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Abstract: In the following article we present the results on the asymptotic be-
havior and stability of the strong solutions for functional differential equations
(FDE). We also formulate several results on spectral properties (completeness
and basisness) of exponential solutions of the above-mentioned equations. It
is relevant to underline that our approach for researching FDE is based on the
spectral analysis of the operator pencils which are the symbols (characteristic
quasipolynomials) with operator coefficients. The article is divided into two
parts. The first part is devoted to researching FDE in a Hilbert space, the
second part to researching FDE in a finite-dimensional space.
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1 Introduction

In the first part of this article we present results on the unique solubility of initial-
boundary-value problems for a certain class of linear difference-differential equation of
neutral type with coefficients that are operator-valued functions taking values in a set of
operators (in general, unbounded) in a Hilbert space. We consider the case of variable
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time-lag. Moreover, we establish results for asymptotic behavior and the stability of the
solutions of the above-mentioned equations.

These results extend certain results obtained in [1 – 3, 35 – 38, 40 – 43].
In the second part of this article we study the asymptotic behavior of the solutions

of difference-differential equations (in finite-dimensional space H = Cm) in more com-
plicated and delicate situations in which there are the chains of roots of characteristic
quasipolynomials which are lying on or approaching the imaginary axis (so-called crit-
ical and supercritical cases). There are several results, devoted to the analysis of this
situation (see for more details [19 – 22]).

Besides, it is relevant to underline that our approach is seriously different to those
methods used in cited works. Our estimates of the solutions are based on Riesz basis
property of the system of exponential solutions. In turn, this result is based on the
researching of the resolvent of the generator of the C0-semigroup of the shift operator
naturally connected with the initial-value problem for difference-differential equation.

These results generalize certain results obtained in [4, 35 – 37, 39].
It is relevant to note that at the end of Section 1 and of Section 2 we give references

for and brief comments on a comparison of our results with the results of previously
published works on the subject.

2 FDE in Infinite Dimensional Space

Let H be a separable Hilbert space, let A be a positive self-adjoint operator in H with
a bounded inverse, and let I be the identity operator in H . We convert the domain
Dom(Aα) of operator Aα (α > 0) into a Hilbert space Hα by introducing the norm
‖ · ‖α = ‖Aα · ‖ on Dom(Aα).

We denote by W 1
2 ((a, b), A) (−∞ < a < b ≤ +∞) the space of functions with values

in H such that Ajv(1−j)(t) ∈ L2((a, b), H) (j = 0, 1), endowed with the norm

‖v‖W 1
2
(a,b) ≡

( b
∫

a

(

‖v(1)(t)‖2 + ‖Av(t)‖2
)

dt

)
1
2

.

Here and throughout v(j)(t) ≡ dj

dtj v(t), j = 0, 1, . . . . See Chapter 1 in [5] for more

detailed information and a description of the space W 1
2 ((a, b), A).

Along with W 1
2 ((a, b), A) we introduce the two spaces L2,γ((a, b), H) and W 1

2,γ((a, b), A)
of functions with values in H , with norms defined by the relations

‖v‖L2,γ
≡

( b
∫

a

exp (−2γt)‖v(t)‖2 dt

)
1
2

,

‖v‖W 1
2,γ(a,b) ≡ ‖ exp (−γt)v(t)‖W 1

2
(a,b), γ ∈ R.

We consider the following problem on the semiaxis R+ = (0, +∞)

Uu ≡
du

dt
+ Au(t) + B0(t)CAu(t)

+

n
∑

j=1

(

Bj(t)Sgj
(Au)(t) + Dj(t)Sgj

(

du

dt

)

(t)

)

= f(t),
(1)

u(+0) = φ0. (2)
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Here B0(t), Bj(t) and Dj(t) (j = 1, 2, . . . , n) are strongly continuous (see [6])
operator-valued functions with values in the ring of bounded operators in the space
H , C is a compact operator in H , and φ0 ∈ H 1

2
.

We define the operators Sgj
as follows

(Sgj
v)(t) = v(gj(t)), gj(t) ≥ 0,

(Sgj
v)(t) = 0, gj(t) < 0, j = 0, 1, 2, . . . , n,

where gj(t) (j = 1, 2, . . . , n) are real-valued functions with continuous derivatives on the

semiaxis R+ such that gj(t) ≤ t; d
dt gj(t) > 0 (j = 1, 2, . . . , n), and g0(t) = t, t ∈ R+.

We shall denote by g−1
j (t) the inverse functions of gj(t), hj(t) = t − gj(t).

Definition 2.1 We call a vector-valued function u(t) a strong solution of equation
(1) if this function is in the space W 1

2,γ(R+, A) for some value of γ ≥ 0 and satisfies (1)
almost everywhere on R+.

We define the quantities

r1(γ) = sup
λ : ℜλ>γ

‖A(λI + A)−1‖,

r2(γ) = sup
λ : ℜλ>γ

|λ| ‖(λI + A)−1‖, γ ≥ 0.

Theorem 2.1 Let us suppose that B0(t) ≡ 0 and there exists γ0 such that

σ(γ0) < 1, (3)

where

σ(γ) = r1(γ)
n
∑

j=1

sup
t∈[g−1

j
(0),+∞)

[

exp (−γ(t − gj(t)))‖Bj(t)‖

(

1

g
(1)
j (t)

)
1
2

]

+ r2(γ)

n
∑

j=1

sup
t∈[g−1

j
(0),+∞)

[

exp (−γ(t − gj(t)))‖Dj(t)‖

(

1

g
(1)
j (t)

)
1
2

]

.

Then for every γ > γ0 the operator Vγ , acting according to the rule Vγu ≡ (Uu, u(+0)),
takes the space W 1

2,γ(R+, A) onto L2,γ(R+, H) ⊕ H 1
2

and has a bounded inverse.

