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via Diotisalvi 2, 56126-Pisa, Italy

Received: February 14, 2002; Revised: December 13, 2002
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1 Introduction

The purpose of this paper is to keep on studying memory effects in electromagnetic sys-
tems, which occur through a rate-type equation for the electric conduction. Its presence
in the system of equations has been recently considered in another work [5], where we
have supposed that the boundary of the solid is a perfect conductor.

In the present work a homogeneous, isotropic and conducting solid, characterized also
by linear constitutive equations for the electric displacement and the magnetic induction,
is considered on supposing that a general dissipative boundary condition holds on its
boundary.

After introducing the field equations, the thermodynamic restrictions on the constitu-
tive equations and the free energy in Section 2, we formulate the initial-boundary value
problem. Thus, we show that a domain of dependence inequality exists for these bodies
and we derive a useful energy estimate.

†Work performed under the auspices of C.N.R. and M.U.R.S.T..
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In Section 4 we prove the existence and uniqueness theorems for the weak and the
strong solution of this evolutive problem; then, we study the asymptotic stability, which
holds under suitable hypotheses on the values of the material constants of the medium.

2 Basic Equations and Thermodynamic Restrictions

Let B be an electromagnetic solid, which occupies at time t a bounded and regular domain
Ω ⊂ R3 with a smooth boundary ∂Ω.

The electromagnetic phenomena of B are described by Maxwell’s equations

Ḋ(x, t) = ∇× H(x, t) − J(x, t) − Jf (x, t), Ḃ(x, t) = −∇× E(x, t), (2.1)

∇ ·D(x, t) = 0, ∇ ·B(x, t) = 0, (2.2)

where E and H denote the electric and magnetic fields, J is the electric current density,
D is the electric displacement, B is the magnetic induction; moreover, Jf is a forced
current density which must be considered as a given function of the position x ∈ Ω and
t ∈ R+. In (2.2)1 we have supposed that the free charge density is zero.

Besides Maxwell’s equations we must consider the thermodynamic principles [1 – 2].
The Dissipation Principle states that for any cyclic process the following inequality

∮

[Ḋ(x, t) ·E(x, t) + Ḃ(x, t) · H(x, t) + J(x, t) ·E(x, t)] dt ≥ 0 (2.3)

holds, the equality sign referring to reversible processes.
The Second Law for smooth isothermal processes yields

ψ̇(x, t) ≤ Ḋ(x, t) · E(x, t) + Ḃ(x, t) · H(x, t) + E(x, t) · J(x, t), (2.4)

where ψ is the free energy.
Let us assume that B is a homogeneous and isotropic conductor, whose constitutive

equations are linear and given by

D(x, t) = εE(x, t), B(x, t) = µH(x, t), (2.5)

where both the dielectric constant ε and the permeability µ are positive constants. For
the electric conduction we suppose that the following rate-type equation

αJ̇(x, t) + J(x, t) = σE(x, t) (2.6)

holds, where α is a positive parameter and σ denotes the conductivity, which is assumed
constant too.

Using (2.5) and the relation derived from (2.6) for E, inequality (2.4) becomes [5]

∮

d

dt

1

2

(

εE2 + µH2 +
α

σ
J2

)

dt+

∮

1

σ
J2 dt ≥ 0, (2.7)

which, taking into account that the integration is made on cycles, yields

σ > 0. (2.8)
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Finally, we can introduce the free energy

ψ(x, t) =
1

2

[

εE2(x, t) + µH2(x, t) +
α

σ
J2(x, t)

]

, (2.9)

which satisfies (2.4) on account of (2.6).

3 Formulation of the Problem and Domain of Dependence

Maxwell’s equations (2.1), taking account of the constitutive equations (2.5), and (2.6)
take the form

∇× H(x, t) − εĖ(x, t) − J(x, t) = f(x, t), (3.1)

∇× E(x, t) + µḢ(x, t) = g(x, t), (3.2)

αJ̇(x, t) + J(x, t) − σE(x, t) = l(x, t), (3.3)

on introducing the source terms g and l, which are two known functions of x and t as
well as f ≡ Jf ; the other two equations (2.2) reduce to

∇ ·E(x, t) = 0, ∇ · H(x, t) = 0, (3.4)

in Ω ×R+.
The initial conditions are

E(x, 0) = E0(x), H(x, 0) = H0(x), J(x, 0) = J0(x) ∀x ∈ Ω, (3.5)

while on ∂Ω we consider a linear dissipative boundary condition, characterized by the
following definition [8].

