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Abstract: In this paper we present the first part of an extensive study of
nonimpulsive orbital transfers under thrust errors. We emphasize the first
part of the numerical implementation (Monte-Carlo) of the study but men-
tion the first algebraic explanation for some of the numerical results. Its main
results suggest and partially characterize the progressive deformation of the
trajectory distribution along the propulsive arc, turning 3sigma ellipsoids into
banana shaped volumes curved to the center of attraction (we call them “ba-
nanoids”) due to the loss of optimality of the actual (with errors) trajectories
with respect to the nominal (no errors) trajectory.
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1 Introduction

Most space missions need orbit transfers to reach their goals. These trajectories/orbits
are reached sequentially through transfers between them by changing their keplerian ele-
ments, by firing apogee motors or other sources of force. These thrusts have linear and/or
angular misalignments that displace the vehicle with respect to its nominal directions.
The mathematical treatment for these errors can be done by complementary approaches
(deterministic, probabilistic, minimax, etc.). In the literature, already reviewed by Souza,
et al. [1], we highlight.

In the deterministic approach: Rodrigues [2] analyzed the effects of the errors in
nonimpulsive thrust on coplanar transfers of a nonpunctual model of a satellite. As
such, it is the only work we got considering the attitude motion, the center of mass
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misalignments, and the reduction of thrust with use, etc. Santos-Paulo [3] analyzed the
effects of errors in impulsive thrusts on coplanar or noncoplanar transfers of punctual
model of a satellite. Other related papers are Schultz [4] and Rocco [5].

In the probabilistic approach: Porcelli and Vogel [6] presented an algorithm for the
determination of the orbit insertion errors in biimpulsive noncoplanar orbital transfers
(perigee and apogee), using the covariance matrices of the sources of errors. Adams and
Melton [7] extended such algorithm to ascent transfers under a finite thrust, modeled as
a sequence of impulsive burns. They developed an algorithm to compute the propagation
of the navigation and direction errors among the nominal trajectory, with finite perigee
burns. Rao [8] built a semi-analytic theory to extend covariance analysis to long-term
errors on elliptical orbits. Howell and Gordon [9] also applied covariance analysis to the
orbit determination errors and they develop a station-keeping strategy of Sun-Earth L1
libration point orbits. Junkins, et al. [10] and Junkins [11] discussed the precision of the
error covariance matrix method through nonlinear transformations of coordinates. He
also found a progressive deformation of the initial ellipsoid of trajectory distribution (due
to gaussian initial condition errors), that was not anticipated by the covariance analysis
of linearized models with zero mean errors. Its main results also characterize how close
or how far are Monte-Carlo analysis and covariance analysis for those examples. Carlton-
Wippern [12] proposed differential equations in polar coordinates for the growth of the
mean position errors of satellites (due to errors in the initial conditions or in the drag),
by using an approximation of Langevin’s equation and a first order perturbation theory.
Alfriend [13] studied the effects of drag uncertainty via covariance analysis.

In the minimax approach: see russian authors, mainly.
However, all these analyses are approximated. This motivated an exhaustive numerical

but exact analysis (by Monte-Carlo), and a partial algebraic analysis done by Jesus [14]
under the supervision of the two other authors, to highlight and to study effects not
shown in those analyses.

In this work we present the 1st part of the numerical implementation of that Monte-
Carlo analysis of the nonimpulsive orbital transfers under thrust vector errors. The
results were obtained for two transfers: the first, a low thrust transfer between high
coplanar orbits, used by Biggs [15, 16] and Prado [17]; the second, a high thrust transfer
between middle noncoplanar orbits (the first transfer of the EUTELSAT II-F2 satellite)
implemented by Kuga, et al. [18].

The simulations were done for both transfers with minimum fuel consumption. The
optimization method used by Biggs [15, 16] and Prado [17] was adapted to the case of
transfers with thrust errors. The “pitch” and “yaw” angles were taken as control variables
such that the overall minimum fuel consumption defines each burn of the thrusts.