We now turn to the problem often called the initial-value problem:

du

dt
+ Au(t) + B0(t)CAu(t)

+
n
∑

j=1

(Bj(t)Au(gj(t)) + Dj(t)u(1)(gj(t))) = f0(t), t ∈ R+,
(1◦)

u(m)(t) = ym(t), t ∈ R− = (−∞, 0), u(+0) = φ0, m = 0, 1. (2◦)

It is known (see, for details Chapter 1 in [8]) that problem (1◦), (2◦) can be reduced to
one of the form (1), (2). In this case the vector-valued function f(t) is defined as follows:

f(t) = f0(t) −

n
∑

j=1

[Bj(t)T gj (Ay0)(t) + Dj(t)T gj (y1)(t)] , (4)

where the operators T gj are defined in a following way

(T gj v)(t) = 0, gj(t) ≥ 0, (T gj v)(t) = v(gj(t)), gj(t) < 0.
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Definition 2.2 We call a vector-valued function u(t) belonging to the space
W 1

2,γ(R+, A) for some γ ≥ 0 the strong solution of the problem (1◦), (2◦), if u(t) satisfies

equation (1) with the function f(t) defined by the expression (4) and the condition (2)
in the sense of convergence in the space H 1

2
.

On the basis of Theorem 2.1 it is possible to obtain

Theorem 2.2 Let us suppose that the conditions of Theorem 2.1 are satisfied and
there exists γ1 > 0, such that

σ1(γ1) < +∞, (5)

σ1(γ) =
n
∑

j=1

sup
t∈[0,g−1

j
(0))

[

exp (−γ(t − gj(t)))‖Bj(t)‖

(

1

g
(1)
j (t)

)
1
2

]

+

n
∑

j=1

sup
t∈[0,g−1

j
(0))

[

exp (−γ(t − gj(t)))‖Dj(t)‖

(

1

g
(1)
j (t)

)
1
2

]

.

Then for every γ ≥ γ∗ = max (γ0, γ1), every vector-valued functions (Ay0)(t), y1(t) ∈
L2,γ(R−, H), f(t) ∈ L2,γ(R+, H) and every vector φ0 ∈ H 1

2
there exists a unique

solution u(t) of the problem (1◦), (2◦) belonging to the space W 1
2,γ(R+, A) and satisfying

the inequality

‖u(t)‖W 1
2,γ(R+,A) ≤ d1

(

‖f0(t)‖2
L2,γ(R+,H) + ‖Ay0‖

2
L2,γ(R

−
,H)

+‖y1‖
2
L2,γ(R

−
,H) + ‖φ0‖

2
1
2

)
1
2

(6)

with constant d independent of (f0(t), (Ay0)(t), y1(t), φ0).

In the following theorem we investigate the case γ0 = 0 which is important in appli-
cations.

Theorem 2.3 Let us suppose that B0(t) ≡ 0 and the following inequality

n
∑

j=1

[

lim
t→+∞

(

‖Bj(t)‖2 1

g
(1)
j (t)

)
1
2

+ lim
t→+∞

(

‖Dj(t)‖2 1

g
(1)
j (t)

)
1
2

]

< 1 (7)

satisfies.
Then the conclusion of Theorem 2.1 holds with constant γ0 = 0 and for γ0 = 0 and

f(t) ∈ L2(R+, H)

lim
t→+∞

‖u(t)‖ 1
2

= 0.

The following statement is connected with the equation of retarded type (Dj(t) ≡ 0,
j = 1, 2, . . . , n).

Theorem 2.4 Let us suppose Dj(t) ≡ 0, j = 1, 2, . . . , n, operator-valued functions

Bj(t) are represented by the expression Bj(t) = B0
j (t)Cj , where Cj are the compact



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(2) (2002) 215–232 219

operators in the space H, B0
j (t) — are strongly continuous operator-valued functions

taking values in the ring of bounded operators in H and such that

sup
t∈R+

‖B0(t)‖ < +∞, sup
t∈R+

(

‖B0
j (t)Cj‖

2 1

g
(1)
j (t)

)
1
2

< +∞. (8)

Then there exists γ0 ≥ 0 such that for every γ ≥ γ0 the operator Vγ takes the space
W 1

2,γ(R+, A) onto L2,γ(R+, H) ⊕ H 1
2

and has a bounded inverse.

Let us denote by α0 the infimum of the operator A (see the definition in [6]).
Theorem 2.5 is devoted to the case of negative γ0.

Theorem 2.5 Let us suppose the conditions of Theorem 2.4 are satisfied, B0(t) ≡ 0,
the inequality

n
∑

j=1

(

sup
t∈[g−1

j
(0),+∞)

‖Bj(t)Cj‖
2 1

g
(1)
j (t)

)
1
2

< 1 (9)

holds and the delays hj(t) are bounded: 0 < θ1 ≤ hj(t) ≤ θ2 < ∞; θ1, θ2 = const.
Then there exists δ > 0 such that for every γ > max(−δ,−α) the operator Vγ takes

the space onto the L2,γ(R+, H) ⊕ H 1
2

and has a bounded inverse.

We present the result which is the corollary of Theorem 2.5.

Theorem 2.6 Let us suppose the conditions of Theorem 2.5 are satisfied, f0(t) ≡ 0,
and the inequality

ω0 = max
j=1, n

sup
t∈[0,g−1

j
(0))

|gj(t)| < +∞

holds.
Then there exists δ > 0 such that for every initial functions y0(t), y1(t) such that

Ay0(t), y1(t) ∈ L2((−ω0, 0), H) and every vector φ0 ∈ H 1
2

there exists the unique

solution u(t) of the problem (1◦), (2◦) (for f0 ≡ 0), belonging to the space W 1
2,γ(R+, A)

(for γ > max(−δ,−α0)) and satisfying the inequality

‖e−γtu(t)‖W 1
2
(R+,A) ≤ d2

(

‖φ0‖
2
1
2

+ ‖Ay0‖
2
L2(−ω0,0) + ‖y1‖

2
L2(−ω0,0)

)
1
2

(10)

with the constant d2 independent of (φ0, (Ay0)(t), y1(t)).

