
Nonlinear Dynamics and Systems Theory, 2(2) (2002) 185–202

Stability of Dynamic Systems on the Time Scales

S. Sivasundaram

Department of Computing and Mathematics, Embry-Riddle Aeronautical University,

Daytona Beach, FL 32114, USA

Received: January 11, 2000; Revised: June 5, 2001

Abstract: The paper dwells on the problems of stability of dynamical sys-
tems on a time scale. The paper is divided into the following sections: local
existence and uniqueness, dynamic inequalities, existence of extremal solu-
tions, comparison results, linear variation of parameters, nonlinear variation
of parameters, global existence and stability, comparison theorems, stability
criteria, etc.

Keywords: Dynamical systems on a time scale; stability.

Mathematics Subject Classification (2000): 34B99, 39A99.

1 Introduction

In both natural and engineering systems the lowest level is usually characterized by
continuous variable dynamics and the highest by a logical decision making mechanism.
The interaction of these different levels, with their different types of information, leads to
a hybrid system. Many complicated control systems today (e.g. those for flight control,
manufacturing systems, and transportation) have vast amount of computer code at their
highest level. More pervasively, programmable logic controllers are widely used industrial
process control. Virtually all control systems today issue continuous variable controls and
perform logical checks that determine the mode, and hence the control algorithms the
continuous variable system is operating under at any given moment.

Hybrid control systems are control systems that involve both continuous systems that
involve both continuous and discrete dynamics and continuous and discrete controls. The
continuous dynamics of such a system is usually modeled by a controlled vector field or
difference equation. Its hybrid nature is expressed by a dependence on some discrete
phenomena, corresponding to discrete states, dynamics and controls. The prototypical
hybrid systems are digital controllers, computers, and subsystems modeled as finite au-
tomata coupled with controllers and plants modeled by partial or ordinary differential
equations or difference equations. Thus such systems arise whenever one mixes logical
decision making with continuous control laws. More specifically, real world examples
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of hybrid systems include systems with relays, switches, and hysteresis; disk drivers,
transmissions, step motors; constrained robots; automated transportation systems; and
modern flexible manufacturing and flight control systems.

In control theory, there has certainly been a lot of related work in the past, including
variable structure systems, jump linear systems, systems with impulse effect, impulse
control, and piecewise deterministic processes.

The mathematical modeling of several important dynamic processes has been via dif-
ference equations or differential equations. Difference equations also appear in the study
of discretization methods for differential equations. In recent years, however, the investi-
gation of the theory of difference equations (discrete time dynamic systems) has assumed
a greater importance as a well desired discipline. In spite of this tendency of indepen-
dence, there is a striking similarity or even duality between the theories of continuous
and discrete dynamic systems. Many results in the theory of difference equations have
been obtained as more or less natural discrete analogs of corresponding results of differ-
ential equations. Nevertheless, the theory of difference equations is a lot richer than the
corresponding theory of differential equations. For example, a simple difference equation
resulting from a first order differential equation exhibits the chaotic behavior which can
only happen for higher order differential equations. Moreover, additional assumptions
are often required in the discrete case in order to overcome the topological deficiency
of lacking connectedness. From a modeling point of view, it is perhaps more realistic
to model a phenomenon by a dynamic system which incorporates both continuous and
discrete times, namely, time as an arbitrary closed set of reals called time scale. In this
survey paper we discuss the stability of dynamics systems on time scale.

2 Preliminaries

In this paper we use the calculus obtained in [1, 2] for unifying discrete and continuous
dynamic systems.

Let T be a time scale (closed nonempty subset of R) with t0 ≥ 0 as a minimal element
and no maximal element.

The points {t} of T are classified as:

right-dense (rd), if σ(t) = t;

left-dense (ld), if ρ (t) = t;

right-scattered (rs), if σ(t) > t;

left-scattered (ls), if ρ(t) < t, where σ(t), ρ(t) are jump operators defined by

σ(t) = inf {s ∈ T : s > t}, ρ(t) = sup {s ∈ T : s < t}.

Set µ∗(t) = σ(t) − t (called graininess), so that

T ≡ R ⇒ µ∗(t) = 0, T ≡ Z ⇒ µ∗(t) = 1.

Definition 2.1 The mapping u : T → R is rd-continuous if it is continuous at each
right-dense point and lim

s→t−
f(s) = f(t−) exist at each left-dense.
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Definition 2.2 A mapping u : T → R is said to be differentiable at t ∈ T, if there
exists an α ∈ R such that for any ǫ > 0 there exists a neighborhood U of t satisfying

|u(σ(t)) − u(s) − α(σ(t) − s)| ≤ ǫ|σ(t) − s| for all s ∈ U.

Derivative of u is denoted by u△(t).

Note: T = R ⇒ u△ = α = du(t)
dt

,

T = Z ⇒ u△ = α = u(t + 1) − u(t).
If u is differentiable at t, then it is continuous at t.
If u is continuous at t and t is right-scattered, then u is differentiable and

u△(t) =
u(σ(t)) − u(t)

µ∗(t)
.

Definition 2.3 For each t ∈ T, let N be a neighborhood of t. Then, we define the
generalized derivative (or Dini derivative), D+u△(t), to mean that, given ǫ > 0, there
exists a right neighborhood Nǫ ⊂ N of t such that

u(σ(t)) − u(s)

µ∗(t, s)
< D+u△(t) + ǫ for s ∈ Nǫ, s > t,

where µ(t, s) = σ(t) − s.