The error sources that we considered were the magnitude errors, the “pitch” and
“yaw” direction errors of the thrust vector, as causes of the deviations found in the
keplerian elements of the final orbit. Each deviation was introduced separately along
the orbital transfer trajectory. We studied two types of errors for each one of these
causes: the systematic/constructional/assembly errors (modeled as random-bias) and
the operational errors (modeled as white-noise). The random-bias errors are unknown
but constants during all the transfer arc, while the white-noise errors change along the
transfer arc. These error sources introduced in the orbital transfer dynamics cause effects
in the keplerian elements of the final orbit at the final instant.

In this work we present an statistical analysis of the effects of these errors on the
mean of the deviations of the keplerian elements of the final orbit with respect to the
reference orbit (final orbit without errors in the thrust vector) for both transfers. The
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Figure 2.1. Reference system used in this work.

approach that we used in this work for the treatment of the errors was the probabilistic
one, assuming these as having zero mean uniform probability density function.

2 Mathematical Formulation and Coordinates Systems

The orbital transfer problem studied can be formulated in the following way:

1) Globally minimize the performance index: J = m(t0) − m(tf );

2) With respect to α: [t0, tf ] → R (“pitch” angle) and β: [t0, tf ] (“yaw” angle)
with α, β ∈ C−1 in [t0, tf ];

3) Subject to the dynamics in inertial coordinates Xi, Yi, Zi of Figure 2.1: ∀ t ∈
[t0, tf ];

m
d2X

dt2
= −µm

X

R3
+ Fx, (1)

m
d2Y

dt2
= −µm

Y

R3
+ Fx, (2)

m
d2Z

dt2
= −µm

Z

R3
+ Fx, (3)

Fx = F [cosβ sinα (cosΩ cos θ − sinΩ cos I sin θ) + sin β sinΩ sin I

− cosβ cosα (cosΩ sin θ + sinΩ cos I cos θ)] ,
(4)

Fy = F [cosβ sin α (sin Ω cos θ + cosΩ cos I sin θ) − sin β cosΩ sin I

− cosβ cosα (sin Ω sin θ − cosΩ cos I cos θ)]
(5)

Fz = F (cosβ sinα sin I sin θ + cosβ cosα sin I cos θ + sinβ cos I) . (6)
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Or in orbital coordinates (radial R, transversal T, and binormal N) of Figure 2.1:

maR(t) = F cosβ(t) sin α(t) −
µm

R2(t)
, (7)

maT (t) = F cosβ(t) cos α(t), (8)

maN (t) = F sin β(t), (9)

aR(t) = V̇R −
V 2

T

R
−

V 2
N

R
, (10)

aT (t) = V̇T +
VRVT

R
− VN İ cos θ − VN Ω̇ sin I sin θ, (11)

aN (t) = ˙VN +
VRVN

R
+ VT İ cos θ + VT Ω̇ sin I sin θ, (12)

VR = Ṙ, (13)

VT = R(Ω̇ cos I + θ̇), (14)

VN = R(−Ω̇ sin I cosΩ + İ sinΩ), (15)

θ = ω + f. (16)

These equations were obtained by: 1) writing in coordinates of the dexterous rectan-
gular reference system with inertial directions OXiYiZi the Newton’s laws for the motion
of a satellite with mass m, with respect to this reference system, centered in the Earth’s
center of mass O with Xi axis toward the Vernal point, XiYi plane coincident with Earth’s
Equator, and Zi axis toward the Polar Star approximately; 2) rewriting them in coor-
dinates of the dexterous rectangular reference system with radial, transversal, binormal
directions SRTN, centered in the satellite center of mass; helped by 3) a parallel system
with OXoYoZo directions, centered in the Earth’s center of mass O, Xo axis toward the
satellite, XoYo plane coincident with the plane established by the position R and veloc-
ity V vectors of the satellite, and Zo axis perpendicular to this plane; and helped by
4) the instantaneous keplerian coordinates (Ω, I, ω, f , a, e). These equations were later
rewritten and simulated by using 5) 9 state variables, defined and used by Biggs [15, 16]
and Prado [17], as functions of an independent variable s shown in Figure 2.2.