Let us present several remarks connected with the conditions of the results that were
formulated above.

Remark 2.1 Under the additional restriction hj(t) ≥ α > 0, t ≥ 0, j = 1, 2, . . . , n

the sufficient condition for the existence γ0 in the inequality (3) is the following

∆ ≡

n
∑

j=1

[

sup
t∈[g−1

j
(0),+∞)

(

‖Bj(t)‖2 1

g
(1)
j (t)

)
1
2

+ sup
t∈[g−1

j
(0),+∞)

(

‖Dj(t)‖2 1

g
(1)
j (t)

)
1
2

]

< +∞.

(11)
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Remark 2.2 If the inequality (11) holds and the delays hj(t) ≥ α > 0, then the
inequality (3) holds for every γ0 such that

γ0 >
1

α
max(ln ∆, 0). (12)

Remark 2.3 The condition (5) guarantees that the right-hand part of (4) belongs to
the space L2,γ(R+, H) for every vector-valued functions (Ay0)(t), y1(t) ∈ L2,γ(R−, H).

Moreover, if the functions gj(t) satisfy the condition

ω0 = max
j=1, n

sup
t∈[0,g−1

j (0))

|gj(t)| < +∞,

then the second part of (4) belongs to the space L2,γ(R+, H) for every γ ∈ R and every
vector-valued functions y0(t), y1(t) such that (Ay0)(t), y1(t) ∈ L2((−ω0, 0), H).

Remark 2.4 The inequality (7) is essential. It may be demonstrated by the following
example.

Example 2.1 Let us suppose H ≡ C, n = 1, A = const > 0, B1(t) ≡ −1, B0(t) ≡
D1(t) ≡ 0. Let us consider the following problem

du

dt
+ Au(t) − St−h(Au)(t) = χ(0, h)A, t ∈ R+, (E1)

u(+0) = φ0 = 1,

where χ(0, h) is a characteristic function of the interval (0, h).
In this case the condition (7) is not satisfied (the left-hand side of (7) is equal

to 1). Equation (E1) has a unique solution u(t) ≡ 1 which does not belong to the
space W 1

2 (R+).

Remark 2.5 The condition (11) is also essential. It may be demonstrated by the
following example.

Example 2.2 Let us suppose H = C, n = 1, B0(t) ≡ D1(t) ≡ 0, g1(t) = t − 1,
A = const > 0, B1(t) = −2t exp(2t − (A + 1)). Let us consider the following problem

du

dt
+ Au + B1(t)u(t − 1) = 0, t ∈ R+, (E2)

u(t) = y(t) = exp (t2 − At), t ∈ [−1, 0], u(+0) = φ0 = 1.

In this case equation (E2) has the solution u(t) = exp (t2−At) which does not belong
to the space W 1

2,γ(R+) for any γ ∈ R.

Owing to the fact that
sup

t∈[1,+∞)

‖B1(t)‖ = +∞,

the condition (11) is not satisfied.

Remark 2.6 The inequality (12) is essential. It may be demonstrated by the following
example.
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Example 2.3 Let us suppose H = C, n = 1, B0(t) ≡ B1(t) ≡ 0, A = const > 0,
D1(t) ≡ D = const, h > 0. Let us consider the following equation

du

dt
+ Au(t) + D

du

dt
(t − h) = 0, t ∈ R+. (E3)

In this case the roots of the associated quasipolynomial

l(λ) = λ + A + λDe−λh

are asymptotically approaching the line ℜλ = ln |D|
h = ∆ (see, for example [7]), being

on the left-hand side if

ℜλq <
ln |D|

h
.

Thus it is impossible to change ∆ by ∆ − ε (for any ε > 0) in the inequality (12).
The papers [30 – 33] were devoted to the spectral problem, namely, to studying opera-

tor-valued functions, which are symbols of the considered equations in the autonomous
case.

Now we are going to present certain results for the asymptotic behavior of the strong
solutions of FDE in the autonomous case. These results are based on information on the
symbols (characteristic quasipolynomials) of the above-mentioned equations. In turn,
these symbols are operator-valued functions (operator pencils) taking values in a set of
unbounded operators in a Hilbert space.

The papers [30 – 33] dealt with operator-valued functions of the form

 L(λ) = λI + A + B0CA +

n
∑

j=1

(BjA + λDj) exp(−λhj) +

+

( ∞
∫

0

exp(−λt)K(t) dt

)

A + λ

( ∞
∫

0

exp(−λt)Q(t) dt

)

.

(13)

Here B0, Bj and Dj are bounded operators in the space H , 0 = h0 < h1 < · · · < hn =
h, the operator functions e−κtK(t) and e−κtQ(t) take values in the ring of bounded
operators acting in the space H and such that the operator functions e−κtK(t) and
e−κtQ(t) are Bochner integrable on the semiaxis R+ for some κ ≥ 0, and λ (λ ∈ C) is
a spectral parameter.

A number of papers were devoted to studying characteristic quasipolynomials, the
distribution of its zeros, and its estimates in the case of a finite-dimensional space H .
We only mention monographs [7, 9, 10] and papers [19, 29].

The operator-valued functions of the form (13) have been studied much less in the case
of infinite-dimensional spaces and, in particular, a Hilbert space H . Moreover, we do not
know any paper (except [17, 18]) specifically dedicated to studying operator functions of
the form (13).

It is noteworthy that there are new unexpected phenomena in the case of infinite-
dimensional spaces. Some illustrative examples were given in [30, 32].