In case t is rs and u is continuous at t, we have, as in the case of the derivative,

D+u△(t) =
u(σ(t)) − u(t)

µ∗(t)
.

Definition 2.4 Let h be a mapping from T to R. The mapping g : T → R is called
the antiderivative of h on T if it is differentiable on T and satisfies g△(t) = h(t) for
t ∈ T.

The following known properties of the antiderivative are useful.

(a) If h : T → R is rd-continuous, then h has the antiderivative g : t →
t
∫

s

h(s) ds,

s, t ∈ T.
(b) If the sequence {hn}n∈N of rd-continuous functions T → R converge uniformly

on [r, s] to rd-continuous function h then

( s
∫

r

hn(t) dt

)

n∈N

→

s
∫

r

h(t) dt, in R.

A basic tool employed in the proofs is the following induction principle, well suited
for time scales.

Suppose that for any t ∈ T, there is a statement A(t) such that the following conditions
are verified:

(I) A(t0) is true;
(II) If t right-scattered and A(t) is true, then A(σ(t)) is also true;

(III) For each right-dense t there exists a neighborhood U such that whenever A(t) is
true, A(s) is also true for all s ∈ U , s ≥ t;

(IV) For left-dense t, A(s) is true for all s ∈ [t0, t) implies A(t) is true.
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Then the statement A(t) is true for all t ∈ T.

3 Local Existence and Uniqueness

In this section, we shall consider the initial value problem for dynamic systems on time
scales and prove local existence and uniqueness results corresponding to Peano’s and
Perron’s theorems. Let T

k represent the set of all nondegenerate points of the time
scale T.

Consider the initial value problem (IVP)

x∆ = f(t, x), t ∈ T
k, x(t0) = x0, (3.1)

where f : T
k × Rn → Rn and f is rd-continuous on T

k × Rn.
A map x : T

k → Rn is a solution of IVP (3.1) if x(t) is an antiderivative of f(t, x(t))
on T

k and satisfies x(t0) = x0.

Theorem 3.1 Let f ∈ Crd[R0, R
n], where R0 = [t0, t0 + a] × B, [t0, t0 + a] is

understood as [t0, t0 + a]∩T
k and B = {x ∈ Rn : |x− x0| ≤ b}. Then the IVP (3.1) has

at least one solution x(t) on [t0, t0 + α], where α = min
(

a, b
M

)

, M being the bound of

f(t, x) on R0.

Proof See [3] and cf. [1, 2].

Next we shall consider Perron type uniqueness result.

Theorem 3.2 Assume that

(i) g ∈ Crd

[

[t0, t0 + a] × [0, 2b], R+

]

and for every t1, t0 ≤ t1 ≤ t0 + a, u(t) ≡ 0 is
the only solution of

u∆ = g(t, u), u(t1) = 0, on [t1, t0 + a];

(ii) f ∈ Crd[R0, R
n] and for each t ∈ [t0, t0 +a], there exists a compact neighborhood

Ut such that f t in Ut × B satisfies

|f(t, x) − f(t, y)| ≤ g(t, |x − y|), (t, x), (t, y) ∈ Ut × B.

Then the IVP (3.1) has a unique solution x(t) on [t0, t0 + a].

Proof See [3].

4 Dynamic Inequalities

In this section, we shall prove basic results on dynamic inequalities, that are needed to
prove existence of extremal solutions. We shall first prove a result relative to a system
of strict dynamic inequalities and then consider a similar result for nonstrict inequalities
which is needed for later discussion. All inequalities between vectors are to be understood
componentwise hereafter.

We need the following definition before we proceed further
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Definition 4.1 A function f ∈ C[Rn, Rn] is said to be quasimonotone nondecreasing
if x ≤ y and xi = yi for some 1 ≤ i ≤ n implies fi(x) ≤ fi(y).

Theorem 4.1 Let T be the time scale with t0 ≥ 0 minimal element and no maximal
element, v, w : T → Rn be the rd-continuous mappings that are differentiable for each
t ∈ T and satisfy

v∆(t) ≤ f(t, v(t)), w∆(t) ≥ f(t, w(t)), t ∈ T, (4.1)

where f ∈ Crd[T × Rn, Rn], f(t, x) is quasimonotone nondecreasing in x, and, for 1 ≤
i ≤ n, fi(t, x)µ∗(t) + xi is nondecreasing in xi for each t ∈ T.

Then v(t0) < w(t0) implies v(t) < w(t), for t ∈ T.

Proof See [4].

The next result deals with nonstrict dynamic inequalities

Theorem 4.2 Let T be the time scale as before, v, w : T → Rn be the rd-continuous
mappings that are differentiable for each t ∈ T and satisfy

v∆(t) ≤ f(t, v(t)), w∆(t) ≥ f(t, w(t)), t ∈ T, (4.2)

where f ∈ Crd[T × Rn, Rn], f(t, x) is quasimonotone nondecreasing in x and for each
i, 1 ≤ i ≤ n, fi(t, x)µ∗(t) + xi is nondecreasing in xi for t ∈ T. Then v(t0) ≤ w(t0)
implies v(t) ≤ w(t), t ∈ T, provided f satisfies

fi(t, x) − fi(t, y) ≤ L

n
∑

i=1

(xi − yi), x ≥ y. (4.3)

Proof See [3].

5 Existence of Extremal Solutions

Using the result on strict dynamic inequalities proved in Section 4, we shall discuss, in
this section, the existence of extremal solutions for dynamic systems. For that consider
the IVP

u∆ = g(t, u), u(t0) = u0 > 0, (5.1)

where g ∈ Crd[R0, R
n], R0 = {([t0, t0 + a] ∩ T) × B},

B = {u ∈ Rn : |u − u0| ≤ b}, and |g(t, u)| ≤ M on R0.