The nonideal thrust vector, with magnitude and direction errors, is given by:

~FE = ~F + ∆~F , (17)

~FE = ~FR + ~FT + ~FN , (18)

| ~FE | = FE , |~F | = F, (19)

FR = (F + ∆F ) cos(β + ∆β) sin(α + ∆α), (20)

FT = (F + ∆F ) cos(β + ∆β) cos(α + ∆α), (21)

FN = (F + ∆F ) sin(β + ∆β), (22)

where: ~F , ~FE and ∆~F are: the thrust vector without errors, the thrust vector with
errors, and the error in the thrust vector, respectively; ∆α e ∆β are the errors in the
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Figure 2.2. Thrust vector applied to the satellite and the s variable.

“pitch” and in the “yaw” angles, respectively; FR, FT e FN are the components of the

thrust vector with errors ~FE in the radial, transversal and normal directions, respectively.
The magnitude error, ∆F , was computed as a percentage of the nominal force, while the
direction errors ∆α and ∆β were computed in units of angle. They are varied inside
given ranges, that is, ±DES1.F for ∆F , ±DES2 for ∆α and ±DES3 for ∆β. This
variation will correspond to the implementation of the random numbers that satisfy a
uniform probability distribution into those ranges. In this way, for each implementation
of the orbital transfer arc, values of α and β are chosen, whose errors are inside the range,
that produce the direction for the overall minimum fuel consumption.

3 Numerical Results

The simulations were performed with 1000 realizations for each transfer, that is, 1000
runs were done with random values for each DES1, DES2 and DES3, such that the
results obtained for the final keplerian elements represent the arithmetic mean of 1000
realizations (mean over the ensemble). The value 1000 was chosen to represent the set
of runs because the mean deviations in all final keplerian elements with respect to their
references converge to their minimal for this number of runs.
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Figures 3.1 and 3.2 show the mean deviations in the final semi-major axis and ec-
centricity versus the number of runs, respectively. These plots were done for systematic
pitch direction with DES2 = 1, 0o.

The computation of the mean deviations of the final keplerian elements with respect
to their references can be estimated by the arithmetic mean of them, for 1000 runs as
representatives. So, we can estimate mean deviation of any final keplerian element, ∆K

as

∆K = E{∆K} =

∞∫

−∞

ξf∆K(ξ) dξ ∼=

N=1000∑
i=1

∆Ki

N
. (23)

It is important to remark that equation (23) estimates a mean in the ensemble and not
in the time. In this work we present only these estimates for the final semi-major axis
and eccentricity with respect to their reference. Figures 3.3 to 3.14 present the behavior
of them as functions of the maximum (random-bias and white noise) direction errors.
For the random-bias errors we found the following results:

1) Uniform random-bias errors: semi-major axis(a), “pitch” errors.
We observe, in these plots (Figure 3.3 and Figure 3.4), behaviors very similar for both

maneuvers, although they are very different from each other. We easily observe that
the values of the mean semi-major axis present a region of decrease sufficiently defined
according to the growth of the maximum “pith” error, DES2. These figures suggest
a nonlinear law between these elements for both cases, that is, they suggest a cause
vs. effect relation in the orbital transfer phenomenon, not depending of the maneuver
studied.

2) Uniform random-bias errors: semi-major axis(a), “yaw” errors
Once more these plots (Figure 3.5 and Figure 3.6) show behaviors well defined and

similar for the semi-major axis as function of the maximum “yaw” error, DES3, for
both maneuvers studied. That is, there is a region of decrease well defined between the
elements a and DES3.

3) Uniform random-bias errors: eccentricity(e), “pitch” and “yaw” errors.
These plots show (Figure 3.7 and Figure 3.8) the nonlinear behavior of the mean final

eccentricity with the maximum “pitch” and “yaw” deviations. They were done only for
the second maneuver because in the first one the change of the eccentricity is close to
zero for the usual values of DES2 and DES3. They were plotted with precision of 10−3

for the eccentricity.
For the white-noise errors the results were very similar to the results obtained for the

random-bias errors but, the curves for the “pitch” errors present a more defined pattern
with respect to those for the “yaw” errors, where small fluctuations appear in its final
form. It is possible to see that the influence of the out-of-plane (“yaw”) errors is so strong
in the definition of the orbital transfer trajectory.