Let us proceed by formulating the certain results from [30 – 33, 35].
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Lemma 2.1 Let B0, Bj, and Dj (j = 1, 2, . . . , n) be bounded operators in the space
H, let the operator functions K(t) and Q(t) take values in the ring of bounded operators,
acting in the space H, let the operator functions exp (−κt)K(t) and exp (−κt)Q(t) be
Bochner integrable on the semiaxis R+ for some κ ≥ 0. Then there exists M0 ≥ κ such

that in the half-plane Π(M0) ≡ {λ : ℜλ > M0} the operator function  L−1(λ) exists, is
holomorphic, and satisfies the inequality

‖( L(λ)(λI + A)−1)−1‖ ≤ const . (E4)

The following lemma defines conditions for the meromorphity of the operator-valued
function  L−1(λ).

Lemma 2.2 Let the assumptions of Lemma 2.1 be satisfied. In addition, suppose
that Bj (j = 1, 2, . . . , n) are compact operators in the space H, the operator functions
K(t) and Q(t) take values in the ring of compact operators on H and additionally satisfy

the condition K(t) = Q(t) = 0 whereas t > h
def
= hn. Then the spectrum of  L−1(λ)

consists of isolated characteristic numbers of a finite algebraic multiplicity that are finite-
dimensional poles of  L−1(λ).

The following two statements complement Lemma 2.1 in the case of delay equations,
i.e. Dj ≡ 0, j = 1, 2, . . . , n, Q(t) ≡ 0.

Lemma 2.3 Let the assumptions of Lemma 2.2 be satisfied and let Dj ≡ 0, j =
1, 2, . . . , n, and Q(t) ≡ 0. Then for any a ≥ 0 there exists b > 0 such that in the
domain

Q(a, b) ≡ C\
(

{λ : ℜλ ≤ −a} ∪ {λ : − a ≤ ℜλ ≤ M0, |ℑλ| ≤ b}
)

,

the operator-valued function  L−1(λ) exists, is holomorphic, and satisfies inequality (E4).

Lemma 2.4 Let the assumptions of Lemma 2.2 be satisfied, let Dj = 0, j =
1, 2, . . . , n, let Q(t) ≡ 0, let the operators Bj can be represented in the form Bj =

CjA
−θj (j = 1, 2, . . . , n), where Cj are bounded operators in the space H, θj ∈ (0, 1],

K(s) = K1(s)A−θ0 , where θ0 ∈ (0, 1], and the operator function K1(s) takes values in
the ring of bounded operators in the space H and is Bochner integrable on the interval
(0, h). Then there exists a constant N0 > 0 such that in the domain

Φ(N0) ≡ C\
(

{λ : |λ| ≤ N0} ∪ {λ : ℜλ < 0, |ℑλ| ≤ N0 exp(−qℜλ)}
)

,

where

q = max

(

max
j=1,n

hj

θj
,

h

θ0

)

,

the operator-valued function  L−1(λ) exists, is holomorphic, and satisfies inequality (E4).

Here it is useful to note the following.

Remark 2.7 Under the assumptions of Lemma 2.3, the assertion of Lemma 2.1 is
valid for any constant M0 > max λq, where by λq we denote characteristic numbers of
the operator-valued function  L(λ).

The major parts of papers [3, 30, 33, 35] are devoted to studying a more specific case
of problem (1), (2) related to autonomous equation (1) with f0(t) ≡ 0.
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We assume that B0(t) ≡ B0, Bj(t) ≡ Bj , and Dj(t) ≡ Dj and the functions hj(t) ≡
hj (j = 1, 2, . . . , n) are independent of t, i.e. B0, Bj , and Dj are bounded operators in
the space H , the operator functions K(t) and Q(t) satisfy the assumptions of Lemma 2.1,
and hj are numbers such that 0 = h0 < h1 < · · · < hn = h.

For convenience we formulate the resultant problem:

du

dt
+ Au(t) + B0CAu(t) +

n
∑

j=1

(

BjAu(t − hj) + Dju
(1)(t − hj)

)

+

t
∫

−∞

(

K(t − s)Au(s) + Q(t − s)u(1)(s)
)

ds = 0, t ∈ R+,

(1◦◦)

u(m)(t) = ym(t), t ∈ R− = (−∞, 0), m = 0, 1;

u(+0) = ϕ0.
(2◦◦)

Following the lines of [24], we introduce the operators F1 and F2, acting in the space
L2((−h, 0), H):

(F1v)(t) = −

n
∑

j=1

χ(−hj , 0)(t)Bjv(−t − hj) −

t
∫

−h

K(−s)v(s − t) ds,

(F2v)(t) = −

n
∑

j=1

χ(−hj, 0)(t)Djv(−t − hj) −

t
∫

−h

Q(−s)v(s − t) ds,

t ∈ [−h, 0),

where χ(−hj , 0)(t) are characteristic functions of the intervals (−hj , 0).
The next statement is useful when studying spectral problems.

Assertion 2.1 Let B0, Bj, Dj (j = 1, 2, . . . , n) be bounded operators in the space
H, and let the operator functions K(t) and Q(t) satisfy the assumptions of Lemma 2.2.
Then any strong solution u(t) of problem (1◦◦), (2◦◦) satisfies the inequalities

d1‖u‖W 1
2
(0,h) ≤

(

‖ϕ‖2
1/2 + ‖F1(Ay0)(t) + F2(y1)(t)‖2

L2(−h,0)

)1/2
≤ d2‖u‖W 1

2
(0,h)

with constants d1 and d2 independent of (ϕ0,F1(Ay0),F2(y1)).

By Uα we denote the set of strong solutions of equation (1◦◦) such that exp (αt)u(t) ∈
L2(R+, H), α ∈ R.

On the base of the canonical system of eigenvectors and adjoint eigenvectors xq,j,0,

xq,j,1, . . . , xq,j,s (j = 1, 2, . . . , pq, s = 0, 1, . . . , rpq) of the operator-valued function  L(λ)
we construct the system of elementary (exponential) solutions of equation (1◦◦):

yq,j,s(t) = exp (λqt)

(

ts

s!
xq,j,0 +

ts−1

(s − 1)!
xq,j,1 + · · · + xq,j,s

)

.