Theorem 5.1 Assume that

(i) g(t, u) is quasimonotone nondecreasing in u,
(ii) for each i, 1 ≤ i ≤ n, gi(t, u)µ∗(t) + ui is nondecreasing in ui for each t ∈ T.

Then there exist minimal and maximal solutions of (5.1) on I ≡ [t0, t0 + η] ∩ T, where

η = min
(

a, b
2M+b

)

.

Proof See [4].

6 Comparison Results

Having the existence results and the theory of dynamic inequalities at our disposal, it is
now easy to prove comparison results.
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Theorem 6.1 Let the assumptions of Theorem 5.1 hold and let m : I ≡ [t0, t0 + a)∩
T → Rn be a mapping that is differentiable for each t ∈ I and that satisfies

m∆(t) ≤ g(t, m(t)), t ∈ I.

Then m(t0) ≤ u0 implies that m(t) ≤ r(t), t ∈ I, where r(t) is the maximal solution of
(5.1) existing on I.

Proof See [4].

Definition 6.1 Let x ∈ C1
rd[T, Rn]. Given an ǫ > 0, if there exists a neighbourhood

Nǫ of t ∈ T satisfying

1

µ(t, s)

[

|x(σ(t))| − |x(σ(t)) − µ(t, s)x△(t)‖
]

<
[

x, x△
]

+
+ ǫ

for each s ∈ Nǫ and s > t, where µ(t, s) = σ(t) − s, then we say that
[

x, x△
]

+
is the

generalised derivative of x(t). In case, t ∈ T is rs, then we have

[

x, x△
]

+
=

1

µ∗(t)

[

|x(σ(t))| − |x(t)|
]

,

where µ∗(t) = µ(t, t).

We can now prove the following comparison result.

Theorem 6.2 Suppose that

[

x, x△
]

+
≤ g(t, |x|) on T × R,

where g ∈ Crd[T × R+, R] and g(t, u)µ∗(t) + u is nondecreasing in u for each t ∈ T,
where x : T → Rn is any rd-continuously differentiable function such that |x0| ≤ u0.
Then |x(t)| ≤ r(t), t ∈ T, where r(t) = r(t, t0, u0) is the maximal solution of (5.1)
existing on T.

Proof See [5, p.86] and [3].

7 Linear Variation of Parameters

Let (T, µ, X) a dynamical triple, and B(X) be a Banach algebra with unity of the
continuous endomorphims on a Banach space X .

A mapping A : T
k → B(X) is called regressive, if for each t ∈ T

k the mapping
A(t)µ∗(t)+ id : X → X is invertible. This is the case e.g if |A(t)µ∗(t)| < 1 for all t ∈ T.
Obviously in case T = R any A is regressive (since µ∗ = 0) and in case T = Z, A is
regressive if |A(t)| < 1 (since µ∗ ≡ 1).

Suppose A : T
k → B(X) is rd-continuous and regressive and F : T

k × X → X is
rd-continuous, then a mapping x : T

k → X is called a solution of the dynamic equation

x△ = A(t)x + F (t, x) (7.1)

if x△(t) = A(t)x(t) + F (t, x(t)) for all t ∈ T
k.
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If a solution x(·) of (7.1) in addition satisfies the condition x(τ) = η for a pair
(τ, η) ∈ T

k × X , it is called a solution of the initial value problem (IVP)

x△ = A(t)x + F (t, x), x(τ) = η. (7.2)

Consider the IVP, in the Banach algebra B(X),

x△ = A(t)x, x(τ) = I, (7.3)

where I is the unity of B(X). By Theorem 3.2 , it admits exactly one solution ΦA(τ) :=
x(·; τ, I). We call it principal solution. The corresponding transition function is defined
to be ΦA(t, τ) := ΦA(τ)(t). In the particular case, when A : T

k → B(X) is constant, we
call the transition function, exponential function (eL(t, τ)). If X = R and C : T

k → R+,
then C(t)µ∗(t) + 1 > 0 satisfies the regressive property we can set eC(t, τ) := ΦA(t, τ).

Theorem 7.1 We consider the IVP (7.2) with rd-continuous and regressive right-
hand side. Then the solution of (7.2) is given by

x(t) = ΦA(t, τ)η +

t
∫

τ

ΦA(t, σ(s))F (s, x(s)) △ s.

Proof See [1, 2].

8 Nonlinear Variation of Parameters

Theorem 8.1 Let T = [τ, s] be some compact measure chain. Assume that f ∈
Crd[T

k ×Rn, Rn], and possesses rd-continuous partial derivatives fx on T
k ×Rn. Let L

be a nonnegative constant with Lµ(s, τ) < 1 and |fx(t, x)| ≤ L on T
k × Rn. Let the

solution x0(t) = x(t, τ, η ) of

x△ = f(t, x), x(τ) = η, exists for t ≥ τ. (8.1)

Then

(i) Φ(t, τ, η) = xη(t, τ, η) exists and is the solution of

y△ = H(t, τ, η)y, (8.2)

where H(t, τ, η) = lim
h→0

1
∫

0

fx(t, px(t, τ, η) − (1 − p)x(t, τ, η + h)) △ p such that

Φ(τ, τ, η) is the unit matrix;
(ii) Ψ(t, τ, η) = x△

τ (t, τ, η ) exists, is the solution of

z△ = H(t, σ(τ), τ, η)z (8.3)

such that Ψ(σ(τ), τ, η) = −f(τ, η), where

H(t, σ(τ), τ, η) =

1
∫

0

fx(t, px(t, σ(τ), η) − (1 − p)x(t, τ, η)) △ p;
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(iii) the function Φ(t, τ, η), Ψ(t, τ, η) satisfy the relation

Ψ(t, τ, η) = −Φ(t, σ(τ), η)f(τ, η ) +

t
∫

σ(τ)

Φ(t, σ(s), η)
[

H(s, σ(τ), τ, η )

−H(s, σ(τ), τ, η)
]

Ψ(s, τ, η) △ s.

