ω+
1 . Let us integrate equality (2.8) over a segment of the semitrajectory γ+

1

which corresponds to the interval [t1, t2], where the numbers t1 and t2 are such that

γ+
1

∣∣t2
t1

⊂ Ω+
1 . (2.9)

We notice that as γ+
1 is a compact set, the absolute value of the velocity of the

appropriate representing point (q(t, q∗, p∗), p(t, q∗, p∗)) moving along γ+
1 is uniformly

bounded. Consequently, it is possible to specify a number a > 0 such that t2 − t1 ≥ a
irrespective of how large the values t1, t2 ∈ R are. In result of integration of equality
(2.8) we have

qp

S2
1 + 1

∣∣∣∣
t2

t1

= arctan S1

∣∣t2
t1

+ o
(
arctan S1

∣∣t2
t1

)
+

t2∫

t1

(H − q ∂H/∂q + (B(q)q)λ)

S2
1 + 1

dt. (2.10)
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Function arctan S1 appearing in the right-hand side of equality (2.10) is a multifunc-
tion with branch points S1 = ±∞. At the same time the intersection of the level set
of the Hamiltonian H = h > 0 and the small neighborhood of the equilibrium state is
the manifold, in any point of which the function S1 does not become infinite. Further,
without loss of generality, it is possible to consider that the inequality S1|t=t1 > 1 is
valid.

Under condition (2.9) we shall choose the length of the interval [t1, t2] small enough
to deal with the domain of principal values of the function arctan S1, using, for example,
the representation of the latter as

arctan S1 =
π

2
− 1

S1

+
1

3S3
1

− . . . .

Then from equality (2.10) when ε > 0 is sufficiently small we obtain

1

S1

∣∣∣∣
t2

t1

+ O

(
1

3S3
1

∣∣∣∣
t2

t1

)
+ o

(
1

S1

∣∣∣∣
t2

t1

)
=

t2∫

t1

(H − q ∂H/∂q + (B(q)q)λ)

S2
1 + 1

dt. (2.11)

Noticing that by (2.9) the right-hand side of equality (2.11) is positive, we come to the
contradiction, because according to structure (1.5) of the Lagrangian L:

dS1

dt
= pq̇ − H =

1

2
pT A−1p + L0 −

1

2
fT A−1f > 0 ∀ (q, p) ∈ γ+

1

∣∣t2
t1

the expression in its left-hand side is negative. Thus the assumption about stability of
the examined equilibrium state is false. Theorem 2.1 is proved.

Corollary 2.2 Let L0− 1

2
fT A−1f ≥ 0 ∀ q ∈ s∗ε and besides the function L0(q) have

a strict local minimum at the point q = 0.
Then the equilibrium state q = q̇ = 0 of system (2.1), (2.2), (1.4) is unstable.

Corollary 2.3 Under the assumptions of Corollary 2.2 the manifold M of the equi-
librium states of system (2.1), (2.2), (1.4) defined by the equations

∂L0(q)

∂q
+ BT (q)λ = 0, q̇ = 0

is unstable.

Proof According to Corollary 2.2 the equilibrium state q = q̇ = 0 of system (2.1),
(2.2), (1.4) is unstable. Let us show that the instability holds true relating to both
variables q and variables q̇. For this purpose we shall assume on the contrary that
instability of the equilibrium state under consideration motivates only the leave of q-
vector. Then, irrespective of the smallness of the initial perturbation, there is an orbit of
the system, whose representing point in a small enough neighborhood of the point q = 0
reaches some sphere ‖q‖2 = η2, η = const. Let integer ξ (0 < ξ = const) correspond to
the minimum of function L0(q) on this sphere. It is clear that ξ does not depend on the
smallness of perturbation.

On the basis of equality

L2(q, q̇) − L0(q) = h = const (2.12)
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we have
1

2
q̇T A(q)q̇ ≥ h + ξ. (2.13)

Since according to the proof of Theorem 2.1 the equilibrium state q = q̇ = 0 of the
examined system is unstable when h > 0, it follows from (2.13) that ‖q̇‖ ≥ ε > 0.
In this case the number ε does not depend on the smallness of the initial perturbation
and thus the instability of the equilibrium state is accompanied by leaving of q̇-vector.
Taking into account that q̇ = 0 on the manifold M of the equilibrium states of the system,
according to definition [24, p.34] we make conclusion about the validity of Corollary 2.3.

The sense of Corollary 2.3 is that it establishes a relationship between instability of
the fixed equilibrium state of nonholonomic system and that of the whole manifold of the
equilibrium states, the existence of which is a distinguishing property of nonholonomic
systems [25].

Corollary 2.4 In special case when the nonholonomic constraints are absent: B(q) =
0, it is possible to omit the condition ω∗ 6= ∅ in the Theorem 2.1 (cf. [6, 26, 27]).

As we see, if a system is nonholonomic then this fact is embodied in the character
of instability conditions, however it should be remembered that the latter are only suf-
ficient. Therefore, unfortunately, the question about the real influence of nonholonomic
constraints on the equilibrium stability remains still open.
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1 Introduction

Mathematical models describing the dynamical interactions of the bidirectional associa-
tive memory (BAM for short) networks have been a subject of numerous investigations,
Kosko [14 – 16], Simpson ([23] and the references there in). In particular, the following
BAM network model, known as Hopfield network is expressed by the following system
of equations:

x′i(t) = −aixi(t) +

n∑
j=1

bijfj(xj) + Ii, (1.1)

for i = 1, 2, . . . , n (see, e.g. [11, 12, 16]). As may be seen this model describes the ac-
tivation dynamics among the various neurons in one single neuronal field. In (1.1), ai

for i = 1, 2, . . . , n represent the passive decay rates, bij denotes the synaptic connec-
tion weights between i-th and j-th neurons, fj(xj), for j = 1, 2, . . . , n denote signal
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propagation functions and Ii for i = 1, 2, . . . , n denote the exogenous inputs to the i-th
neuron.

The Hopfield model illustrates an autoassociative BAM. Autoassociativity means that
the network topology reduces to only one field, FX of neurons. The synaptic connection
matrix M symmetrically intraconnects the n neurons in Hopfield network. Thus M =
MT and hence it is termed as a BAM model according to [7, 11, 16, 23]. Hopfield network
is governed by feedback law. As an important generalization of the Hopfield equation,
the following system of equations [7, 14 – 16, 23]:

x′i(t) = −aixi(t) +
n∑

j=1

bijfj(yj) + Ii,

y′j(t) = −cjyj(t) +
m∑

i=1

djigi(xi) + Jj ,

(1.2)

in which bij = dji, have been proposed to describe the BAM network in the neuronal
fields FX and FY . Kohonen [13, 16] described these two layer networks as Heteroasso-
ciative networks. In (1.2), ai for i = 1, 2, . . . ,m and cj for j = 1, 2, . . . , n denote the
passive decay rates, bij , dji for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, are synaptic connection
strengths, fj for j = 1, 2, . . . , n and gi for i = 1, 2, . . . ,m denote propagational signal
functions and Ii for i = 1, 2, . . . ,m and Jj for j = 1, 2, . . . , n are exogenous inputs.

Evidently if FX = FY , the system (1.2) includes (1.1) and hence the notion of BAM
described by (1.2) reduces to that expressed by Hopfield network. In their studies, Cohen-
Grossberg [2, 7, 16] assumed that the synaptic connection matrices are symmetric, as in
the case of Hopfield networks. Kosko [16], expressed that when bij and dji differ, fixed
point equilibrium tends not to occur, instead equilibrium behaviour may be oscillatory
or a periodic. We disagree with this view by presenting various global stability criteria
under the circumstances that bij and dji can differ.

We now consider the networks, in which the synaptic connection matrices B and D
need not satisfy B = DT or vice versa and B = BT and regard these networks as BAM
networks. However, if the matrices B and D satisfy B = D, B = BT our definition of
BAM networks reduces to the earlier known definition. Clearly the above definition of
BAM is more general and allows us to consider arbitrary connection matrices.

It is generally known that in the biological and artificial neural networks as well, time
delays arise due to the propagation of information. More specifically, in the electronic
implementation of analog neural networks, time delays occur in the communication and
response of neurons due to the finite switching speed of amplifiers. Usually constant
fixed time delays in models of delayed feedback systems serve as good approximations in
simple circuits having a small number of cells. Due to the spatial nature of neural net-
works, resulting in the parallel pathways of a variety of axon sizes and lengths, in [24, 26]
distributed time delays representing transmission of information have been considered.

In the present paper, we propose a BAM model incorporating a fixed discrete delay
to represent the processing delays. It is known that in the mammals, the processing of
information at the neuronal level is rather slow implying that the neuron is not very
efficient, but when these neurons are connected in a network, their efficiency increases,
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see an der Heiden [1] and Kosko [16, p. 45]. The following model in a more general form

x′i = −aixi(t) +

n∑
j=1

bijfj(λj , yj(t)) + Ii,

y′i = −ciyi(t) +

n∑
j=1

dijgj(µj , xj(t)) + Ji,

(1.3)

where i = 1, 2, . . . , n, has been suggested in [14 – 16] to describe the activation dynamics
of the neurons in the absence of time delays. These equations lead us to the understanding
that the neurons process the information instantaneously, contrary to what has been
observed in the references [1, 16]. Thus the activational dynamics described by the system
(1.3) seems unrealistic. It is also natural to think that any system (whether biological or
man made), which responds instantaneously accumulates certain amount of strain over
a period of time, which may result in its break down. From these considerations, it
appears that a certain amount of delay (time-lag) in its performance is necessary for its
well being. Thus, we modify the network equations (1.3) to include a discrete time delay
in the signal response functions and accordingly, our model equations assume the form

x′i = −aixi(t) +

n∑
j=1

bijfj(λj , yj(t− τ)) + Ii,

y′i = −ciyi(t) +

n∑
j=1

dijgj(µj , xj(t− τ)) + Ji,

(1.4)

for i = 1, 2, . . . , n (see [22]). Our model (1.4) includes the earlier proposed models
involving discrete time delays [7, 18 – 20]. It is important to mention here that in biologi-
cal/man made systems increasing time delays always render the system attain instability,
see Cushing [3], Mac Donald [17]. However, it has been established by Freedman and
Sree Hari Rao [5] that a proper interplay between the time delay and various other pa-
rameters of the system, may help stabilize the otherwise unstable systems. Thus from
this discussion, we certainly cannot neglect the time delays but rather like to study their
influence on the stability behaviour of the system. To be more precise, we shall be inter-
ested mainly in examining the effect of time delays on the maintenance and preservation
of stability/instability of the equilibrium. It is worth pointing out that the delay param-
eter τ , may be regarded as a mechanism to limit the strain in the performance of the
network, particularly when it processes information instantaneously.