224 V.V. VLASOV

Lemma 2.5 Let Dj = 0 (j = 1, 2, . . . , n), let Q(t) ≡ 0, let Bj (j = 1, 2, . . . , n)
be compact operators in the space H, let the operator function K(t) take values in the
ring of compact operators acting in the space H, and let K(t) = 0, t > h. Then for an
arbitrary α ≥ 0 any strong solution u(t) of problem (1◦◦), (2◦◦) can be expressed in the
form

u(t) =
∑

ℜλq≥−α

pq
∑

j=1

rpq
∑

s=0

cq,j,syq,j,s(t) + wα(t),

where the vector-valued function wα(t) belongs to Uα, and the coefficients cq,j,s satisfy
the inequalities

|cq,j,s| ≤ dq

(

‖ϕ0‖
2
1/2 + ‖F1(Ay0)(t)‖2

L2(−h,0)

)1/2

with the constants dq independent of (ϕ0,F1(Ay0)(t)).

Corollary 2.1 Let the conditions of Lemma 2.5 be satisfied, and let the solution u(t)
belong to Uα. Then there exists δ > 0 such that u(t) ∈ Uα+δ.

Lemma 2.6 Let B0, Bj, and Dj (j = 1, 2, . . . , n) be bounded operators in the space
H, let K(t) and Q(t) be operator functions taking values in the ring of bounded operators
on the space H and such that exp (−κt)K(t) and exp (−κt)Q(t) are Bochner integrable
on the semiaxis R+ for some κ ≥ 0. Then the assertion of Theorem 2.1 is valid for any
constant γ0 = M0, where the constant M0 is defined in Lemma 2.1.

Lemma 2.7 Let the assumptions of Lemma 2.5 with κ = 0 be valid, and let the
operator function ( L(λ)(λI + A)−1)−1 be bounded and continuous in the operator norm
on the imaginary axis and satisfy the inequality

sup
λ : ℜλ≥0

‖ L(λ)(λI + A)−1 − I‖ < 1.

Then the assertion of Theorem 2.1 is valid with the constant γ0 = 0; moreover, any
solution of the problem with γ = γ0 = 0 and f(t) ∈ L2(R+, H) satisfies the relation

lim
t→+∞

‖u(t)‖1/2 = 0.

Remark 2.8 We point out that the proposed approach to definition and understanding
the solution of the problem (1◦), (2◦) is by no means the only one possible.

To date there is an extensive literature (covering mainly the case of finite-dimensional
space) where one can find various approaches to the interpretation of solutions and
various methods of solution and analysis of initial-boundary-value problems for functional
differential equations. Here we restrict ourselves to drawing attention to monographs and
papers [7 – 12] devoted to this subject and papers [13 – 17] treating the case of equations
in Banach and, in particular, in Hilbert spaces.

Our approach to the interpretation of the solutions of FDE in a Hilbert space is based
on the approach presented in [8, 11], and it is its development to FDE in abstract spaces.

We remark that the results that were formulated (Theorems 2.1 – 2.6) may be obtained
in the same way as Theorem 1 [1] and Theorem 1 [3]. Certain differences arise in estimates
of the integral operators in the description of the integral equation which is equivalent
in the sense of solvability of the problem (1), (2).
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We point out that, although there are many papers devoted to the study of functional
differential equations in a Banach space, in particular, in Hilbert space, they consider
mainly delay-type equations. We know of far fewer papers considering abstract equations
of neutral type. The papers closest to the subject of present work are [14 – 15, 18].

In the papers that we know ([14 – 15, 18]) the restrictions on the coefficients Bj(t)A and
Dj(t) (j = 1, 2, . . . , n) of the delays are more severe. For example, in most papers (see,
in particular, [14 – 15]) the authors assume that the coefficients of the delays (Bj(t)A and
Dj(t)) are bounded operators. The authors of [13, 16 – 17] assume in the case of delay-
type equations (Dj(t) ≡ 0, j = 1, 2, . . . , n) that the coefficients Bj(t) are independent
of t.

It is relevant to underline that in articles [42 – 46] we obtained results on Fredholm
solubility and the properties of the strong solutions of FDE of n-th order of convolution
type (including integro-differential equations) the symbols of which are operator-valued
functions representable as operator bundle of n-th order perturbed by operator-valued
functions of special type (bounded or decreasing at infinity). In [44 – 48] we proved also
the result about multiple minimality of the system root vectors and exponential solutions.

In turn in the papers [30 – 33, 35, 40, 46, 47] we proved the results on asymptotic be-
havior of the strong solutions of FDE in a Hilbert space, and in particular, the results
on the nonexistence of nontrivial solutions decreasing more rapidly than any exponent
(the problem of so-called small solutions or the Phraghmen–Lindelöf principle).

3 FDE in Finite-Dimensional Space

We are going to study the asymptotic behavior of the solutions of the following equation

n
∑

j=0

(

Bju(t − hj) + Dj
du

dt
(t − hj)

)

+

h
∫

0

B(s)u(t − s) ds = 0, t ∈ R+. (14)

Here Bj , Dj (j = 0, 1, . . . , n) are (m× m) matrices with constant elements, the real
numbers hj satisfy the inequalities 0 = h0 < h1 < · · · < hn = h, the elements Bij(s) of
the matrix B(s) belong to the space L2((0, h), C).

Let us introduce the matrix-valued function

L(λ) =

n
∑

j=0

(Bj + λDj) exp(−λhj) +

h
∫

0

exp(−λs)B(s) ds, λ ∈ C, (15)

and the complex-valued function l(λ) = detL(λ) often called by the characteristic
quasipolynomial of equation (14).

Let us denote by λq the zeroes of the function l(λ) numbered in increasing order of
its modulars (counting multiplicity).

The eigenvectors appearing in a canonical system of eigen and associated (root) vectors
corresponding to λq we denote by xq,j,0, and associated vector of order s by xq,j,s (the
index j shows where is vector xq,j,0 in a sequence of the vectors in specially chosen basis
of subspace of solutions of the equation L(λq)x = 0).