Proof See [3].

Theorem 8.2 Let T = [τ, s] be some compact measure chain. Assume that f, F ∈
Crd[T

k × Rn, Rn], and fx exists and be rd-continuous on T
k × Rn.

Let L be a nonnegative constant with Lµ(s, τ) < 1 and |fx(t, x)| ≤ L on T
k × Rn.

If x(t, τ, η) is the solution x△ = f(t, x), x(τ) = η, exists for t ≥ τ , any solution
y(t, τ, η) of y△ = f(t, y) + F (t, y), with y(τ) = η, satisfies the integral equation

y(t, τ, η) = x(t, τ, η) +

t
∫

τ

Φ(t, σ(s), y(s))F (s, y(s)) △ s

+

t
∫

τ

t
∫

σ(s)

Φ(t, σ(p), y(s))
[

H(p, σ(s), s, y(s))

− H(p, σ(s), y(s))
]

Ψ(p, s, y(s)) △ p △ s.

Proof See [3].

Remark 8.1 It is easy to see from the definitions of H(p, σ(s), s, y(s)) and H(p, σ(s),
y(s)) that they are identical if the measure chain is R, and consequently, the foregoing
variation of parameter formula reduces to the usual Alekseev’s formula (see [6]).

9 Global Existence and Stability

As an application of comparison Theorem 6.2, we shall prove, in this section, a global
existence result and a simple stability result.

Theorem 9.1 Assume that

(i) f ∈ Crd[T×Rn, Rn], g ∈ Crd[T×R+, R+], g(t, u) is non-decreasing in u for each
t ∈ T, where T is the time scale with t0 ≥ 0 as the minimal element and has no
maximal element and

|f(t, x)| ≤ g(t, |x|) for (t, x) ∈ T × Rn;

(ii) the maximal solution r(t) of the scalar IVP

u∆ = g(t, u), u(t0) = u0 ≥ 0 (9.1)

exists on T.
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Then the largest interval of existence of any solution x(t) of

x∆ = f(t, x), x(t0) = x0, (9.2)

with |x0| ≤ u0 is T.

Proof See [3].

To prove a simple stability result, we need the following definition of stability.

Definition 9.1 The trivial solution of (9.2) is said to be

(i) stable if given an ǫ > 0 and t0 ∈ T, there exists a δ > 0 such that |x0| ≤ δ

implies |x(t)| ≤ ǫ, t ≥ t0;
(ii) asymptotically stable if it is stable and lim

t→∞
|x(t)| = 0.

We are now in a position to prove a typical result on stability in terms of comparison
principle (cf. [7, p.13]).

Theorem 9.2 Assume that

(i) f ∈ Crd[T × Rn, Rn], g ∈ Crd[T × R+, R], f(t, 0) ≡ 0, g(t, 0) ≡ 0 and for
(t, x) ∈ T × Rn,

[x, f(t, x)]+ ≡ lim
h→0+

1

h

[

|x + hf(t, x)| − |x|
]

≤ g(t, |x|); (9.3)

(ii) g(t, u)µ∗(t) is nondecreasing in u for each t ∈ T.

Then the stability properties of the trivial solution of the IVP

u∆ = g(t, u), u(t0) = u0 ≥ 0 (9.4)

imply the corresponding stability properties of the trivial solution of

x∆ = f(t, x), x(t0) = x0, t0 ≥ 0, t ∈ T. (9.5)

Proof Let the trivial solution of (9.4) be stable. Then, given ǫ > 0 and t0 ≥ 0, there
exists a δ = δ(t0, ǫ) > 0 such that

u ≤ u0 < δ implies u(t) < ǫ, t ∈ T. (9.6)

It is easy to claim that with these ǫ and δ, the trivial solution of (9.5) is also stable. If
this were false, there would exist a solution x(t) of (9.5) with |x0| < δ and a t1 ∈ T,
t1 > t0 such that ǫ ≤ |x(t1)| and |x(t)| ≤ ǫ, t ∈ [t0, t1).

For t ∈ [t0, t1], using condition (9.3), we get

m∆(t) ≤ g(t, m(t)), t ∈ [t0, t1], m(t0) ≤ u0,

where m(t) = |x(t)|. Consequently, Theorem 6.2 yields

|x(t)| ≤ r(t), t ∈ [t0, t1].
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At t = t1, we arrive at the contradiction

ǫ ≤ |x(t1)| ≤ r(t1) < ǫ,

proving the claim. One can prove similarly other concepts of stability, and we omit the
details.

10 Comparison Theorems

Consider the dynamic system

x△ = f(t, x), x(t0) = x0, (10.1)

where f ∈ Crd[T × Rn, Rn], and x△ denotes the derivative of x with respect to t ∈ T.
We shall assume, for convenience, that the solutions x(t) = x(t, t0, x0) of (10.1) exist
and are unique for t ≥ t0.