In (1.4) the parameter τ corresponds to the time delay arising due to the processing of
information at neuronal level. In artificial neural networks, this time delay arises due to
the finite switching speed of amplifiers. The passive decay rates ai, ci for i = 1, 2, . . . , n
are assumed to be positive constants. The numbers bij , dij for i, j = 1, 2, . . . , n are
synaptic connection strengths between the i-th and j-th neurons in the neuronal fields
FX and FY . Ii and Ji for i = 1, 2, . . . , n are exogenous inputs. The functions fi and
gi for i = 1, 2, . . . , n are signal response functions. The initial functions associated with
the system (1.4) are given by

xi(s) = pi(s), yi(s) = qi(s) (1.5)
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for s ∈ [−τ, 0] and each i = 1, 2, . . . , n, where pi and qi, for each i = 1, 2, . . . , n are
assumed to be continuous functions on [−τ, 0].

This paper is organized as follows. In Section 2, results on the existence of a unique
equilibrium pattern are presented. The influence of processing delays on the stability
behaviour of the network has been discussed in Section 3. Conditions for the length
of delay for which stability has been maintained have been presented. A result on the
preservation of stability/instability of the equilibrium has been presented in Section 3.
Stability of bifurcating periodic solutions is discussed in Section 4. Three independent
sets of sufficient conditions for the global asymptotic stability of the equilibrium patterns
have been presented in Section 5. Examples illustrating the merit of our results have
been presented in Section 6. Finally a discussion follows in Section 7.

2 Existence and Uniqueness of Equilibrium Pattern

It is easy to see that the equilibria of the system (1.4) are solutions of the following
system of equations:

aix
∗
i =

n∑
j=1

bijfj(λj , y
∗
j ) + Ii,

ciy
∗
i =

n∑
j=1

dijgj(µj , x
∗
j ) + Ji,

(2.1)

for i = 1, 2, . . . , n.
We shall state the following conditions on the signal functions fi and gi for i =

1, 2, . . . , n, which will be utilized in this work. There exist positive constants αi(λi) and
βi(µi) for i = 1, 2, . . . , n such that

‖fj(λj , uj(t)) − fj(λj , vj(t))‖ ≤ αj(λj)‖uj − vj‖,
‖gj(µj , uj(t)) − gj(µj , vj(t))‖ ≤ βj(µj)‖uj − vj‖

(2.2)

for λ, µ, u, v ∈ Rn and t ∈ [0,∞) and ‖ · ‖ denotes any appropriate norm on Rn.
We now, present our first result on the existence of a unique equilibrium pattern (x∗,y∗).

Theorem 2.1 Assume that (1.5), (2.2) are satisfied. In addition assume that the
decay rates ai, ci, the synaptic weights bij, dij and the parameters αi, βi satisfy the
following inequalities:

αi

n∑
j=1

|bji|

ai

< 1 and

βi

n∑
j=1

|dji|

ci
< 1 (2.3)

for each i = 1, 2, . . . , n.
Then for any pair of input vectors (I, J) the system (1.4) has a unique positive equi-

librium pattern (x∗, y∗) satisfying the equations (2.1).

In the following, we present a result guaranteeing the existence of a unique equilibrium
pattern (x∗, y∗) to our model equations (1.4), at the expense of dropping the Lipschitzian
hypotheses (2.2). This allows us to include non-Lipschitzian signal response functions in
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our equations. Here and henceforth the term “Non-Lipschitz” should be understood as
not necessarily Lipschitz. Further, the decay rates ai, ci, synaptic connections bij , dij

are accorded more freedom in the following result, than the restrictions placed on them
in Theorem 2.1.

We now rewrite the system of equations (1.4) as:

X ′(t) = F (X(t)) (2.4)

in which
X(t) = (x1(t), . . . , xn(t), y1(t), . . . , yn(t))T

and

F (X(t)) =




−a1x1(t) +
n∑

j=1

b1jfj(λj , yj(t− τ)) + I1

...

−anxn(t) +
n∑

j=1

bnjfj(λj , yj(t− τ)) + In

−c1y1(t) +
n∑

j=1

d1jgj(µj , xj(t− τ)) + J1

...

−cnyn(t) +
n∑

j=1

dnjgj(µj , xj(t− τ)) + Jn




. (2.5)

We consider the initial value problem associated with the autonomous system (2.4), in
which the initial functions are given by

xi(s) = pi(s), yi(s) = qi(s), (2.6)

for s ∈ (−τ, 0] and for i = 1, 2 . . . n, where pi and qi are assumed to be continuous
functions of bounded variation on (−τ, 0]. Let S be an open subset of R2n. For any

ξ ∈ R2n, we define ‖ξ‖ =
2n∑
i=1

|ξi|.
We now present a lemma which is an application of the theorem in [21] and is useful

in proving the next theorem.

Lemma 2.1 Let F : S → R2n be continuous and satisfy the following condition:
Corresponding to each point ξ ∈ S, its neighbourhood U , there exists a constant k > 0,
and functions hj and Φl for j = 1, 2, . . . , n and l = 1, 2, . . . , n, n+ 1, . . . , 2n such that

‖F (ξ) − F (η)‖ ≤ k‖ξ − η‖ + k
2n∑
l=1

|Φl(hj(ξ)) − Φl(hj(η))| (2.7)

on U , where each hj : U → R is a continuously differentiable function in ξ satisfying

2n∑
i=1

∂hj(ξ)

∂ξi
Fi(ξ) 6= 0 on U (2.8)

and each Φl : R → R, l = 1, 2, . . . , n, n+1, . . . , 2n is continuous and of bounded variation
on bounded sub intervals. Then there exists a unique solution for the initial value problem
(2.4) – (2.5) on any interval containing the initial functions (2.6).
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Theorem 2.2 Assume that the hypotheses of Lemma 2.1 hold for the functions fi

and gi for each i = 1, 2, . . . , n. Then the system of equations (2.1) admits a unique
solution, yielding a unique equilibrium pattern for our model equations (1.4).

It is easy to modify the results on existence and uniqueness of equilibrium in [24, 26]
in proving these results.

3 Delay Dependent Stability Results

In this section, we examine the influence of the time lags on the stability of the equilibrium
pattern of (1.4). The linearized system associated with (1.4) is given by

x′i(t) = −aixi(t) +

n∑
j=1

bijαjyj(t− τ),

y′i(t) = −ciyi(t) +

n∑
j=1

dijβjxj(t− τ)

(3.1)

for i = 1, 2, . . . , n. It is convenient to represent the linearized system of 2n delay equa-
tions (3.1) as amplitudes ui and vi for i = 1, 2, . . . , n, along the 2n eigen values of the
connection matrices respectively. Following the study in [18], we let ri and si be the
connection eigen values of bij and dij respectively for i, j = 1, 2, . . . , n and accordingly,
we have

u′i(t) = −aiui(t) + riαivi(t− τ),

v′i(t) = −civi(t) + siβiui(t− τ)
(3.2)

for i = 1, 2, . . . , n. Since the neural gains αi and βi are positive for each i = 1, 2, . . . , n,
then riαi and siβi have the same sign as those of ri and si respectively for i = 1, 2, . . . , n.
We now introduce that the complex characteristic exponent λi and define ui(t) =
ui(0)eλit, vi(t) = vi(0)eλit for each i = 1, 2, . . . , n. Substituting this form into (3.2)
yields

λ2
i + (ai + ci)λi + aici − αiβirisie

−2λiτ = 0 (3.3)

for i = 1, 2, . . . , n.
We now let

ai + ci = a, aici = b, −αiβirisi = c, λi = λ (3.4)

for i = 1, 2, . . . , n. Clearly, both a and b are positive. Then, (3.3) yields,

λ2 + aλ+ b+ ce−2λτ = 0. (3.5)

The equation (3.5) has roots with negative real parts, if

F (λ, τ) = λ2 + aλ+ b+ ce−2λτ 6= 0 for Re λ ≥ 0. (3.6)

In this section, we examine the following aspects related to the stability/instability of
the equilibrium patterns of the system (1.4). Throughout this section we shall use the
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term stability to mean and imply asymptotic stability of the equilibrium patterns for the
model equations.

(i) If the equation (3.5) is stable for τ = 0, then for what other values of τ > 0, it
is stable? This amounts to determining an interval for τ, say, 0 ≤ τ ≤ τ∗, such
that for all values of τ in this interval, the equation (3.5.) is stable or (3.6) holds.

(ii) For τ > 0 large, what type of stability for equation (3.5) prevails? More specifi-
cally, if the equation (3.5) is stable (or unstable) for τ = 0, can it continue to be
stable(or unstable) for all values of τ > 0?

Clearly, for stability of the equations (3.5), one has to see that it has no pure imaginary
zeros or zeros with positive real parts. We note that λ 6= 0 is a root of (3.5) if and only
if b+ c 6= 0.

Our first result provides us an estimate on the length of the delay parameter τ , say
τ∗ which ensures that the equilibrium pattern is asymptotically stable for all values of τ
satisfying the inequalities, 0 ≤ τ ≤ τ∗. For some biological models, methods to estimate
τ0, has been presented in Erbe, Freedman and Sree Hari Rao [4] and Freedman, Sree Hari
Rao and Jayalakshmi [6]. We utilize these techniques to establish the following result.

Theorem 3.1 Assume that the following inequality

b+ c > 0 (3.7)

is satisfied. Then the equilibrium pattern is asymptotically stable for all values of τ
satisfying

0 ≤ τ < τ∗ =

√
c2(b + |c|) + 2a2|c|(b + c) − |c|

√
b+ |c|

2a|c|
√
b + |c|

. (3.8)

Proof It is easy to see that the inequality (3.7) is a consequence of stability for τ = 0,
which follows from the application of Routh Hurwitz method. Since λ is a continuous
function of the parameter τ, all eigen values will continue to have negative real parts for
sufficiently small τ > 0.

If λ = µ+ iν satisfies (3.5), then µ and ν are real solutions of

µ2 − ν2 + aµ+ b+ ce−2µτ cos 2τν = 0, (3.9)

2µν + aν − ce−2µτ sin 2τν = 0. (3.10)

Let τ̂ be such that µ(τ̂ ) = 0, then from (3.9) and (3.10), we have

−ν̂2 + b+ c cos 2τ̂ ν̂ = 0, (3.11)

aν̂ − c sin 2τ̂ ν̂ = 0. (3.12)

We see that the conditions for the asymptotic stability of the equilibrium, following the
procedure suggested in Freedman and Sree Hari Rao [5], are given by

ImF (iν0) > 0, (3.13)

ReF (iν0) = 0, (3.14)
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where F (s) = s2 + as + b + ce−2τs and ν0 is the smallest positive root of (3.14). The
conditions in our case become

−ν2
0 + b+ c cos 2τν0 = 0, (3.15)

aν0 > c sin 2τν0. (3.16)

To get our estimate on the length of delay we shall utilize the inequality (3.16) and the
equation (3.15), which if simultaneously satisfied, are sufficient to guarantee stability.
Rewriting the same, we get

ν2 − b = c cos 2τν, (3.17)

aν > c sin 2τν. (3.18)

We recall that the equilibrium will be stable if the inequality (3.18) holds at ν = ν0,
where ν0 is the first positive root of the equation (3.17). Our technique is to find an
upper bound ν+ on ν0, independent of τ, and then to estimate τ so that (3.18) holds for
all values of ν, 0 ≤ ν ≤ ν+ and hence in particular at ν = ν0.