4) Uniform white-noise errors: semi-major axis(a), “pitch” errors.
The Figures 3.9 and 3.10 show the results for white-noise “pitch” errors in the semi-

major axis.

5) Uniform white-noise errors: semi-major axis(a), “yaw” errors.
The Figures 3.11 and 3.12 show the results for white-noise “yaw” errors in the semi-

major axis.
Figures 3.9 to 3.12 show clearly the influence of the white-noise errors when the second

maneuver is simulated with errors in “yaw”. The region of decrease still exist, as well as
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the nonlinear relation, but there are fluctuations in the growth of the maximum “yaw”
error.

6) Uniform white-noise errors: eccentricity(e), “pitch” and “yaw” errors.
These plots (Figures 3.13 and 3.14) show that the values of the eccentricity also fluctu-

ate for practical maneuvers with the white-noise errors in “yaw”, but keeping the region
of growth similar to the one verified for the random-bias errors case. So, we can say that
all these results suggest and partially characterize the progressive deformation of the
trajectory distribution along the propulsive arc. It occurs due to the loss of optimality
of the actual trajectories (with errors) with respect to the nominal trajectories (without
errors).

The dependence of the final keplerian elements with the magnitude errors for any of the
cases was practically null, specially for the mean deviation of the final semi-major axis,
since the perturbations occurred in this element were probably due to its estimator and
they were comparable to the numerical errors of the experiment, as shown in Figures 3.15
and 3.16. They show that the mean deviation in the final semi-major axis is much smaller
than the cone ±1σ(standard deviation of the deviation in the final semi-major axis).

The values for DES1, DES2 and DES3 used in these plots range from usual values to
nonusual values, with the aim to verify the general behaviors. Obviously, it is not usual
to have a “pitch” error equal to 30, 0o or a magnitude error equal to 30, 0%, for example.

Conclusions

This work presented results of the thrust vector errors implementation for nonimpulsive
orbital transfer maneuvers. It was verified that, in any case, the mean deviation in the
final semi-major axis presents a nonlinear (approximately parabolic) dependence with the
maximum error in thrust direction. The same results were verified for the mean deviation
in the final eccentricity, for the second transfer. The respective dependencies with the
thrust magnitude errors were not verified. The general results suggest a progressive
deformation of the trajectory distribution along the propulsive arc. This deformation
may be associated to the loss of the optimality of the actual trajectories with respect to
the nominal trajectory.
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Figure 3.1. Magnitude of the average semi-major axis deviations vs. N .

Figure 3.2. Average of the eccentricity (×10−4) deviation vs. N .



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(2) (2002) 157–172 165

Figure 3.3. First Maneuver: E{a(tf )} vs. DES2.

Figure 3.4. Second Maneuver: E{a(tf )} vs. DES2.
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Figure 3.5. First Maneuver: E{a(tf )} vs. DES3.

Figure 3.6. Second Maneuver: E{a(tf )} vs. DES3.
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Figure 3.7. Second Maneuver: E{e(tf )} vs. DES2.

Figure 3.8. Second Maneuver: E{e(tf )} vs. DES3.
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Figure 3.9. First Maneuver: E{a(tf )} vs. DES2.

Figure 3.10. Second Maneuver: E{a(tf)} vs. DES2.
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Figure 3.11. First Maneuver: E{a(tf )} vs. DES3.

Figure 3.12. Second Maneuver: E{a(tf)} vs. DES3.
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Figure 3.13. Second Maneuver: E{e(tf )} vs. DES2.

Figure 3.14. Second Maneuver: E{e(tf )} vs. DES3.
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Figure 3.15. First Maneuver: E{∆a(tf )} vs. DES1 and its σ (standard devi-

ation).

Figure 3.16. Second Maneuver: E{∆a(tf )} vs. DES1 and its σ (standard

deviation).
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