Definition 10.1 Let V ∈ Crd[T×Rn, R+]. Then we define the generalized derivative
of V (t, x) relative to (10.1) as follows: given ǫ > 0, there exists a neighbourhood N(ǫ)
of t ∈ T such that

1

µ (t, s)

[

V (σ(t), x(σ(t))) − V (s, x(σ(t)) − µ(t, s)f(t, x(t))
]

< D+V △(t, x(t)) + ǫ

for each s ∈ N(ǫ) and s > t, where µ(t, s) = σ(t)− s and x(t) is any solution of (10.1).
In case, t ∈ T is right scattered and V (t, x(t)) is continuous at t, we have

D+V △(t, x(t)) =
1

µ∗(t)

[

V (σ(t), x(σ(t))) − V (t, x(t))
]

,

where µ∗(t) = µ(t, t).

We are now in a position to prove the following comparison theorem in terms of
Lyapunov function V (t, x).

Theorem 10.1 Let V ∈ Crd[T × Rn, R+], V (t, x) be locally Lipschitzian in x for
each t ∈ T which is rd, and let

D+V △(t, x(t)) ≤ g(t, V (t, x)),

where g ∈ Crd[T × R+, R+], g(t, u)µ∗(t) + u is nondecreasing in u for each t ∈ T and
r(t) = r(t, t0, u0) is the maximal solution of u△ = g(t, u), u(t0) = u0 ≥ 0, existing on
T. Then, V (t0, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t, t0, u0), t ∈ T, t ≥ t0.

Proof See [3] and cf. [8].

Remark 10.1 If the inequalities between vectors is understood as componentwise, then
Theorem 10.1 is valid for V ∈ Crd[T × Rn, RN

+ ], g ∈ Crd[T × RN
+ , RN

+ ], provided g(t, u)
is quasimonotone nondecreasing in u and g(t, u)µ∗(t) + u is nondecreasing in u for each
t ∈ T. The proof requires slight modification since we now need to use comparison result
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for differential systems relative to Vector Lyapunov functions. We therefore omit proving
such a result.

We shall next discuss another comparison result which connects the solutions to dy-
namic systems which can be employed in perturbation theory.

Consider another dynamic system

x∆ = F (t, x), x(t0) = x0, (10.2)

where F ∈ Crd[T × Rn, Rn]. Relative to the system (10.1), let us assume that the
following assumption (H) holds:

(H) the solutions y(t, t0, x0) of (10.2) exist for all t ≥ t0, unique and rd-continuous
with respect to the initial data and |y(t, t0, x0)| is locally Lipschitzian in x0.

For any V ∈ Crd[T × Rn, R+] and any fixed t ∈ T, we define D+V ∆(s, y(t, s, x(s)))
as follows: given ǫ > 0, there exists a neighbourhood N(ǫ) of s ∈ T, t0 ≤ s ≤ t such
that

1

µ(s, r)

[

V (σ(s), y(t, σ(s), x(σ(s)))) − V (s, y(t, s, x(σ(s))) − µ(s, r)F (s, x(s))
]

< D+V (s, y(t, s, x(s))) + ǫ

for each r ∈ N(ǫ) and r > s. As before, if s ∈ T is right-scattered and V (s, y(t, s, x(s)))
is continuous at s, then

D+V (s, y(t, s, x(s))) =
1

µ∗(s)

[

V (σ(s), y(t, σ(s), x(σ(s))) − V (s, y(t, s, x(σ(s))
]

,

with µ∗(s) = µ(s, s).
We then have the following general comparison result which includes Theorem 10.1 as

a special case.

Theorem 10.2 Assume that the assumption (H) holds. Suppose that

(i) V ∈ Crd[T × Rn, R+], V (s, x) is locally Lipschitzian in x for each t ∈ T which
is rd and for t0 < s ≤ t, x ∈ Rn

D+V ∆(s, y(t, s, x)) ≤ g(s, V (s, y(t, s, x)));

(ii) g ∈ Crd[T
k × R+, R], g(t, u)µ∗(t) + u is nondecreasing in u for each t ∈ T, and

the maximal solution r(t, t0, u0) of

u∆ = g(t, u), u(t0) = u0 ≥ 0, exists for t ∈ T.

Then, if x(t) = x(t, t0, x0) is any solution of (10.1) we have

V (t, x(t, t0, x0)) ≤ r(t, t0, u0), t ∈ T, (10.3)

provided V (t0, y(t, t0, x0)) ≤ u0.

Proof See [3] and [8].

11 Stability Criteria

In this section, we shall consider some simple stability results. We list a few definitions
concerning the stability of the trivial solution of (10.1) which we assume to exit (for
details see [5]).
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Definition 11.1 The trivial solution x = 0 of (10.1) is said to be

(S1) equi-stable, if for each ǫ > 0 and t0 ∈ T, there exists a positive function
δ = δ(t0, ǫ) that is rd-continuous in t0 for each ǫ such that |x0| < δ implies
|x(t, t0, x0)| < ǫ for t ≥ t0;

(S2) uniformly stable, if the δ in (S1) is independent of t0;
(S3) quasi-equi asymptotically stable, if for each ǫ > 0 and t0 ∈ T, there exist positive

δ0 = δ0(t0) and T = T (t0, ǫ) such that |x0| < δ0 implies |x(t, t0, x0)| < ǫ for
t ≥ t0 + T ;

(S4) quasi-uniformly asymptotically stable, if δ0 and T in (S3) are independent of t0;
(S5) equi-asymptotically stable, if (S1) and (S3) hold simultaneously;
(S6) uniformly asymptotically stable, if (S2) and (S4) hold simultaneously.