Since the right hand side of (3.17) is less than or equal to |c|, the unique positive
solution of

ν2 − b = |c|, (3.19)

denoted by ν+, is always greater than or equal to ν0. Clearly,

ν+ =
√
b+ |c|. (3.20)

Note that ν+ is independent of τ. We need an estimate on τ so that (3.18) holds for all
0 ≤ ν ≤ ν+.

Note that at τ = 0, this inequality becomes aν > 0. However at τ = 0, the solution
of (3.17) is ν0 =

√
b+ c. Hence (3.18) is valid at τ = 0, ν = ν0. So by continuity it will

continue to hold for small enough τ > 0 and ν = ν0.
From (3.18), we get

aν2 > cν sin 2τν. (3.21)

From (3.17), we get

cν sin 2τν + 2ac sin2 τν < a(b+ c). (3.22)

Denote the left hand side of (3.22) by φ(τ, ν). We now use the inequalities sin 2τν ≤ 2τν

and sin2 τν ≤ τ2ν2. Then

φ(τ, ν) ≤ ψ(τ, ν) ≡ 2|c|τν2 + 2a|c|τ2ν2.

We note that for 0 ≤ ν ≤ ν+, we have φ(τ, ν) ≤ ψ(τ, ν) ≤ ψ(τ, ν+). Hence if ψ(τ, ν+) <
a(b+ c), then φ(τ, ν0) < a(b+ c).

Let τ∗ denote the unique positive root of ψ(τ, ν+) = a(b+ c). Then

2a|c|τ2ν2
+ + 2|c|ν2

+τ = a(b+ c).

Thus

τ∗ =

√
c2(b+ |c|) + 2a2|c|(b+ c) − |c|

√
b+ |c|

2a|c|
√
b+ |c|

. (3.23)
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Then for τ < τ∗, the Nyquist criterion holds, and τ∗ is the estimate for the length of
delay for which stability is preserved.

Remark 3.1 Utilizing the relation (3.4) and evaluating the estimate for τ in the special

case b = a2

4
and c = a2

2
, we get τ∗ =

√
5−1

2(ai+ci)
. Clearly, τ∗ decreases with increasing ai or

ci or vice versa. This special situation is interesting in the sense that there is an explicit
relation between the delay τ and the passive decay rates ai and ci.

In the next result we shall improve the estimate on τ∗ in this special case by em-
ploying a different technique which has been presented in detail in Sree Hari Rao and
Phaneendra [25].

In the following, we utilize a method as suggested in [10], to find the stability interval,
in which the equilibrium is asymptotically stable.

Theorem 3.2 Assume that the hypothesis (3.7) is satisfied. In addition, let b = a2

4
,

c = a2

2
in (3.5) are satisfied. Then the equilibrium pattern is asymptotically stable for

all τ satisfying

0 ≤ τ < τ∗ =
π

2a
=

π

2(ai + ci)
. (3.24)

Proof Let F (λ, τ) ≡ 4λ2 + 4aλ+ a2 + 2a2e−2λτ .
Now, F1(λ) = F (λ, 0) = 4λ2 + 4aλ+ 3a2 = 0 has roots with negative real parts since

a > 0.
Now let F2(λ) ≡ 4λ2 + 4aλ+ 3a2, which is obtained by replacing e−λτ with -1.

Clearly, F2(λ) 6= 0. Now, substituting, e−λτ = 1−Tλ
1+Tλ

for T > 0, in the equation

4λ2 + 4aλ+ a2 + 2a2e−2λτ = 0, (3.25)

we obtain
F3(λ) ≡ 4T 2λ4 + 4T (2 + aT )λ3 + (4 + 8aT + 3a2T 2)λ2

+ 2a(2 − aT )λ+ 3a2 = 0.
(3.26)

Equation (3.26) has pure imaginary roots λ = iν, ν > 0 if and only if

τ =
2

ω

[
tan−1(ωT ) − kπ

]
, k = 0,±1, . . . . (3.27)

In order to obtain the pure imaginary roots for the equation (3.26), we set the Routh-
Hurwitz determinant to zero. Then we obtain,

3a4T 4 + 16a3T 3 + 8a2T 2 − 16 = 0. (3.28)

Differentiating (3.25) with respect to τ and simplifying, we get

dλ

dτ
=

a2λe−2λτ

2λ+ a− a2τe−2λτ
. (3.29)

Evaluating dλ
dτ

, λ = iν, we obtain

Re
dλ

dτ

∣∣∣∣
λ=iν

=
a3ν sin 2τν + 2a2ν2 cos 2τν

∆
, (3.30)
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where
∆ = a2 + 4ν2 + a4τ2 − 2a3τ cos 2τν + 4a2ντ sin 2τν.

Now, solving the equations (3.9) and (3.10) at µ = 0 and τ = τ∗ for sin 2τ∗ν and
cos 2τ∗ν, we have

sin 2τ∗ν =
2ν

a
, cos 2τ∗ν =

4ν2 − a2

2a2
. (3.31)

Thus from (3.30) and (3.31), we have at τ = τ∗,

Re
dλ

dτ

∣∣∣∣
λ=iν

=
4ν4 + a2ν2

∆
, (3.32)

∆ = a2 + 4ν2 + a4τ2 + 4aτν2 + a3τ.

From (3.26) and (3.28), it follows that for T = 2
√

2−2

a
and ν = a

2
, we have F3(iν) = 0.

Further, at τ = τ∗ = π
2a
,

Re
dλ

dτ

∣∣∣∣
λ=iν

=
2a2

(8 + 4π + π2)
, (3.33)

which proves the theorem. Further, from (3.33), it is clear that the transversality condi-
tion of the Hopf bifurcation is satisfied.

Remark 3.2 Following the method used in the above theorem, when b = c, the in-
equality a2 − 2b < 0 implies that (3.5) has a pair of pure imaginary zeros which upon
substitution of the values of a and b lead us to the contradiction that a2

i + c2i < 0. Thus,
this situation (though mathematically acceptable for the characteristic equation (3.5)
in its most general form involving the coefficients a, b, c) can not arise for this specific
model under consideration.

Remark 3.3 Following the discussion in Section 1, we understand that the strain
on the network arising out of its instantaneous processing of the information (the case
where the time delay τ = 0) may result in the break down in course of time. To avoid
the unwanted breakdown in the nervous system, we have proposed the introduction of
processing delays. Our Theorems 3.1 and 3.2 clearly ensure the stability of the network
in the presence of processing delays so long as they lie in the interval [0, τ∗]. Notice that
the expression for τ∗ in terms of the relations (3.4) may be written as

τ∗ =

√
α2

i β
2
i r

2
i s

2
i (aici + αiβi|risi|) + 2αiβi|risi|(ai + ci)2(aici − αiβirisi)

2αiβi|risi|(ai + ci)
√
aici + αiβi|risi|

− 1

2(ai + ci)
. (3.34)

Clearly, τ∗ is expressed among others mainly in terms of the passive decay rates ai, ci
of the network. Also in the Remark 3.1, we have noted that in the special case where

b = a2

4
and c = a2

2
, the increase/decrease in τ∗ is related to the passive decay rates being

smaller/greater (respectively). But it is evident from biological considerations that if the
decay rates are smaller then the network takes longer time to return to equilibrium and
to process the subsequent inputs. On the other hand larger decay rates make τ∗ very
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small, which according to our view strains the network and may result in an eventual
breakdown. Further, one may understand, the vital decay rates, as the decay rates of
the membrane potentials. Also the expression (3.34) for τ∗ involves apart from decay
rates, other network parameters as well. Thus a proper interplay between the processing
delays and the various network parameters is essential for the network to have stability.

The next result describes a situation in which, instability at τ = 0 will be preserved for
all τ > 0. That is no matter how large the processing delays be, the network continues
to have instability if it starts with instability at τ = 0. Thus the inequality (3.7) for
maintenance of stability can not be relaxed.

Theorem 3.3 Assume the conditions a2+2c = 0, a2 = 4b hold. Then for all τ ≥ 0,
the equilibrium is unstable. Further, at τ = τ∗ = 3π

2a
, (3.5) has a pair of pure imaginary

roots and

Re
dλ

dτ

∣∣∣∣
λ=iν

=
a2

53.2146
> 0.

Proof The conditions a2+2c = 0, a2 = 4b imply that the condition (3.7) is violated.
Now, following the lines of argument in Theorem 3.2, we get

3a4T 4 + 56a2T 2 − 64aT − 16 = 0. (3.35)

A positive value of T is given by 2
√

2+2

a
and ν = a

2
. Now

τ =
2

ω
tan−1(ωT ) =

3π

2a
. (3.36)

Now, at τ = τ∗ = 3π
2a

= 3π
2(ai+ci)

Re
dλ

dτ

∣∣∣∣
λ=iν

=
a2

53.2146
> 0,

which proves the theorem.

Observe that Theorem 3.3 presents conditions under which the instability of the equi-

librium pattern would be maintained in the special case, in which c = −a2

2
, b = a2

4
.

Now, our next result is a general result which explains the circumstances under which
the network does not change its stability. More specifically, if the network is stable (un-
stable) in the absence of processing delays, it remains stable(unstable) in the presence of
processing delays.

Theorem 3.4 Assume condition (H1) holds. Then if the equilibrium is stable (un-
stable) at τ = 0, then the equilibrium remains stable (unstable) for all τ > 0.

Assume condition (H2) holds. Then if the equilibrium is unstable for any τ = τ∗ ≥ 0,
then it will be unstable for all τ ≥ τ∗.

(H1) (i) b2 − c2 ≥ 0 or

(ii) a4 − 4a2b+ 4c2 < 0 holds

(H2) b
2 − c2 < 0
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Proof Here we analyze the question of stability by examining the sign of the derivative
of the real part of the eigen values with respect to τ, as the real part crosses 0. That is,

we analyze dµ
dτ

(τ̂ ), where µ(τ̂ ) = 0. If this derivative is positive (negative), then clearly,
a stabilization (destabilization) can not take place at that value of τ̂ .

We first note that the imaginary part ν̂ = ν(τ̂ ) must satisfy the equation

ν4 + (a2 − 2b)ν2 + b2 − c2 = 0. (3.37)

We begin with equations (3.9) and (3.10) and differentiate with respect to τ. Then setting

τ = τ̂ , µ = 0 and ν = ν̂ gives us the two equations in dµ
dτ

(τ̂) and dν
dτ

(τ̂ ):

ξ
dµ

dτ
(τ̂ ) − η

dν

dτ
(τ̂ ) = C,

η
dµ

dτ
(τ̂ ) + ξ

dν

dτ
(τ̂ ) = D,

(3.38)

where
ξ = a− 2cτ̂ cos 2τ̂ ν̂, η = (2ν̂ + 2cτ̂ sin 2τ̂ ν̂),

C = 2cν̂ sin τ̂ ν̂, D = 2cν̂ cos 2τ̂ ν̂.
(3.39)

Solving (3.38) gives
dµ

dτ
=
ξC + ηD

ξ2 + η2
(3.40)

and clearly, dµ
dτ

(τ̂ ) has the same sign as that of ξC + ηD. From (3.39), after some
simplifications we get

ξC + ηD = 2ν2[2ν2 + (a2 − 2b)]. (3.41)

Let

F (z) = z2 + (a2 − 2b)z + (b2 − c2) (3.42)

[which is the left hand side of (3.37) with ν̂2 = z]; then F (ν̂2) = 0 and we note that

dF

dz
(ν̂2) =

ξ2 + η2

2ν̂2

dµ

dτ
(τ̂ ). (3.43)

Hence, we can describe the criteria for preservation of instability (stability) as follows:

(1) If the polynomial w = F (z) has no positive roots, there can be no change of
stability.