We introduce the system of exponential (elementary) solutions of equation (14)

yq,j,s(t) = exp (λqt)

(

ts

s!
xq,j,0 +

ts−1

(s − 1)!
xq,j,1 + · · · + xq,j,s

)

. (16)
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Let us denote by W 1
2 ((a, b), Cm) (−∞ < a < b ≤ +∞) the Sobolev space of functions

with values in Cm endowed by the norm

‖v‖W 1
2
(a,b) ≡

( b
∫

a

(

‖v(1)(t)‖2
Cm + ‖v(t)‖2

Cm

)

dt

)
1
2

.

Along with W 1
2 ((a, b), Cm) we introduce W 1

2,γ((a, b), Cm) as the space of functions
with values in Cm endowed by the norm

‖v‖W 1
2,γ(a,b) ≡

( b
∫

a

e−2γt
(

‖v(1)(t)‖2
Cm + ‖v(t)‖2

Cm

)

dt

)
1
2

, γ ∈ R.

We state for equation (14) the following initial conditions

u(t) = y(t), t ∈ [−h, 0], u(+0) = y(−0),

y(t) ∈ W 1
2 ((−h, 0), Cm).

(17)

Definition 3.1 We call a vector-valued function u(t) belonging to the space
W 1

2,γ((−h, +∞), Cm) for certain γ ∈ R a strong solution of the problem (14), (17),

if u(t) satisfies equation (14) almost everywhere on the semiaxis R+ and condition (17).

First of all we formulate an a priori estimate for the strong solutions of the prob-
lem (14), (17).

Lemma 3.1 Let us suppose det D0 6= 0. Then there exists γ0 ≥ 0 such, that for
every γ ≥ γ0 the problem (14), (17) has a unique strong solution u(t) ∈ W 1

2,γ((−h, +∞),

Cm) for every initial function y(t) ∈ W 1
2 ((−h, 0), Cm), and this solution u(t) satisfy the

inequality
‖u‖W 1

2,γ((−h,+∞),Cm) ≤ d‖y‖W 1
2
((−h,0),Cm) (18)

with constant d independent of function y(t).

Keeping in mind Lemma 2.1 let us introduce (in a way similar to that in [7]) the
semigroup Ut of bounded operators, acting in the space W 1

2 ((−h, 0), Cm) according to
the rule

(Uty)(s) = u(t + s), −h ≤ s ≤ 0, t ≥ 0.

Here u(t) is the solution of the problem (14), (17) corresponding to the initial func-
tion y(s).

In the following theorem we present the description of the generator of C0-semi-
group Ut.

Theorem 3.1 Let us suppose det D0 6= 0. Then Ut is C0-semigroup of the operators
acting in the space W 1

2 ((−h, 0), Cm) with generator D such that

(Dφ)(s) =
dφ

ds
(s), s ∈ (−h, 0),

DomD =

{

φ ∈ W 2
2 ((−h, 0), Cm),

m
∑

j=0

(

Bjφ(−hj) + Djφ
(1)(−hj)

)

+

h
∫

0

B(s)φ(−s) ds = 0

}

.

(19)
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Proposition 3.1 Let us suppose det D0 6= 0. Then the spectrum of the operator D
is the set Λ of the zeroes λq of the function l(λ) and the exponential solutions yq,j,s(t)
(see (16)) are its root vectors and form a minimal system in the space W 1

2 ((−h, 0), Cm).

In the following theorem we present the result on completeness of the system of expo-
nential solutions.

Theorem 3.2 Let us suppose det D0 6= 0, det Dn 6= 0. Then the system of elemen-
tary solutions {yq,j,s(t)} is complete in the space W 1

2 ((−h, 0), Cm).

In the following proposition we show the localization of the spectrum of the operator D.

Proposition 2.2 Let us suppose det D0 6= 0, det Dn 6= 0. Then there exist constants
α and β such that the set Λ is lying in the strip {λ : α < ℜλ < β}.

Let us denote by Vλq
the span of the elementary solutions yq,j,s(t), corresponding to

λq, by νq the multiplicity of λq and by κ = sup
λq∈Λ

ℜλq, N = max
λq∈Λ

νq.

Now we present one of our main results on the behavior of the strong solutions of the
problem (14), (17).

Theorem 3.3 Let us suppose that det D0 6= 0, det Dn 6= 0 and the set Λ is separate:

inf
λp 6=λq

(dist(λp, λq)) > 0.

Then any strong solution u(t) of the problem (14), (17) satisfies the inequality

‖u(t + ·)‖W 1
2
(−h,0) ≤ d(t + 1)N−1 exp (κt)‖y‖W 1

2
(−h,0), t ≥ 0, (20)

with constant d independent of y(t).

The theorem is based on the following result.

Theorem 3.4 Let us suppose the conditions of Theorem 3.3 are satisfied.
Then the system of subspaces Vλq

(λq ∈ Λ) forms a Riesz basis of subspaces of the

space W 1
2 ((−h, 0), Cm).

Let Bp(λq) be a disk with radius ρ and with a center at the point λq. We introduce
the domain

Gρ(Λ) ≡ C\
⋃

λq∈Λ

Bρ(λq).

Assertion 3.1 Let det D0 6= 0 and det Dn 6= 0. Then there exists a system of closed
contours Γn = {λ : ℜλ = β, cn ≤ ℑλ ≤ cn+1} ∪ {λ : ℜλ = α, cn ≤ ℑλ ≤ cn+1} ∪ ln+1,
n ∈ Z, which entirely lies in the domain Gρ for some sufficiently small ρ > 0. In
addition, the following conditions are satisfied:

(i) The sequence of real numbers {cn} (n ∈ Z) lying on the semiaxes R+ and R− is
such that 0 < δ ≤ cn+1 − cn ≤ ∆ < +∞; piecewise smooth curves ln, joining the
points (ℜλ = β,ℑλ = cn) and (ℜλ = α,ℑλ = cn) do not intersect, and their
lengths d(ln) are uniformly bounded with respect to n (here δ and ∆ are positive
constants).