Corresponding to the definitions (S1) to (S6), we can define the stability notions of
the trivial solution u = 0 of (10.1) below. For example, the trivial solution u = 0 of
(10.1) is equi-stable if, for each ǫ > 0 and t0 ∈ T, there exists a function δ0 = δ0(t0, ǫ)
that is rd-continuous in t0 for each ǫ, such that u0 < δ implies u(t, t0, u0) < ǫ, t ≥ t0.

We are now in a position to prove a general result which provides sufficient conditions
for stability criteria.

Theorem 11.1 Assume that

(i) V ∈ Crd[T × Rn, R+], V (t, x) is locally Lipschitzian in x for each right dense
t ∈ T;

(ii) b(|x|) ≤ V (t, x) ≤ a(|x|) for (t, x) ∈ T×Rn, where a, b ∈ K =
[

σ ∈ C[R+, R+] :

σ(0) = 0 and σ(u) is increasing in u
]

;

(iii) f(t, 0) = 0, g ∈ Crd[T × R+, R], g(t, u)µ∗(t) + u is nondecreasing in u for each
t ∈ T, and

D+V ∆(t, x) ≤ g(t, V (t, x)), (t, x) ∈ T × Rn.

Then the stability properties of the trivial solution of

u∆ = g(t, u), u(t0) = u0 ≥ 0 (11.1)

imply the corresponding stability properties of the trivial solution of (10.1).

Proof Let ǫ > 0 and t0 ∈ T be given. Suppose that the trivial solution of (11.1) is
equi-stable. Then given b(ǫ) > 0 and t0 ∈ T, there exists a δ1 = δ1(t0, ǫ) > 0 such that

u0 < δ1 ⇒ u(t) < b(ǫ), t ∈ T (11.2)

where u(t) = u(t, t0, u0) is any solution of (11.1). Choose δ = δ(t0, ǫ) > 0 such that

a(δ) < δ1. (11.3)

We claim that if |x0| < δ, then |x(t)| < ǫ, t ∈ T, where x(t) = x(t, t0, x0) is any
solution of (11.1). If this is not true, there would exist a t1 ∈ T, t1 > t0 and a solution
x(t) = x(t, t0, x0) of (11.1) satisfying

|x(t)| < ǫ, t0 ≤ t < t1 and |x(t1)| ≥ ǫ. (11.4)
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Setting m(t) = V (t, x(t)) for t0 ≤ t ≤ t1 and using condition (iii), we get by Theo-
rem 11.1, the estimate

V (t, x(t)) ≤ r(t, t0, u0), t0 ≤ t ≤ t1, (11.5)

where r(t, t0, u0) is the maximal solution of (11.1) with V (t0, x0) ≤ u0. Now the relations
(11.2), (11.4), (11.5) and the assumption (ii) yield

b(ǫ) ≤ b(|x(t1)|) ≤ V (t, x(t1)) ≤ r(t1, t0, u0) < b(ǫ),

since u0 = V (t0, x0) ≤ a(|x0|) < a(δ) < δ1 by (11.3). This contradiction proves the
claim.

Other stability properties may be proved in a similar manner and hence the proof is
complete.

We can obtain from Theorem 11.1, a result analogous to Lyapunov’s first theorem for
continuous and discrete cases immediately. This we state as a corollary.

Corollary 11.1 The function g(t, u) ≡ 0 is admissible in Theorem 11.1 to yield
uniform stability of the trivial solution of (11.1).

A result analogous to Lyapunov’s second theorem cannot be obtained directly from
Theorem 11.1, since when we choose g(t, u) = −c(u), c ∈ K, g(t, u)µ∗(t) + u does not
satisfy the monotone condition. However, a minor change in the argument proves such
a result.

Corollary 11.2 The choice of the function g(t, u) = −c(u), c ∈ K, in Theorem 11.1
implies uniform asymptotic stability of the trivial solution of (11.1).

Proof See [3].

Usually, Lyapunov’s second theorem has the assumption D+V ∆(t, x(t)) ≤ −c0(|x|),
c0 ∈ K. Since V (t, x) has the upper estimate in (ii), which means V (t, x) is decrescent, it

is easy to show that D+V ∆(t, x(t)) ≤ −c(|x|), where c(u) = c−1
0 (a(u)). Of course, one

can prove directly with the assumption D+V ∆(t, x(t)) ≤ −c0(|x|) following the proof of
Corollary 11.2.

When V (t, x) is not assumed to be decrescent, that V (t, 0) ≡ 0, we have Marachkov’s
result for differential equations. We can extend such a result in the present set up.

Theorem 11.2 Assume that V ∈ Crd[T × Rn, R+], V (t, x) is locally Lipschitzian
in x for each t ∈ T which is rd, b(|x|) ≤ V (t, x) and V (t, 0) ≡ 0. Suppose further
that D+V ∆(t, x(t)) ≤ −c(|x|), and |f(t, x)| ≤ M for (t, x) ∈ T × Rn. Then the trivial
solution is equi-asymptotically stable.

Proof Let ǫ > 0, and t0 ∈ T be given. Since V (t, x) is rd continuous and V (t, 0) ≡ 0,
it is possible to find a δ = δ(t0, ǫ) > 0 satisfying V (t0, x0) < b(ǫ) iff |x0| < δ.