(2) If w = F (z) is increasing(decreasing) at all of its positive roots, instability (stabi-
lity) is preserved.

We now proceed to analyze F (z). Since, a2 − 2b > 0 and if F (0) = b2 − c2 < 0, then
by Decarte’s rule of signs, F (z) has at most one positive root. If F (0) = b2 − c2 ≥ 0,
F (z) has no positive roots. Similarly, when a4 − 4a2b + 4c2 < 0, then F (z) has no real
roots.

To summarize, we state the following conditions: Condition (H1) implies that w =
F (z) has no positive roots and condition (H2) implies that w = F (z) has at most one
positive root.
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Corollary 3.1 If b2 < c2, and if the equilibrium is stable at τ = 0, there exists
τ̂ > 0 for which this equilibrium is unstable for τ > τ̂ .

We now present a bifurcation result. This theorem gives conditions under which the
equilibrium that is asymptotically stable for 0 ≤ τ < τ∗ bifurcates at τ = τ∗ into small
amplitude periodic solutions.

Theorem 3.5 Let b + c > 0 and b − c < 0 are satisfied. Then there exists a τ∗,
the smallest value of τ for which the equations (3.9) and (3.10) have a solution such
that µ = 0. For τ < τ∗ the equilibrium is asymptotically stable. For τ > τ∗ the
equilibrium is unstable. Further, as τ increases through τ∗ the equilibrium bifurcates into
small amplitude periodic solutions.

Proof Suppose µ = 0, ν = ν0 at τ = τ∗. Then (3.9) and (3.10) yield

−ν2
0 + b + c cos 2τ0ν0 = 0, (3.44)

aν0 − c sin 2τ0ν0 = 0. (3.45)

Eliminating τ∗ by squaring and adding (3.44) and (3.45)

ν4
0 + (a2 − 2b)ν2

0 + b2 − c2 = 0. (3.46)

Since a2 − 2b > 0 only positive root of (3.46) is given when b− c < 0. Accordingly,

ν0 = ±
√

2

2

{
− (a2 − 2b) + {a4 − 4a2b+ 4c2} 1

2

} 1

2 . (3.47)

We now solve (3.44) and (3.45) for τ∗. Accordingly, we get

c2 cos2 2τ∗ν0 − a2c cos 2τ∗ν0 − (a2b+ c2) = 0. (3.48)

Let f(z) = c2z2 − a2cz − (a2b + c2). Clearly, (3.48) has a real solution of the form
cos 2τ∗ν0 = k, where |k| < 1. From (3.45) this solution in τ∗ is of the form

τ∗ =
1

2ν0
sin−1(

aν0
c

) +
nπ

ν0
, n = 0, 1, 2, . . . , (3.49)

where the positive value of ν0 is given by (3.47). Hence the τ∗ required by the theorem
is obtained by choosing n = 0.

Clearly, for τ = 0, the equilibrium is stable. Hence by continuity it remains to be

stable for τ < τ∗. We now show that dµ
dτ

∣∣∣
τ=τ∗

> 0 when ν = ν0 and n = 0, 1, 2, . . . . This

will imply that there is at least one eigenvalue with positive real part for τ > τ∗, n = 0
and hence the equilibrium is unstable for τ > τ∗. From (3.44) and (3.45) differentiating
with respect to τ and after some simplifications, we get for ν = ν0, τ = τ∗, µ = 0,

dµ

dτ

∣∣∣∣
τ=τ∗

=
1

∆

[
4ν4

0 + 2ν2
0(a2 − 2b)

]
> 0.

This completes the proof.
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4 Stability of Bifurcating Periodic Solutions

In this section, we discuss the stability behaviour of solutions for (1.4) in the neighbour-
hood of τ = τ∗ as given in Section 3. We scale the time so as to fix the delay equal to
1 and accordingly set s = tτ , x̃i(s) = xi(τs), ỹi(s) = yi(τs). Equations (1.4) become
after replacing x̃i by xi, ỹi by yi and s by t again,

x′i(t) = τ

[
− aixi(t) +

n∑
j=1

bijfj(λj , yj(t− 1))

]
,

y′i(t) = τ

[
− ciyi(t) +

n∑
j=1

dijgj(λj , xj(t− 1))

] (4.1)

for i = 1, 2, . . . , n.
Since ri and si are eigen values of the matrices bij and dij respectively expressing

along the amplitudes, the system (4.1) become

x′i(t) = τ
[
− aixi(t) + rifi(λi, yi(t− 1))

]
,

y′i(t) = τ
[
− ciyi(t) + sigi(λi, xi(t− 1))

] (4.2)

for i = 1, 2, . . . , n.
Expanding the above system around the equilibrium using Taylor’s series and simpli-

fying we get

x′i(t) = τ
[
− aixi(t) + riαiyi(t− 1) + riγiy

2
i (t− 1) + o(3)

]
,

y′i(t) = τ
[
− ciyi(t) + siβixi(t− 1) + siδix

2
i (t− 1) + o(3)

] (4.3)

for i = 1, 2, . . . , n, where αi = f ′(y∗), γi = f ′′

2
(y∗), βi = g′(x∗), δi = g′′

2
(x∗) and o(3)

denotes the terms of third order and above.

Now we present our theorem following the method suggested in [9] on stability of
bifurcating periodic solutions.

Theorem 4.1 The system (4.2) has a Hopf bifurcation near τ = τ∗, obtained in
Section 3. The direction of bifurcation is determined by

µ2 =
−ReC1(0)

α′(0)
(4.4)

and the stability of bifurcating periodic solutions is determined by β2 = 2 ReC1(0), where

α′(0) = Re
dλ

dτ

∣∣∣∣
λ=iω0, τ=τ0

and

C1(0) =
i

2ω0

(
g20g11 − 2|g11|2 −

|g02|2
3

)
+
g21
2
. (4.5)
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The quantities in the above expression are given by the following:

g20
2

= D̄τ∗riγiB
2q2(−1) + D̄C̄τ∗siδiq

2(−1),

g02
2

= D̄τ∗riγiB̄
2q̄2(−1) + D̄C̄τ∗siδiq̄

2(−1),

g11 = 2D̄τ∗riγiBB̄q(−1)q̄(−1) + 2τ∗D̄C̄siδiq(−1)q̄(−1)

g21
2

= D̄τ∗riγi(W
(2)

20 (−1)B̄q(−1) + 2W
(2)

20 (−1)Bq(−1),

+ D̄C̄τ∗siδi(W
(1)

20 (−1)q̄(−1) + 2W
(1)

20 (−1)q(−1)

and

W
(1)

20 (θ) = σ1 e
iω0θ + σ2 e

−iω0θ + σf e
2iω0θ,

W
(2)

20 (θ) = µ1 e
iω0θ + µ2 e

−iω0θ + µf e
2iω0θ,

W
(1)

11 (θ) = ρ1 e
iω0θ + ρ2 e

−iω0θ + ρf ,

W
(2)

11 (θ) = χ1 e
iω0θ + χ2 e

−iω0θ + χf

in which

σ1 =
2τ∗D̄T1i

ω0

, σ2 =
2τ∗D̄T2i

3ω0

, µ1 = σ1B, µ2 = σ2B̄,

ρ1 =
−τ∗D̄T3i

ω0

, ρ2 =
τ∗D̄T4i

ω0

, χ1 = ρ1B, χ2 = ρ2B̄,

σf =
C

(1)

20 (2iω0 + τ∗ci) + τ∗riαiC
(2)

20

(2iω0 + τ∗ai)(2iω0 + τ∗ci) − τ2
∗ risiαiβie−2iω0

,

µf =
C

(1)

20 siβi e
−2iω0 + C

(2)

20 (2iω0 + τ∗ai)

(2iω0 + τ∗ai)(2iω0 + τ∗ci) − τ2
∗ risiαiβie−2iω0

,

ρf =
riαiC

(2)

11 + C
(1)

11

τ∗(aici − riαisiβi)
,

χf =
siβiC

(1)

11 + aiC
(2)

11

τ∗(aici − riαisiβi)
.

Further

C
(1)

20 = H
(0)

20 + τ∗riαi(µ1 + µ2) − (2iω0 + τ∗ai)(σ1 + σ2),

C
(2)

20 = H
(0)

20 + τ∗siβi(σ1e
−iω0) − (2iω0 + τ∗ci)(µ1 + µ2),

C
(1)

11 = H
(0)

11 − τ∗ai(ρ1 + ρ2) + τ∗riαi(λ1 + λ2),

C
(2)

11 = H
(0)

11 − τ∗ci(λ1 + λ2) + τ∗siβi(ρ1 e
−iω0 + ρ2e

iω0),
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H20(θ) = −2τ∗
[
D̄T1q(θ) +DT1q̄(θ)

]
+ 2τ∗




[
0

0

]
− 1 < θ < 0,

[
riγiq

2(−1)B2

siδiq
2(−1)

]
θ = 0,

H11(θ) = −τ∗
[
D̄T3q(θ) +DT4q̄(θ)

]
+ 2τ∗




[
0

0

]
− 1 < θ < 0,

[
riγiBB̄q(−1)q̄(−1)

siδiq(−1)q̄(−1)

]
θ = 0.

The expressions T1, T2, T3 and T4 are given by the following.

T1 = riγiq
2(−1)B2 + C̄siδiq

2(−1),

T2 = riγiq
2(−1)B2 + Csiδiq

2(−1),

T3 = 2riγiq(−1)q̄BB̄ + 2C̄siδiq(−1)q̄(−1),

T4 = 2riγiq(−1)q̄BB̄ + 2Csiδiq(−1)q̄(−1).

The terms B, C and D are components in the following

q(θ) =

[
1
B

]
eiω0θ, −1 < θ ≤ 0,

q∗(θ) = D

[
1
C

]
eiω0θ, 0 ≤ θ < 1,

where

B =
−siβiτ∗
ciτ∗ + iω0

, C =
−riαiτ∗
ciτ∗ − iω0

,

D̄ =
1

(1 − e−iω0)(1 + C̄B)
.

5 Global Stability Results

In this section, we present results dealing with the circumstances under which the equi-
librium pattern (x∗, y∗) of (1.4) relative to a given input pair (I, J), is globally asymp-
totically stable. Our results are analogous to those obtained in [24].