(ii) The number N(Γn) of zeros λq (with regard to their multiplicities) lying inside
the contour Γn is uniformly bounded with respect to n:

max
n∈Z

N(Γn) ≤ M < +∞;

(iii) There exists a constant c such that sup
λ∈Γn

|λ| ‖L−1(λ)‖ ≤ c.
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We introduce the set {Pn} of Riesz spectral projections, corresponding to the con-
tours Γn:

(Pnf) = −
1

2πi

∫

Γn

R(λ, D)f dλ, n ∈ Z,

in this case we assume that contours have the counterclockwise orientation.

The following Theorems 3.5 and 3.6 generalize the Theorems 3.3 and 3.4.

Theorem 3.5 Let det D0 6= 0 and det Dn 6= 0. Then there exists a system of
contours Γn (n ∈ Z), satisfying the conditions (i) – (iii) of Assertion 3.1, such that the
corresponding system of subspaces Wn = PnW 1

2 ((−h, 0), Cm) forms a Riesz basis of
subspaces of the space W 1

2 ((−h, 0), Cm).

On the basis of Theorem 3.5 can be obtained the following

Theorem 3.6 Let det D0 6= 0 and det Dn 6= 0. Then any strong solution u(t) of
the problem (14), (17) satisfies the inequality

‖u(t + ·)‖W 1
2
((−h,0),Cm) ≤ d1(t + 1)M−1 exp (κt)‖y‖W 1

2
((−h,0),Cm), t ≥ 0, (21)

with the constant M defined in Assertion 3.1 and constant d1 independent of y(t).

The following theorem generalizes Theorem 3.3 in the case B(s) ≡ 0.

Theorem 3.7 Let D0 6= 0, infλp 6=λq
(dist(λp, λq)) > 0, B(s) ≡ 0.

Then any strong solution u(t) of the problem (14), (17) satisfies the inequality (20).

It is relevant to underline that the estimate (20) is also valid for the well-known
example of Gromova and Zverkin (see [20], and the remarks in the monograph [7]). In
their example m = 1, n = 1, D0 = −D1 = 1, B0 = B1 = a = const > 0, N = 1, κ = 0.
Moreover, if we introduce the following norm:

‖u‖∗W 1
2
(−h,0) =

( 0
∫

−h

(

|u(1)(s)|2 + a2|u(s)|2
)

ds + a
(

|u(0)|2 + |u(−h)|2
)

)
1
2

which is equivalent to the traditional norm in the space W 1
2 ((−h, 0), C) the exponen-

tial solutions eλqt will be orthogonal in scalar product 〈·, ·〉∗
W 1

2

associated with

norm ‖ · ‖∗
W 1

2
(−h,0)

.

In addition to the Theorems 3.3, 3.4 and we present (formulate) results on the as-
ymptotic behavior of the strong solutions of scalar difference-differential equation of the
m-th order.

Let us denote by Wm
2,γ((a, b), C) weighted Sobolev space of complex-valued functions

with norm

‖u‖W m
2,γ(a,b) =

[ b
∫

a

exp (−2γt)

(

m
∑

j=0

|u(j)(t)|2

)

dt

]
1
2

, γ ∈ R.
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We study the following initial value problem:

m
∑

j=0

n
∑

k=0

akju
(j)(t − hk) +

h
∫

0

a(s)u(t − s) ds = 0, t ∈ R+; (22)

u(t) = y(t), t ∈ [−h, 0],

u(j)(+0) = y(j)(−0), j = 0, 1, . . . , m − 1.
(23)

Here akj are the complex coefficients, real numbers hj satisfy the inequalities 0 =
h0 < h1 < · · · < hn = h, the function a(s) ∈ L2((0, h), C), the initial data y(s) ∈
Wm

2 ((−h, 0), C).

Definition 3.2 We call the complex-valued function u(t) belonging to the space
Wm

2,γ((−h, +∞), C) for some γ ≥ 0 the strong solution of the problem (22), (23), if

u(t) satisfies equation (22) almost everywhere on the semiaxis R+ and the initial condi-
tions (23).

Let us denote by νq the multiplicities of the zeroes λq of the function l(λ)

l(λ) =
m
∑

j=0

n
∑

k=0

akjλ
j exp(−λhk) +

h
∫

0

a(s)e−λs ds. (24)

Theorem 3.8 Let us suppose a0m 6= 0, anm 6= 0, and the set Λ of all zeroes λq of
the function l(λ) is separate (that’s inf

λp 6=λq

dist(λq , λp) > 0).

Then the strong solution u(t) of the problem (22), (23) satisfies the inequality

‖u(t + ·)‖W m
2

(−h,0) ≤ d(t + 1)N−1 exp (κt)‖y‖W m
2

(−h,0), t ≥ 0, (25)

with constant d independent of y(t). Here N = max
λq∈Λ

νq, κ = sup
λq∈Λ

ℜλq.

This theorem is based on the following result.

Theorem 3.9 Let us suppose that the conditions of Theorem 3.7 are satisfied.
Then the following system of functions

vq,m =
tr exp(λqt)

(|λq|m + 1)
, λq ∈ Λ, r = 0, 1, . . . , νq − 1; (26)

form a Riesz basis in the space Wm
2 (−h, 0).

Remark 3.1 The inequality anm 6= 0 is essential for Riesz basisness. Indeed it is not
difficult to verify that for the following difference-differential equation

du

dt
+ au(t) + bu(t − h) = 0

the system of normed exponential solutions yq(t) = aqe
λqt (‖yq(t)‖W 1

2
(−h,0) = 1) is not

uniformly minimal. This fact may be easily obtained by calculating the scalar product
〈yq+1(t), yq(t)〉W 1

2
(−h,0).
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Using the well-known asymptotics of the zeroes λq of the quasipolynomial

l(λ) = λ + a + be−λh

one can verify that

〈yq+1(t), yq(t)〉W 1
2
(−h,0) → 1 (q → +∞). (27)

The statement (27) is a contradiction of uniform minimality of the system {yq(t)}λq∈Λ.