We claim that |x0| < δ implies |x(t)| < ǫ, t ≥ t0, the proof of which follows from
Theorem 10.1 . Now set ǫ = ρ, for some ρ > 0 and designate by δ0 = δ(t0, ρ) so
that we have |x0| < δ0 implies |x(t)| < ρ, t ≥ t0. To prove the theorem, we need to
show that lim inf

t→∞
|x(t)| 6= 0, then there exists a T > 0 such that for a given η > 0, we

have |x(t)| > η, t ≥ T . As a result, we get arguing as in Corollary 11.2, the estimate
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V (t, x(t)) ≤ V (t0, x0) −
t
∫

T

c(|x(s)|)∆s, t ≥ T , which yields a contradiction, for large t,

0 ≤ V (t0, x0) − c(η)(t − T ).

Hence lim inf
t→∞

|x(t)| = 0. Suppose then lim sup
t→∞

|x(t)| 6= 0. Then, given an ǫ > 0, there

exist a divergent sequence {tk} such that |x(tk)| > ǫ. Each tk ∈ T may belong to one
of the following cases:

(i) tk is rs and ls;
(ii) tk is rs and ld;
(iii) tk is rd and ls;
(iv) tk is rd and ld;

without loss of generality, we can assume that there is a divergent subsequence {ti} of
{tk} such that all ti belong to one of the above four cases. In case (i), we have

V (σ(ti), x(σ(ti))) ≤ V (ti, x(ti)) − µ∗(ti)c(|x(ti)|),

which yields, by successive application,

0 ≤ V (σ(ti), x(σ(ti))) ≤ V (t0, x0) −
i
∑

j=1

µ∗(tj)c(|x(tj)|)

≤ V (t0, x0) − c(ǫ)ηi.

This leads to a contradiction as i → ∞ since µ∗(ti) is constant for each i, say η.

In cases (ii) to (iv), we can find another divergent sequence {t∗i } such that ti < t∗i or
t∗i < ti+1 satisfying

|x(ti)| = ǫ, |x(t∗i )| = 1
2 ǫ, 1

2 ǫ < |x(t)| < ǫ, t ∈ (ti, t
∗
i ) or

|x(t∗i )| = 1
2 ǫ, |x(ti+1)| = ǫ, 1

2 ǫ < |x(t)| < ǫ, t ∈ (t∗i , ti+1).

Since |f(t, x)| ≤ M , it is easy to find ti − t∗i > ǫ
2M

and ti+1 − t∗i > ǫ
2M

.

It therefore follows that

0 ≤ V (t∗i , x(t∗i )) ≤ V (t0, x0) − ic
(

1
2 ǫ
)

ǫ
2M

< 0, for large i.

This is a contradiction. Similarly, we get contradiction for other case. Hence we have
lim

t→∞
|x(t)| = 0 and the proof is complete.

12 A Technique in Stability Theory

As an application of Theorem 10.2, we shall consider a typical result on stability and
asymptotic behavior of solutions of (10.2).
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Theorem 12.1 Assume that (H) holds and (i) of Theorem 10.2 is verified. Suppose
that g ∈ Crd[T×R+, R], g(t, u)µ∗(t)+u is nondecreasing in u for each t ∈ T, g(t, 0) ≡ 0,
f(t, 0) ≡ 0, F (t, 0) ≡ 0 and for (t, x) ∈ T × Rn,

b(|x|) ≤ V (t, x) ≤ a(|x|), a, b ∈ K. (12.1)

Furthermore, suppose that the trivial solution of (10.2) is uniformly stable and u = 0 of

u∆ = g(t, u), u(t0) = u0 ≥ 0 (12.2)

is uniformly asymptotically stable. Then, the trivial solution of (10.2) is uniformly
asymptotically stable.

Proof Let ǫ > 0 and t0 ∈ T be given. The uniform stability of u = 0 of (12.2)
implies that given b(ǫ) > 0, t0 ∈ T, there exists a δ1 = δ1(ǫ) > 0 such that if u0 ≤ δ1,
then

u(t, t0, u0) < b(ǫ), t ≥ t0. (12.3)

Let δ2 = a−1(δ1). Since y = 0 of (10.2) is uniformly stable, given δ2 > 0, t0 ∈ T, there
exists a δ = δ(ǫ) such that

|y(t, t0, x0)| < δ2, t ≥ t0 if |x0| < δ. (12.4)

We claim that |x0| < δ also implies that |x(t, t0, x0)| < ǫ, t ∈ T, where x(t, t0, x0) is any
solution of (10.2). If this is not true, there would exist a solution x(t, t0, x0) of (10.2) with
|x0| < δ and a t1 > t0 such that |x(t1, t0, x0)| ≥ ǫ, t0 ≤ t ≤ t1. Then, by Theorem 10.2,
we have

V (t, x(t, t0, x0)) ≤ r(t, t0, V (t0, y(t, t0, x0))), t0 ≤ t ≤ t1.

Consequently, by (12.1), (12.3) and (12.4), we get

b(ǫ) ≤ V (t1, x(t1, t0, x0)) ≤ r(t1, t0, a(|y(t1, t0, x0)|))

≤ r(t1, t0, a(δ2)) ≤ r(t1, t0, δ1) < b(ǫ).

This contradiction proves that x = 0 of (10.2) is uniformly stable.
To show uniform asymptotic stability, we set δ = δ0. Then, from the foregoing

argument, we have

b(|x(t, t0, x0)|) ≤ V (t, x(t, t0, x0)) ≤ r(t, t0, V (t0, y(t, t0, x0)))

for all t ∈ T, if |x0| ≤ δ0. From this it follows that

b(|x(t, t0, x0)|) ≤ r(t, t0, δ1), t ∈ T

which implies the uniform asymptotic stability of x = 0 because of the assumption that
u = 0 of (12.2) is uniformly asymptotically stable. Hence the proof is complete.