Theorem 5.1 Assume that the hypotheses (2.2) are satisfied. Then the equilibrium
pattern of (1.4) is globally asymptotically stable, provided the following inequalities hold:

βi

n∑
j=1

|dji|

ai

≤ 1 and

αi

n∑
j=1

|bji|

ci
≤ 1. (5.1)
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Proof The following change of variables,

ui(t) = xi(t) − x∗i , vi(t) = yi(t) − y∗i

transform the system (1.4) to

u̇i(t) = −aiui(t) +
n∑

j=1

bij
{
fj(λj , vj + y∗j ) − fj(λj , y

∗
j )
}
,

v̇i(t) = −civi(t) +

n∑
j=1

dij

{
gj(µj , uj + x∗j ) − gj(µj , x

∗
j )
}

for i = 1, 2, . . . , n. In view of (2.2) this may be written as

u̇i(t) ≤ −aiui(t) +

n∑
j=1

|bij |αj |vj(t− s)|,

v̇i(t) ≤ −civi(t) +

n∑
j=1

|dij |βj |uj(t− s)|
(5.2)

for i = 1, 2, . . . , n.
Employing the Lyapunov functional,

V (u(t), v(t)) =

n∑
i=1

[
|ui(t)| + |vi(t)| +

n∑
j=1

|bij |αj

t∫

t−τ

|vj(z)| dz

+

n∑
j=1

|dij |βj

t∫

t−τ

|uj(z)| dz
] (5.3)

and proceeding along the lines of the proof of Theorem 3.1 (see [24]) the remaining proof
of this theorem may be completed.

We now present our next result on the global asymptotic stability.

Theorem 5.2 Assume that the inequalities

ai >
1

2

n∑
j=1

|bij |, ci >
1

2

n∑
j=1

|dij | (5.4)

for i = 1, 2, . . . , n are satisfied. Further, assume that there exists constants γi > 0 and
δi > 0 satisfying

β2
i

n∑
j=1

|dji|

ai − 1

2

n∑
j=1

|bij |
≤ γi

δi
≤
ci − 1

2

n∑
j=1

|dij |

α2
i

n∑
j=1

|bji|
(5.5)

for i = 1, 2, . . . , n.
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Then the equilibrium pattern (x∗, y∗) of (1.4) is globally asymptotically stable.

Proof We consider the following functional

V (x(t), y(t)) =

n∑
i=1

[
γi

(xi(t) − x∗i )
2

2
+ δi

(yi(t) − y∗i )2

2

+ γi

n∑
j=1

|bij |
t∫

t−τ

{
fj(λj , yj(u)) − fj(λj , y

∗
j )
}2
du

+ δi

n∑
j=1

|dij |
t∫

t−τ

{
gj(µj , xj(u)) − gj(µj , x

∗
j )
}2
du

]
.

(5.6)

It is easy to see that V (x∗, y∗) = 0 and V (x, y) ≥ ω(‖z‖), where

ω(‖z‖) =

n∑
i=1

ǫi
2

[
(xi − x∗i )

2 + (yi − y∗i )2
]

for z = (x− x∗, y − y∗) with ǫi = min{γi, δi}. Clearly ω(‖z‖) is positive definite.
Now, the derivative of V along the solutions of system (1.4) may be written as

V ′(x(t), y(t)) =

n∑
i=1

{
γi

[
(xi(t) − x∗i )

(
− aixi(t)

+
n∑

j=1

bijfj(λj , yj(t− τ)) + Ii

)
+

n∑
j=1

|bij |
{
fj(λj , yj(t)) − fj(λj , y

∗
j )
}2

−
n∑

j=1

|bij |
{
fj(λj , yj(t− τ)) − fj(λj , y

∗
j )
}2

]

+ δi

[
(yi(t) − y∗i )

(
− ciyi(t) +

n∑
j=1

dijgj(µj , xj(t− τ)) + Ji

)
(5.7)

+
n∑

j=1

|dij |
{
gj(µj , xj(t)) − gj(µj , x

∗
j )
}2

−
n∑

j=1

|dij |
{
gj(µj , xj(t− τ)) − gj(µj , x

∗
j )
}2

]}
.

Proceeding along the lines of argument of Theorem 3.3 (see [24]), we obtain,

V ′(x, y) < −Φ(‖z‖),

where

Φ(‖z‖) =
n∑

i=1

ki

[
(xi − x∗i )

2 + (yi − y∗i )2
]
,
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ki = min{ξi, ηi}, for i = 1, 2, . . . , n. The numbers ξi, ηi for i = 1, 2, . . . , n are given by

ξi = γi

(
ai −

1

2

n∑
j=1

|bij |
)
− δiβ

2
i

n∑
j=1

|dji|

and

ηi = δi

(
ci −

1

2

n∑
j=1

|dij |
)
− γiα

2
i

n∑
j=1

|bji|.

Clearly, one may see that ξi, ηi are non-negative for each i = 1, 2, . . . , n and so is ki.

Now the conclusion follows from [8].

Theorem 5.3 Assume that the neuronal gains αi, βi, the synaptic connection
weights bij, dij and the decay rates ai, ci of the neuronal fields FX and FY respectively,
satisfy the inequality

n∑
j=1

(αj |bij | + βj |dij |) < ki = min{ai, ci} (5.8)

for i = 1, 2, . . . , n.
Then the equilibrium solution (x∗, y∗) of (1.4) is globally asymptotically stable.

Proof For each i = 1, 2, . . . , n, define

Qi(t) = ‖(xi(t) − x∗i , yi(t) − y∗i )‖ = |xi(t) − x∗i | + |yi(t) − y∗i |
for t ∈ [−τ,∞).

(5.9)

Then using (1.4), (2.2) we get

D+Qi(t) ≤
[
− ai|xi(t) − x∗i | +

n∑
j=1

αj |bij | |yj(t− τ) − y∗j |

− ci|yi(t) − y∗i | +
n∑

j=1

βj |dij | |xj(t− τ) − x∗j |
]

which in turn yields,

D+Qi(t) ≤
[
− kiQi(t) +

n∑
j=1

(αj |bij | + βj|dij |)Qj(t− τ)

]
(5.10)

for each i = 1, 2, . . . , n.
Since, Qi(t) ≤M for t ∈ [−τ, 0] and for each i = 1, 2, . . . , n, we now claim that

Qi(t) ≤M = max
1≤i≤n

[
sup

−τ≤s≤0

(
|φi(s) − x∗i | + |ψi(s) − y∗i |

)]
(5.11)

for t ≥ 0.
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If the inequality (5.11) does not hold for all t ≥ 0, then there must exist a t1 > 0 and
some i such that

Qi(t1) = M, Qj(t)

{
< M, for i = j, −τ ≤ t < t1,

≤M, for i 6= j, −τ ≤ t ≤ t1.

It is easy to see that

D+Qi(t1) ≥ 0. (5.12)

But, from (5.8) and (5.10), we have

D+Qi(t1) ≤
[
− kiM +

n∑
j=1

(
αj |bij | + βj|dij |

)
M

]

= −
[
ki −

n∑
j=1

(
αj |bij | + βj |dij |

)]
M < 0

which contradicts (5.12) and thus (5.11) holds for all t ≥ 0.
Now, for each i = 1, 2, . . . , n, let

lim
t→∞

supQi(t) = σ̄i and lim
t→∞

inf Qi(t) = σi.

Clearly 0 ≤ σi ≤ σ̄i < ∞, for i = 1, 2, . . . , n. Without loss of generality, assume that
σ̄1 ≥ σ̄2 ≥ · · · ≥ σ̄n. We shall prove that σ̄1 = 0. Suppose that σ̄1 > 0.

Now, choose ǫ > 0 in such a way that the inequality

0 < ǫ ≤
k1 −

n∑
j=1

(αj |b1j| + βj |d1j |)

2[k1 +
n∑

j=1

(αj |b1j | + βj |d1j |)(1 +M)]
σ̄1 (5.13)

is satisfied.
Since lim

t→∞
supQi(t) = σ̄i by definition (for this ǫ) there exists a t2 > 0 such that for

t ≥ t2, we have

Qi(t− τ) ≤ σ̄i + ǫ ≤ σ̄1 + ǫ,

for i = 1, 2, . . . , n and τ > 0.
Then, from (5.10), for t ≥ t2, it follows that

D+Q1(t) ≤
[
− k1Q1(t) +

n∑
j=1

(αj |b1j | + βj |d1j |)(σ̄1 + ǫ)

]
. (5.14)

We first prove σ̄1 = σ1. If σ̄1 > σ1, then there are infinite number of intervals on which
Q1(t) is non decreasing. We can choose t4 > t3 ≥ t2 such that Q1(t) is non decreasing
on (t3, t4) and

Q1(t) > σ̄1 − ǫ for t ∈ (t3, t4).
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From (5.14), for t ∈ (t3, t4), we have

D+Q1(t) ≤−
[
k1(σ̄1 − ǫ) − (σ̄1 + ǫ)

n∑
j=1

(αj |b1j | + βj |d1j |)
]

= −
[{
k1 −

n∑
j=1

(αj |b1j | + βj |d1j |)
}
σ̄1

−
{
k1 +

n∑
j=1

(αj |b1j| + βj |d1j |
}
ǫ

]

and using (5.13) one can see that

D+Q1(t) ≤ − σ̄1

2

[
k1 −

n∑
j=1

(αj |b1j | + βj |d1j |)
]
< 0 (5.15)

which is a contradiction to the statement thatQ1(t) is non-decreasing over (t3, t4). Accor-
dingly we must have σ̄1 = σ1 = σ (say).

Since σ̄1 = σ1 = σ > 0, there must exist a t5 ≥ t2 such that for t ≥ t5 we have

σ − ǫ < Q1(t) < σ + ǫ

and
Qi(t) ≤ σ + ǫ for i = 2, . . . , n.

For t ≥ t5, from (5.15) we have

0 ≤ Q1(t) ≤ Q1(t5) −
σ

2

[
k1 −

n∑
j=1

(αj |b1j | + βj |d1j |)
]
(t− t5)

which is a contradiction. Hence σ = 0 and thus

lim
t→∞

‖(xi(t) − x∗i , yi(t) − y∗i )‖ = 0

for i = 1, 2, . . . , n, implying that (x∗, y∗) is globally asymptotically stable.

6 Examples

In this section, we present several examples illustrating our results. Further, we establish
that the various stability criteria are independent.

Example 6.1 [24] Consider the network described by the system

ẋi = −aixi(t) +

2∑
j=1

bijfj(λj , yj(t− τ)) + Ii,

ẏi = −ciyi(t) +

2∑
j=1

dijgj(µj , xj(t− τ)) + Ji.

(6.1)
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where i = 1, 2.
Now choose

a1 = 3, a2 = 3, c1 = 3, c2 = 4,

λ1 = 5/6, λ2 = 4/5, µ1 = 1/2, µ2 = 3/4,

I1 = −1/2, I2 = 1, J1 = 1/4, J2 = −2,

[bij ] =

[
2 1

−1 2

]
, [dij ] =

[
1 2

4 2

]
.

Further, choose the signal functions fi and gi for i = 1, 2 as follows:

f =

(
f1
f2

)
=

(
tanh(λ1y1)

tanh(λ2y2)

)
,

g =

(
g1
g2

)
=

(
tanh(µ1x1)

tanh(µ2x2)

)
.