Remark 3.2 It is relevant to underline that critical and supercritical cases are realized
for quasipolynomials (24), when

|a0m| = |anm|

(see [19, 20] for more details).

Remark 3.3 It is known that in the case k(s) ≡ 0 constant N satisfies the following
inequality

N ≤ m(n + 1) − 1.

It is relevant to underline that one of the first results about geometrical properties of
elementary solutions of an equation similar to [22] was obtained by Levinson and McCalla
in 1974 in [23]. In [23] a result on the completeness and minimality of the system of
exponential solutions for the equation of the retarded type (ani = 0, i = 1, 2, . . . , n) was
obtained.

The generalization of this result for retarded equations Dj ≡ 0, j = 1, . . . , n in the
space Rn was obtained by Delfour and Manitius in [24]. In turn, the strongest results on
the completeness of the exponential autonomous FDE were obtained by Lunel [25 – 27].
It is important to underline that in [25 – 27] Lunel also considered the problem of so-
called “small solutions” which is deeply connected with the problem of the completeness
of the exponential solutions.

The problem of small solutions was also researched by Hale [7], Henry [28] and Kap-
pel [29] in finite-dimensional space H = Rm(Cm).

Certain results about minimality of the elementary solutions and the problem of small
solutions (Phraghmen–Lindelöf Principle) for FDE in a Hilbert space was obtained by
author in [30 – 33, 40].

In cited papers [30 – 33, 35] one can also find results on the spectral properties of
the operator-valued functions (operator pencils) that are the symbols (characteristic
quasipolynomials) of the autonomous FDE with operator coefficients in a Hilbert space
(see also references in [30 – 33]).

Recently results on Riesz basisness in the space L2((−h, 0), Cm) of the exponential
solutions for FDE of neutral type with a different understanding of solvability and defi-
nition of solutions have been obtained by Lunel and Yakubovich in [34].

For a more complete description of our results on Riesz basisness and estimates of the
strong solutions presented in this article see [2 – 4, 35 – 37, 39].



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 2(2) (2002) 215–232 231

References

[1] Vlasov, V.V. Solubility and properties of solutions of function-differential equations in
Hilbert space. Matematicheskii Sbornik 186(8) (1995) 67–92. [Russian].

[2] Vlasov, V.V. Correct solubility of certain class of functional-differential equations in
Hilbert space. Ross. Acad. Nauk. Dokl. 345(6) (1995) 733–736. [Russian].

[3] Vlasov, V.V. Correct solubility of a class of differential equations with deviating argument
in Hilbert space. Izvestiya Vyzov. Matematika 1 (1996) 22–35. [Russian].

[4] Vlasov, V.V. Certain properties of the system of elementary solutions of difference-differen-
tial equations. Uspekhi Mat. Nauk 51(1) (1996) 143–144. [Russian]

[5] Lions, J.L. and Magenes, E. Problemes aux Limites Non Homogenes et Applications.
Dunod, Paris, 1968.

[6] Kato, T. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1966.

[7] Hale, J. Theory of Functional Differential Equations. Springer-Verlag, New York, 1984.

[8] Azbelev, N., Maksimov, V. and Rakhmatulina, L. Introduction to the Theory of Functional

Differential Equations. Nauka, Moscow, 1991. [Russian].

[9] Myshkis, A.D. Linear Differential Equations with Retarded Argument. Nauka, Moscow,
1972. [Russian].

[10] Kolmanovskii, V.B. and Nosov, V.R. Stability and Periodic Regimes of Regulated Systems

with After-Effect. Nauka, Moscow, 1981. [Russian].

[11] Azbelev, N.V. and Rakhmatullina, L.F. Theory of linear abstract functional differential
equations and applications. Memoirs on Differential Equations and Mathematical Physics

8 (1996) 1–102.

[12] Diekman, O., Gils, S.A. van, Verduyn Lunel, S.M. and Walther, H.O. Delay Equations:

Functional, Complex and Nonlinear Analysis. Springer-Verlag, New York, 1995.

[13] Nakagiri, S. Structural properties of functional differential equations in Banach space.
Osaka J. Math. 25 (1988) 353–398.

[14] Datko, R. Representation of solutions and stability of linear differential-difference equa-
tions in a Banach space. J. Diff. Eqns. 29(1) (1978) 105–166.

[15] Wu, J. Semigroup and integral form on class of partial differential equations with infinite
delay. Diff. and Integral Eqns. 4 (1991) 1325–1351.

[16] Kappel, F. and Kunisch, K. Invariance results for delay and Volterra equations in fractional
order Sobolev spaces. Trans. of Amer. Math. Soc. 304(1) (1987) 1–57.

[17] Kunisch, K. and Shappacher, W. Necessary conditions for partial differential equations
with delay to generate C0-semigroup. J. Diff. Eqns. 50 (1983) 49–79.

[18] Staffans, O.J. Some well-posed functional equations which generate semigroups. J. Diff.

Eqns. 58(2) (1985) 157–191.

[19] El’sgol’ts, E.L. and Norkin, S.B. Introduction to the Theory and Application of Differential

Equations with Deviating Argument. Nauka, Moscow, 1971. [Russian].

[20] Gromova, P.S. and Zverkin, A.M. Trigonometric series whose sum is a continuous un-
bounded function on the real axis and is a solution of a equation with deviating argument.
Diff. Eqns. 4 (1968) 1774–1784. [Russian].

[21] Brumley, W.E. On the asymptotic behavior of solutions of differential-difference equations
of neutral type. J. Diff. Eqns. 7 (1970) 175–188.
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