Setting F (t, x) = f(t, x) + R(t, x) in Theorem 12.1, we see that although the unper-
turbed system (10.2) is only uniformly stable, the perturbed system (10.2) is uniformly
asymptotically stable, an improvement caused by the perturbing term.

13 Strict Stability

Consider the initial value problem

x∆ = f(t, x), t ∈ T, x(t0) = x0, (13.1)

where f : T × Rn → Rn and f is rd-continuous on T × Rn.
Let K =

{

a ∈ Crd[T, R+] : a(u) is strictly increasing in u, a(0) = 0 and a(u) → ∞

as u → ∞
}

.
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Definition 13.1 The trivial solution of (13.1) is said to be

(S1) strictly stable, if given ǫ1 > 0 and t0 ∈ T, there exists a δ1 = δ1(t0, ǫ1) > 0 such
that |x0| < δ1 implies |x(t)| < ǫ1, t ≥ t0, and for every 0 < δ2 ≤ δ1, there exist
an 0 < ǫ2 < δ2 such that

δ2 < |x0| implies ǫ2 < |x(t)|, t ≥ t0; (13.2)

(S2) strictly uniformly stable, if δ1, δ2 and ǫ2 are independent of t0;
(S3) strictly attractive, if given α1 > 0, ǫ1 > 0 and t0 ∈ T for every α2 ≤ α1 there

exists ǫ2 < ǫ1 and T1 = T1(t0, ǫ1), T2 = T2(t0, ǫ1) such that

α2 ≤ |x0| ≤ α1 implies ǫ2 < |x(t)| < ǫ1, for t0 + T1 ≤ t ≤ t0 + T2;

(S4) strictly uniformly attractive, if T1, T2 in (S3) are independent of t0;
(S5) strictly asymptotically stable if (S3) holds and the trivial solution is stable;
(S6) strictly uniformly asymptotically stable if (S4) holds and the trivial solution is

uniformly stable;

Remark 13.1 It is important to note that (S1) and (S3), or (S2) and (S4) cannot hold
at the same time. If in (S1) it is not possible to find an ǫ2 satisfying (13.2), we shall
say that the trivial solution is stable. This can happen when |x(t)| → 0 as t → ∞ or
lim inf |x(t)| = 0 and lim sup |x(t)| 6= 0.

Theorem 13.1 Assume that

(H1) for each 0 < η < ρ, Vη ∈ Crd[T × Sρ, R+], Vη is locally Lipschitzian in x and
for (t, x) ∈ T × Sρ and |x| ≥ η,

b1(|x|) ≤ Vη(t, x) ≤ a1(|x|), a1, b1 ∈ K, and D+V ∆
η (t, x) ≤ 0; (13.3)

(H2) for each σ, 0 < σ < ρ, Vσ ∈ Crd[T×Sρ, R+], Vσ is locally Lipschitzian in x and
for (t, x) ∈ T × Sρ and |x| ≤ σ,

b2(|x|) ≤ Vη(t, x) ≤ a2(|x|), a2, b2 ∈ K, and D+V ∆
η (t, x) ≥ 0. (13.4)

Then the trivial solution is strictly uniformly stable.

Proof See [15].

Theorem 13.2 Let the assumptions of Theorem 13.1 hold except that the conditions
(13.3) and (13.4) are replaced by

D+V ∆
η (t, x) ≤ −c1(|x|),

and
D+V ∆

η (t, x) ≥ −c2(|x|),

where c1, c2 ∈ K.
Then the trivial solution of (13.1) is uniformly strictly asymptotically stable.

Proof See [15].
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Before proving the general result in terms of the comparison principle, we need to
consider the comparison differential system

u∆
1 = g1(t, u1), u1(t0) = u0 ≥ 0, (13.5a)

u∆
2 = g2(t, u2), u2(t0) = u0 ≥ 0, (13.5b)

where g1, g2 ∈ Crd[T × R+, R].
We shall say that the comparison system (13.5) is strictly stable, if given ǫ1 > 0 and

t0 ∈ T, there exist a δ1 > 0 such that u0 < δ1 implies u1(t) < ǫ1, t ≥ t0, and for every
δ2 ≤ δ1, there exists an ǫ2, 0 < ǫ2 < δ2 such that δ2 < u0 implies that ǫ2 < u2(t),
t ≥ t0. Where, u1(t), u2(t) are any solutions of (13.5a) and (13.5b) respectively.

Based on these definition, we can formulate other strict stability notions. Next result
is formulated in terms of comparison principles.

Theorem 13.3 Let the assumptions of Theorem 13.3 hold except that the conditions
(13.3) and (13.4) are replaced by

D+V ∆
η (t, x) ≤ g1(t, Vη(t, x)), (t, x) ∈ T × Rn.

and
D+V ∆

σ (t, x) ≥ g2(t, Vσ(t, x)), (t, x) ∈ T × Rn,

where g2(t, u) ≤ g1(t, u), g1, g2 ∈ Crd[T × R+, R], g1(t, 0) ≡ 0, g2(t, 0) ≡ 0.
Then any strict stability concept of the comparison system implies the corresponding

strict stability concept of the trivial solution of (13.1) respectively.

Proof See [15].

For several allied results, see [9 – 15].
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