Observe that all the hypotheses of Theorem 5.1 are satisfied while the hypotheses (5.5)
of Theorem 5.2 and (5.8) of Theorem 5.3 are violated. From this it is clear that the
equilibrium pattern is globally asymptotically stable by virtue of Theorem 5.1.

Example 6.2 [24] Consider the system (6.1) in which

a1 = 3/2, a2 = 6, c1 = 7, c2 = 2.3,

λ1 = 8, λ2 = 16, µ1 = 11/6, µ2 = 3/2,

I1 = 3, I2 = 1, J1 = 2, J2 = 4,

[bij ] =

[
1/5 1/3

1/2 1/4

]
, [dij ] =

[−1/2 1/4

−1/3 −1/5

]

and the signal functions are given by

f =

(
f1
f2

)
=

(
1

1+e−λ1 y1

1

1+e−λ2 y2

)
,

g =

(
g1
g2

)
=

(
tanh(µ1x1)

tanh(µ2x2)

)

for i = 1, 2.
Notice that all conditions of Theorem 5.2 are satisfied while some of the inequalities

(5.1) of Theorem 5.1 and inequalities (5.8) of Theorem 5.3 are violated.

Example 6.3 [24] Again consider the system (6.1) and choose

a1 = 1.4, a2 = 1.3, c1 = 1.25, c2 = 1.35,

λ1 = 1/3, λ2 = 1/9, µ1 = 1/2, µ2 = 1,

I1 = 1/2, I2 = 1/4, J1 = −1/3, J2 = 1/5,
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and

[bij ] =

[
5/2 1/2

3/2 1/2

]
, [dij ] =

[
1/2 1

1/2 5/2

]

and the signal functions are

f =

(
f1
f2

)
=

(
tanh(λ1y1)

tanh(λ2y2)

)
, g =

(
g1
g2

)
=

(
1

1+e−µ1x1

1

1+e−µ2x2

)
.

It follows easily that all the requirements of Theorem 5.3 are satisfied while some of the
inequalities of the hypotheses (5.1) of Theorem 5.1 and those of (5.4) of Theorem 5.2 are
not satisfied.

Remark 6.1 Note that from Examples 6.1, 6.2 and 6.3, it follows that the global
asymptotic stability criteria guaranteed by Theorems 5.1, 5.2 and 5.3 are independent.

7 Discussion

In this paper, a model describing the activation dynamics of neurons in a bidirectional
associative memory network involving processing delays has been presented. The impor-
tance of the necessity of introducing processing delays in the model has been highlighted.
Results on maintenance and preservation of stability together with circumstances leading
to instability have been presented. We have established that a proper interplay between
the processing delays and the various system parameters is highly essential to have global
stability behaviour of the network.
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Abstract: The paper deals with n-dimensional dynamical system of impulse
type whose dynamical characteristics are dependent on the step Markov pro-
cess with rapid switchings. The phase motion has small jumps at the moments
of switchings and satisfies the ordinary differential equation in the intervals of
constancy of the Markov process. The intensity of switchings, the quantities
of jumps and the vector field of the differential equation are dependent on the
phase coordinates and Markov process. Under some assumptions the limit av-
eraged ordinary differential equation, the limit differential equation switched
by the merged Markov process, the diffusion approximation and the limit
stochastic differential equation of Ornstein-Uhlenbeck type for normalized de-
viations are constructed. It is proved that one can use the limit equations for
stability analysis of an initial impulse dynamical system.
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1 Introduction

The problem of asymptotic analysis of dynamical systems under small random pertur-
bations has been discussed in many mathematical and engineering papers. Apparently,
R.Z. Khasminsky was the first mathematician to have proved that the probabilistic limit
theorems may be successfully used for differential equations with random right parts.
The approach proposed in [12] makes it possible to apply for asymptotic analysis of real
stochastic structural dynamical systems not only the Krylov-Bogolyubov averaging pro-
cedure but also diffusion approximation (see, for example, [6] and review there). It should
be mentioned that in spite of the fact that the above result has been developed in [12] for
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the analysis of differential equations on a finite time interval, the diffusion approximation
procedure has been applied in many engineering papers for Lyapunov stability analysis,
that is, for analysis of differential equations as t → ∞. To prove the validity of this
approach the authors of papers [3, 5, 14, 15] had to use not only a special type of limit
theorem in Skorokhod space [16] but also martingale techniques and a stochastic ver-
sion of the Second Lyapunov method developed for stochastic Ito differential equations
in [13]. These asymptotic methods of stochastic stability analysis have been applied in
the above-mentioned papers to differential equations with continuous trajectories. But
some dynamical systems of the recent Economics (see, for example, [1, 4, 9, 10] and review
there) require an extension of “smooth” models to allow the phase motion to have a jump
type discontinuity. A possible approach to this problem developed in [11, 17 – 19, 21] is
discussed in the present paper.

To formulate the problems one needs first of all to describe the switching step process
{y(t), t ≥ 0} with values in the set Y. We suppose for simplicity that Y is discrete
at most countable space but all our results easily can be reformulated for any metric
topological space. We will assume that the above switching process is a right continu-
ous homogeneous Markov process [8] with a weak infinitesimal operator defined by the
equality

Qv(y) := a(y)
∑
z∈Y

[v(z) − v(y)]p(y, z)

for any bounded mapping v : Y → R, where p(y, z) is the transition probability of
the embedded Markov chain and a(y) is the intensity of switchings which satisfies the
inequality 0 < â1 ≤ a(y) ≤ â2 < ∞ for any y ∈ Y. It is well known [8, 16] that the
above {y(t)} is a piecewise constant process with the switching moments {τj, j ∈ N}
which have the conditional exponential distributions defined by the equalities: τ0 = 0,

P {τj − τj−1 > t | y(τj−1) = y} = exp{−a(y)t}, j ∈ N.

Now one can describe the Impulse Dynamical System (IDS) in R
n with small param-

eter ε ∈ (0, 1) this paper deals with. The phase motion x(t) of this system satisfies:
– the initial condition

x(0) = x; (1)

– the differential equation
dx

dt
= ε f(x, y(t), ε) (2)

for all t ∈ (τj−1, τj), j ∈ N;
– the condition of jump

x(t) = x(t − 0) + εg(x(t − 0), y(t − 0), ε) (3)

for all t ∈ {τj , j ∈ N}, where

f(x, y, ε) = f1(x, y) + ε f2(x, y), g(x, y, ε) = g1(x, y) + ε g2(x, y) (4)

and fj(x, y), gj(x, y), j = 1, 2 are twice boundedly continuously differentiable on x
functions.
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Under the above assumptions it is easy to prove [21] that the pair {x(t), y(t)} is a
homogeneous Markov process with the weak infinitesimal operator

(L)v(x, y) := ε(f(x, y, ε), ▽) v(x, y) + Qv(x, y) + εGεv(x, y), (5)

where

Gεv(x, y) =
a(y)

ε

∑
z∈Y

[v(x + εg(x, y, ε), z) − v(x, z)]p(y, z), (6)

(., .) is scalar product and ▽ is an operator-gradient in R
n.

In this paper we will discuss the problem of asymptotic analysis of the IDS (2) – (3)
for sufficiently small positive ε. Under the condition of ergodicity of the Markov process
{y(t)} with limit distribution {µ(y), y ∈ Y} we shall do this starting with the limit
averaged ordinary differential equation for (2) – (3)

dx̄

dt
= F̄1 (x̄), (7)

where
F̄1(x) :=

∑
y∈Y

F1(x, y)µ(y), F1(x, y) := f1(x, y) + a(y)g1(x, y). (8)

It will be proven that this deterministic approximation may be successfully used not
only on a finite interval but also for asymptotic stability analysis of the initial system.
If F1(x) ≡ 0 one will then be able to do the next step in asymptotic analysis of (2) – (3)
using the limit theorem in Skorokhod space [16]. This approach leads us in the second
section to the limit Ito stochastic differential equation which also can be successfully
used for stability analysis of (2) – (3). The third section contains a derivation of a merger
procedure and stability theorem based on the merged differential equation.

A word should be said about tools. To prove the limit theorems for (2) – (3) the
methods and results of paper [2] can be successfully applied. But in the above paper the
author uses specially constructed recurrent equations in the moments of switchings and
does not use any infinitesimal characteristics of the Markov process {x(t), y(t)}. This
approach is poorly consistent with the Second Lyapunov method, which is mainly used
for stability analysis of stochastic dynamical systems [3, 5, 6, 13, 14] and is the main tool
of our paper. To prove the classical averaging or merger theorems, unlike the martingale
approach of [14], this paper applies the Lyapunov method with specially constructed
Lyapunov functions, reflecting the distance between corresponding solutions of the system
(2) – (3) and averaged or merged differential equations.

2 Averaging and Stability

Let us assume that the spectrum σ(Q) of the weak infinitesimal operator Q has the simple
spectrum point 0, σ(Q)�{0} ⊂ {z ∈ C : ℜz < −ρ < 0} and let the distribution {µ(y)}
be the solution of the equation Q∗µ = 0, where Q∗ is a conjugate operator. Under these
conditions one can extend [8] the potential of the above Markov process and define the
linear continuous operator Π: B (Y) → B (Y) by equality

(Πv)(y) :=

∞∫

0

∑
z∈Y

v(z)[P (t, y, z) − µ(z)] dt, (9)



106 YE. TSARKOV

where B(Y) is the space of bounded mappings {v(y), y ∈ Y} of Y to R and P (t, y, z)
is the transition probability.

It is easy to prove that any considerable variations of any solution of (2) – (3) can
happen only on a sufficiently large time interval of order ε−1. Therefore it is convenient
to pass to the slow time s = εt and to analyze the process with rapid switchings defined
by the equality xε(s) := x(s/ε).

Theorem 2.1 (Averaging principle) Under the above assumptions the processes
{xε(s)} for any r > 0, T > 0 uniformly on y ∈ Y, x ∈ Ur := {|x| ≤ r}, t ∈ [0, T ]
converge on probability as ε → 0 to the solution of (7) with initial condition x̄(0) = x,
that is, for any δ > 0

lim
ε→0

sup
y,|x|<r

Px,y

(
sup

0≤t≤T

|xε(t) − x̄(t, x)| > δ
)

= 0.

Proof Under the assumptions of twice continuously boundedly differentiability on x
of the functions f1(x, y) and g1(x, y), the function F̄1(x) from (8) also has the continuous
bounded derivative D F̄1(x) and therefore the Cauchy problem x̄(0) = x̄ for (7) has
a unique solution x̄(s, x̄) for any x̄ ∈ R

n. It is easy to prove that the joined process
{xε(s), y(s/ε), x̄(s)} one can consider as the Markov process with the weak infinitesimal
operator [8]

L(ε) := (f(x, y, ε), ▽(x)) + (F̄1(x̄), ▽(x̄)) +
1

ε
Q + Gε,

where the gradients are acting by indicated indices. Let us choose constant c so large
that for all ε ∈ (0, 1) and phase variables x, y, x̄ the function

vε(x, y, x̄) := |x − x̄|2 + ε[2(x − x̄, (ΠF1)(x, y)) + c (1 + |x|2 + |x̄|2)]

satisfies the inequalities

|x − x̄|2 + ε (1 + |x|2 + |x̄|2) ≤ vε(x, y, x̄) ≤ |x − x̄|2 + ε c1 (1 + |x|2 + |x̄|2)

with some positive constant c1. Applying the equality

Q (ΠF1)(x, y) = −F1(x, y) + F̄1(x) (10)

and well-known Dynkin’s formula [8]

Ex,y vε(x
ε(t), y(t/ε), x̄(t, x̄)) = vε(x, y, x̄)

+

t∫

0

Ex,y L(ε) vε(x
ε(s), y(s/ε), x̄(s, x̄)) ds

one can obtain the inequality L(ε)vε(x, y, x̄) ≤ k vε(x, y, x̄) which guarantees the sto-
chastic process

ζ(t, x, y, x̄) := vε(x
ε(t), y(t/ε), x̄(t, x̄)) exp{−kt}
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be supermartingale [7, 13]. To complete the proof one can use the supermartingale prop-
erties and to write the inequalities

Px,y

(
sup

0≤t≤T

|xε(t) − x̄(t, x)| ≥ δ
)
≤ P

(
sup

0≤t≤T

ζ(t, x, y, x) ≥ δ2 e−kT
)

≤ δ−2 ekT vε(x, y, x) ≤ ε c1 δ−2 ekT (1 + 2|x|2)

for any δ > 0, T > 0.

Let now f(0, y, ε) ≡ g(0, y, ε) ≡ 0. Then also F̄1(0) = 0 and both systems (2) – (3) and
(7) have the trivial solution. We will say that the trivial solution of (7) is exponentially
stable if there exist positive constants M , γ such that |x̄(t, x̄)| ≤ M |x̄| exp{−γt} for
any t ≥ 0 and x̄ ∈ R

n. For the IDS (2) – (3) we will use the following two definitions of
stability [13]:

1) the trivial solution of (2) – (3) is called asymptotically stochastic stable if for any
η > 0 there exists a δ-neighborhood Bδ := {|x| < δ} such that any motion
starting within Bδ remains within an η-neighborhood with probability not less
than 1 − η and tends to zero as t → ∞;

2) the trivial solution of (2) – (3) is called exponentially p-stable, if there exist positive
numbers K and β such that the inequality E|x(t)|p ≤ K |x|p × exp{−βt} is
satisfied for all t ≥ 0 and initial conditions x ∈ R

n, y ∈ Y.

Theorem 2.2 Under the above assumptions if the trivial solution of (7) is exponen-
tially stable then for any p > 0 there exists εp > 0 such that the trivial solution of IDS
(2) – (3) is exponentially p-stable for any ε ∈ (0, εp).

Proof Owing to exponential decrease of the solutions of (7) and the boundedness of
the derivative of F̄1(x) one can define the Lyapunov function

v(p)(x) :=

T∫

0

|x̄(t, x)|p dt,

where T = ln M+ln p
γ

and the constants M , γ are taken from the above definition of

exponential stability. It is easy to verify that this function satisfies the inequalities

m1 |x|p ≤ v(p)(x) ≤ m2 |x|p (11)

with some positive constants m1, m2. By definition of the gradient and due to exponential
stability of (7) one can write the inequalities

(F̄1(x), ▽) v(p)(x) = |x̄(T, x)|p − |x|p ≤ −1

2
|x|p ≤ − 1

2m2

v(p)(x) (12)

for any x ∈ R
n. To prove the theorem we will use the Lyapunov function

v(p)
ε (x, y) := v(p)(x) + ε((ΠF1)(x, y), ▽) v(p)(x).

By definition (9) and due to equality

Q((ΠF1)(x, y), ▽) v(p)(x) + (F1(x, y), ▽) v(p)(x) = (F̄1(x), ▽) v(p)(x)
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and inequalities (11) – (12) one can choose such a constant εp > 0 that the above Lya-
punov function satisfies the inequalities

m̂1 |x|p ≤ v(p)
ε (x, y) ≤ m̂2 |x|p, L(ε) v(p)

ε (x, y) ≤ − 1

4m2

v(p)
ε (x, y)

with some positive constants m̂1, m̂2 for any ε ∈ (0, εp). Using Dynkin’s formula for the
stochastic process

ξ(s) := v(p)
ε (xε(s), y(s/ε)) e

1

4m2
s

one can get the inequalities

m̂1e
1

4m2
s
Ex,y |xε(s)|p ≤ v(p)

ε (x, y) ≤ m̂2 |x|p,

for any s ≥ 0 and the proof is complete.

By using the supermartingale property of the above defined stochastic process ξ(s)
one can make sure that under the conditions of the Theorem 2.2 the trivial solution of
the IDS (2) – (3) is asymptotically stochastic stable for all sufficiently small positive ε.

3 Diffusion Approximation and Stability

In this Section we will assume that in addition to the condition of ergodicity of the
Markov process and twice bounded differentiability of the functions (4) on x the average
function satisfies the condition F̄1(x) ≡ 0. Thus, any solution of the averaged equation
(7) is constant and we have no information on the behavior of the solutions of the IDS
(2) – (3). Then we can go to the “very slow” time θ = εs = ε2t, where t is the initial
time of the IDS (2) – (3). Let us denote xε(θ) := x(θ/ε2). The infinitesimal operator of
the Markov process {xε(θ), y(θ/ε2)} has the form

Lε :=
1

ε
(f(x, y, ε), ▽) +

1

ε2
Q +

1

ε
Gε. (13)

In spite of the fact that the operator (13) has a singular type as ε → 0 under the above
condition one can prove the following assertions.

Lemma 3.1 [21] For any positive p there exist positive constants cp, γp, εp such
that

Ex,y |xε(θ)|p ≤ cp (1 + |x|)p eγpθ

for all x ∈ R
n, y ∈ Y, ε ∈ (0, εp), θ > 0.

Corollary 3.1 [21] For any T > 0, r > 0 there exists εT > 0 such that

lim
ρ→∞

sup
0≤ε≤εT

Px,y

(
sup

0≤θ≤T

|xε(θ)| ≥ ρ
)

= 0

uniformly on y ∈ Y and x ∈ Ur.

The family of the stochastic processes {{xε(θ), 0 ≤ θ ≤ T }, ε ∈ (0, ε0)} with initial
condition xε(0) = x we will consider as the family of random variables in Skorokhod
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space [16] D([0, T ], R
n). The probability measures corresponding to these random vari-

ables we will denote P
ε. Owing to Corollary 3.1 we may confirm that for any natural

m and any moments of time θm > θm−1 > · · · > θ1 ≥ 0 the distribution family of
the random vectors {xε(θ1), xε(θ2), . . . , xε(θm)} is weak compact. That is, the family
{P

ε} is relatively compact (as ε → 0) in the meaning of the weak convergence of finite-
dimensional distributions. We will prove that there exist the weak limit of the family
{P

ε} as ε → 0. To describe the limit process let us introduce the vector

b(x) :=
∑
y∈Y

[f2(x, y) + a(y) g2(x, y)]µ(y) +
∑
y∈Y

[ΠDF1(x, y)] F1(x, y)µ(y)

−
∑
y∈Y

[DF1(x, y)] g1(x, y)µ(y)

and the positive symmetrical matrix σ(x) defined by the equality

(σ(x) z, z) = 2
∑
y∈Y

[
(F1(x, y), z) (ΠF1(x, y), z)

− (g1(x, y), z)
(
f1(x, y) +

1

2
a(y) g1(x, y), z

)]
µ(y)

with an arbitrary vector z ∈ R
n.

Theorem 3.1 (Diffusion approximation) Under the above assumptions the fam-
ily {P

ε} weak converges as ε → 0 to the diffusion Markov process with weak infinitesimal
operator

L0 := (b(x), ▽) +
1

2
(σ(x)▽, ▽). (14)

Proof To prove this theorem it is sufficient to verify [16] that for any twice continu-
ously differentiable function v(x) with bounded support the equality

lim
ε→0

1

ε
sup

0<h<ε

∣∣∣∣∣Ex,y

{
v(xε(s + h)) − v(xε(s)) −

s+h∫

s

L0 v(xε(τ)) dτ

}∣∣∣∣∣ = 0

can be written for all 0 ≤ s < T , x ∈ R
n, y ∈ Y. This equality one can get using

Dynkin’s formula for Ex,y w(xε(s), y(s/ε2), ε), where

w(x, y, ε) = v(x) + ε (ΠF1(x, y), ▽) v(x) + ε2 u(x, y),

and u(x, y) is a solution of the equation

Q u(x, y) = −
{

(f2(x, y) + a(y) g2(x, y) + [ΠD F1(x, y)] F1(x, y)

−[D F1(x, y)] g1(x, y) − b(x), ▽) v(x) + ([D ▽ v(x)] F1(x, y), ΠF1(x, y))

−
(

[D ▽ v(x)] g1(x, y), f1(x, y) +
1

2
a(y) g1(x, y)

)
− 1

2
(σ(x)▽, ▽) v(x)

}
.



110 YE. TSARKOV

Owing to the Fredholm alternative [11] and by construction the vector b(x) and the
matrix σ(x) the above equation has solution and the proof is complete.

There exists [8] a Markov process X(t) with infinitesimal operator (14) which satisfies
the stochastic Ito differential equation

dX = b(X) dt +

n∑
k=1

σk(X) dwk(t), (15)

where wk(t), k = 1, 2, . . . , n are the coordinates of the standard Wiener process in R
n

and the matrices σk(X), k = 1, 2, . . . , n are defined such that the process X(t) has the
infinitesimal operator (14). Equation (15) is called [2] the diffusion approximation of the
process {xε(t)}.

If F̄1(x) is not identically equal to zero one can use the diffusion approximation for
the normalized deviations ξε(t) := [x(t/ε) − x̄(t)]/

√
ε as ε → 0 applying Theorem 3.1

to the 2n dimensional process {ξε(t), x̄(t)} with small parameter
√

ε.

Theorem 3.2 [19, 21] Under the assumptions of this Section the probability measures

{P̂
ε} corresponding to the normalized deviations {ξε(t), 0 ≤ t ≤ T } weak converge as

ε → 0 to the measure P̂ corresponding to the solution {X̂(t), 0 ≤ t ≤ T } of the
stochastic Ito equation

dX̂ = DF̄1(x̄(t))X̂ dt +
n∑

k=1

σk(x̄(t)) dwk(t) (16)

with initial condition X̂(0) = 0, where x̄(t) is the solution of (7) with the initial condition
x̄(0) = x.

The diffusion approximation (15) in just the same way as for the Markov dynamical
systems without jumps [3, 5] can be successfully used for stability analysis of the IDS (2) –
(3).

Theorem 3.3 Under the assumptions of this Section if the trivial solution of (15) is
exponentially p-stable then the trivial solution of the IDS (2) – (3) is also exponentially
p-stable for all sufficiently small ε.

Proof It is shown in [13] that trivial solution of equation (12) is exponentially p-stable
if and only if there exists such a sufficiently smooth Lyapunov function V (x) that

h1|x|p ≤ V (x) ≤ h2|x|p, L0V (x) ≤ −h3|x|p, ‖Dl ▽ V (x)‖ ≤ h4|x|p−l−1

for any x ∈ Rn, l = 1, 2, 3 and some positive constants hj, j = 1, 2, 3, 4. To prove the
theorem we will use the Lyapunov function

Vε(x, y) = V (x) + ε(ΠF1(x, y), ▽)V (x) + ε2 U2(x, y)

where U2(x, y) satisfies the equation

Q U2(x, y) = −
{

(F1(x, y), ▽) (ΠF1(x, y), ▽)V (x) + (f2(x, y)

+ a(y)g2(x, y), ▽)V (x) +
1

2
(g1(x, y), ▽)V (x) + L0 V (x)

}
.
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One can apply the infinitesimal operator Lε to the function Vε(x, y) and to obtain the
equality LεVε(x, y) = L0V (x) + r(x, y, ε), where the last term satisfies the inequality
|r(x, y, ε)| ≤ α(ε)|x|p with some infinitesimal α(ε) as ε → 0. It is easy to verify that
there exist the positive constants ε0, r1, r2, r3 such that the function Vε(x, y) satisfies
the inequalities

r1 |x|p ≤ Vε(x, y) ≤ r2 |x|p, LεVε(x, y) ≤ −r3 |x|p ≤ −r3

r2

Vε(x, y)

for all x ∈ R
n, y ∈ Y, ε ∈ (0, ε0). To complete the proof one can use the same

calculations as in the end of the proof of Theorem 2.2.

4 Merger and Stability

To illustrate the asymptotic merger method of stability analysis proposed in [14] we
will suppose that the infinitesimal operator of the step Markov process has the form
Qε = Q0 + εQ1, where

Qj v(y) :=
∑
y∈Y

[v(z) − v(y)] pj(y, z), j = 0, 1

and pj(y, z) as functions of z ∈ Y are positive uniformly bounded on y ∈ Y discrete
measures. Let {yε(t), t ≥ 0} be the Markov process corresponding to this infinitesimal
operator. It is easy to see that this process is a step Markov process [8]. We will
assume that the operator Q0 has 0 as an isolated simple eigenvalue of multiplicity h, the
eigenfunctions of this operator are defined by equalities

qj (y) =

{
1, for y ∈ Yj

0, for y ∈ Yk, k 6= j

with nonintersecting supports Yj , j = 1, h and the remaining part of the spectrum
is situated in the half-plane {λ ∈ C : ℜλ < −ρ} for some positive ρ. The conjugate
operator Q∗

0 also [8, 11] has 0 as an isolated eigenvalue of multiplicity h and h invariant

probabilistic measures µk(y) with the same supports Yk, k = 1, h.

In this section we will deal with stochastic process {xε(t), t ≥ 0} which satisfies the
differential equation

dxε

dt
= εf(xε, yε(t), ε), (17)

for all t ∈ (τε
j−1, τε

j ), j ∈ N, and the conditions of jump

xε(t) = xε(t−) + εg(xε(t−), yε(t−), ε), (18)

for all t ∈ {τε
j , j ∈ N}, where {τε

j , j ∈ N} are switching time moments of the process

{yε(t), t ≥ 0} and functions f(x, y, ε), g(x, y, ε) were defined in Section 2. The system
(17) – (18) we will consider in slow time s = εt denoting x̃ε(s) = xε(s/ε).
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To define the limit merged Markov process for the family {x̃ε(s)} as ε → 0 [14]

one needs the merged state space Ŷ := {Y1, Y2, . . . , Yh} which for simplicity we will

denote Ŷ := {1, 2, . . . , h} and the infinitesimal matrix Γ = {γk
j }, where

γk
j :=




∑
y∈Yk

p1(y,Yj)µk(y), if j 6= k,

−
h∑

l=1
l6=k

γl
k, if j = k,

(19)

k, j = 1, h. Corresponding to this infinitesimal matrix process {ŷ(t), t ≥ 0} is called a
merged Markov process. To use the merger method of [14] first of all one has to define
the function

F̃1(x, y) ≡
∑

z∈Yk

(f1(x, z) + g1(x, z)p0(z,Y))µk(z), y ∈ Yk

for each k = 1, h and differential equation

dx̃ε

ds
= F̃1(x̃ε(s), yε(s/ε)). (20)

Substituting the above defined merged step Markov process {ŷ(s), s ≥ 0} instead of
the initial Markov process {yε(s/ε), s ≥ 0} in (20) we will obtain the limit merged
differential equation for the system (17) – (18)

dx̂

ds
= F̂1(x̂(s), ŷ(s)), (21)

where F̂1(x, k) := F̃1(x, y) for any k = 1, h and y ∈ Yk.
Owing to assumption on spectrum structure of the operator Q0 one can define [11]

the projective operator P by the equalities

∀ y ∈ Yk, v ∈ B(Y) : (Pv)(y) ≡
∑

z∈Yk

v(z)µk(z)

for each k = 1, h and the linear continuous operator Π̂ : B (Y) → B (Y) by equality

(Π̂v)(y) :=

∞∫

0

∑
z∈Y

P0(t, y, z)(v − Pv)(z) dt, (22)

where P0(t, y, z) is the transition probability corresponding to infinitesimal operator Q0.
The operator (22) we will use in the same way as the potential Π in Section 2.

Theorem 4.1 (Merger principle) Under the above assumptions the family of pro-
cesses {xε(s)} weak converges as ε → 0 to the solution of (21) with corresponding initial
condition.

Proof It is easy to prove that the processes {xε(s), yε(s/ε), x̃ε(s)} one can consider
jointly as the Markov process with the weak infinitesimal operator [8]

L̃(ε) := (f(x, y, ε), ▽(x)) + (F̃1(x̃, y), ▽(x̃)) +
1

ε
(Q0 + εQ1) + G̃ε,
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where the operator G̃ε is defined by the equality

G̃εv(x, y) =
1

ε

∑
y∈Y

[v(x + εg(x, y, ε), z) − v(x, z)](p0(y, z) + εp1(y, z))

and the gradients are acting by indicated indices. As in Section 2 we will use the function

vε(x, y, x̃) := |x − x̃|2 + ε[2(x − x̃, (Π̃F1)(x, y)) + c (1 + |x|2 + |x̃|2)],

which for sufficiently large c satisfies the inequalities

|x − x̃|2 + ε (1 + |x|2 + |x̃|2) ≤ vε(x, y, x̃) ≤ |x − x̃|2 + εc1 (1 + |x|2 + |x̃|2)

with some positive constant c1 for all ε ∈ (0, 1) and x ∈ R
n, y ∈ Y, x̃ ∈ R

n. Applying
the equality

Q0 (Π̃F1)(x, y) = −F1(x, y) + F̃1(x, y)

one can obtain the inequality L̃(ε)vε(x, y, x̃) ≤ kvε(x, y, x̃) with some positive constant k.
Hence, for any x ∈ R

n, y ∈ Y, x̃ ∈ R
n the stochastic process vε(xε(t), yε(t/ε), x̃ε(t))

× exp{−kt} is a positive supermartingale [7]. Therefore under the initial conditions
xε(0) = x, x̃ε(0) = x one can write the inequality

Px,y

(
sup

0≤t≤T

|xε(t) − x̃ε(t)| ≥ δ
)
≤ εc1 δ−2 ek2T (1 + 2|x|2) (23)

for any δ > 0, T > 0.
Under the assumptions of twice continuously boundedly differentiability on x of the

functions f1(x, y) and g1(x, y), the function F̃1(x, y) also has two continuous bounded
derivatives and therefore one can use the merger method and results of paper [14]. Ac-
cording to the above paper for any T > 0 and x̃ ∈ R

n the solution {x̃ε(t), t ∈ [0, T ]}
of Cauchy problem x̃ε(0) = x for (20) defines on Skorokhod space D([0, T ], R

n) the
family of probability measures {Pε, ε ∈ (0, 1)} which weak converges as ε → 0 to the
probability measure corresponding to the solution of the Cauchy problem x̂(0) = x for
(21). This assertion and inequality (23) complete the proof.

Let now f(0, y, ε) ≡ g(0, y, ε) ≡ 0. Then also F̃1(0, y) ≡ 0 and both systems (17) –
(18) and (21) have the trivial solution.

Theorem 4.2 Under the above assumptions if the trivial solution of (21) is exponen-
tially p-stable for all sufficiently small ε and some p > 0 then there exists εp > 0 such
that the trivial solution of IDS (17) – (18) is exponentially p-stable for any ε ∈ (0, εp).

Proof Owing to exponential decrease of the p-moments of the solutions of (21) and

a boundedness of the x-derivative of F̃1(x, y) one can define function

y ∈ Yk : v(p)(x, y) ≡ v̂(p)(x, k) :=

T∫

0

Ex,k|x̂(t)|p dt, k = 1, h,

with so large a constant T that the above function satisfies the inequalities m1|x|p ≤
v(p)(x, y) ≤ m2|x|p with some positive constants m1, m2. Owing to exponential p-

stability of (21), the inequality (F̂1(x, k), ▽)v̂(p)(x, k) + Γv̂(p)(x, k) ≤ −m3v̂
(p)(x, k) is
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held with some positive constant m3 for any k = 1, h and x ∈ R
n. To prove the theorem

we will use the Lyapunov function

v(p)
ε (x, y) := v(p)(x, y) + εΠ̃{(F1(x, y), ▽) v(p)(x, y) + Q1v

(p)(x, y)},

which satisfies the inequalities m̂1|x|p ≤ v
(p)
ε (x, y) ≤ m̂2|x|p with some positive constants

m̂1, m̂2 for any ε ∈ (0, 1). By definition of the operator Π̃ one can write the equality

(F1(x, y), ▽) v(p)(x, y) + Q1v
(p)(x, y) + Q0v

(p)

1 (x, y)

= (F̃1(x, y), ▽) v(p)(x, y) + PQ1v
(p)(x, y) + εr(x, y, ε)

= (F̂1(x, k), ▽) v̂(p)(x, k) + Γv̂(p)(x, k) + εr(x, y, ε)

≤ −m3v̂
(p)(x, k) + εα(ε)|x|p

and therefore

(F1(x, y), ▽) v(p)(x, y) + Q1v
(p)(x, y) + Q0v

(p)

1 (x, y)

≤ −m3v̂
(p)(x, k) + εα(ε)|x|p

for any y ∈ Yk and k = 1, h, where α(ε) is infinitesimal as ε → 0. Owing to the above
inequalities there exist such positive constants εp that for any ε ∈ (0, εp)

L(ε)v(p)
ε (x, y) ≤ −m3

2
v(p)

ε (x, y).

Now we can use Dynkin’s formula for Ex,y

{
v
(p)
ε (xε(s), yε(s/ε)) exp(sm3/2)

}
and complete

the proof as it has been done in the proof of Theorem 2.2.
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