We first denote by Σ the set of the states, to which E and H belong together J, and
introduce the function space

I(Ω) =

{

E ∈ L2(Ω):

∫

Ω

E(x, t) · ∇φ(x, t) dx = 0 ∀φ ∈ C∞
0 (Ω, R)

}

,

which allows us to consider equations (3.4) automatically satisfied if both E and H belong
to it.

Definition 3.1 A linear and dissipative boundary condition Σ′ ⊂ Σ is a linear closed
subset of I(Ω) × I(Ω) such that C1

0 (Ω) × C1
0 (Ω) ⊂ Σ′ and

∫

∂Ω

E(x, t) × H(x, t) · n(x) da ≥ 0 ∀ (E,H) ∈ Σ′ (3.6)

with the static condition
∫

∂Ω

|H · n|2 da = 0,

where n is the unit outward normal to ∂Ω.

We shall denote by P the problem (3.1) – (3.6).
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Lemma 3.1 The electromagnetic fields E and H satisfy this inequality

χψ(x, t) + E(x, t) × H(x, t) · u(x) ≥ 0, χ = 2(εµ)−1/2, (3.7)

for any unit vector u(x).

Proof From the definition of the free energy, given by (2.9), it follows that

|E(x, t)| ≤ [2ψ(x, t)/ε]1/2, |H(x, t)| ≤ [2ψ(x, t)/µ]1/2 (3.8)

and hence we obtain (3.7) easily.

Let

E(A, t) =

∫

A

ψ(x, t) dx (3.9)

be the total energy for every domain A ⊂ Ω, where ψ is given by (2.9), we have the
following theorem.

Theorem 3.1 If the triplet (E,H,J) is a solution of the problem P, for every (x0, T )
∈ Ω ×R+ the total energy satisfies

E(B(x0, ρ), T ) ≤ E(B(x0, ρ+ χT ), 0) +

T
∫

0

∫

Ω∩B(x0,ρ+χ(T−t))

[l(x, t) · J(x, t)/σ

+ g(x, t) ·H(x, t) − f(x, t) ·E(x, t)] dx dt,

(3.10)

where χ is given by (3.7)2 and B(x0, ρ) = {x ∈ Ω: |x− x0| ≤ ρ}.
Proof We introduce the weighted energy

Eφ(Ω, t) =

∫

Ω

ψ(x, t)φ(x, t) dx, (3.11)

where ψ is expressed by (2.9) in terms of the solution (E,H,J) of the problem P and

φ(x, t) ∈ C∞
0 (Ω, R+), and we consider its derivative with respect to time, where Ė, Ḣ and

J̇ can be eliminated by means of (3.1) – (3.3). Using the identity ∇×E ·H−∇×H ·E =
∇ · (E × H), we get

Ėφ(Ω, t) =

∫

Ω

[l(x, t) · J(x, t)/σ + g(x, t) · H(x, t) − f(x, t) · E(x, t)

− J2(x, t)/σ]φ(x, t) dx +

∫

Ω

[E(x, t) × H(x, t) · ∇φ(x, t) + ψ(x, t)φ̇(x, t)]dx

−
∫

∂Ω

E(x, t) × H(x, t) · n(x)φ(x, t)da.

(3.12)

Following [4], we put φ(x, t) = φδ(x, t) = φδ(y) ∈ C∞
0 (R), a monotonic decreasing

function of y = |x − x0| − ρ − χ(T − t), with ρ > 0, (x0, T ) ∈ Ω × R+, χ given by



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 1–22 5

(3.7)2, such that φδ(y) = 1 for all y ≤ −δ, φδ(y) = 0 for all y > δ, φ
′

δ(y) ≤ 0,

φ̇δ(x, t) = χφ
′

δ(y), ∇φδ(x, t) = φ
′

δ(y)∇|x − x0|, for any (x, t) ∈ Ω × (0, T ). Thus, from
(3.12), using (3.7) and the properties of φδ, it follows an inequality, which, integrated
over (0, T ), yields

Eφδ
(Ω, T ) − Eφδ

(Ω, 0) ≤
T

∫

0

∫

Ω

[l(x, t) · J(x, t)/σ + g(x, t) · H(x, t)

− f(x, t) · E(x, t)]φδ(x, t) dx dt,

(3.13)

whose limit as δ tends to zero gives (3.10), since φδ tends to the characteristic function
of the subset B(x0, ρ+ χ(T − t)).

From this theorem a useful estimate of the energy can be derived as follows.

Corollary 3.1 For any solution (E,H,J) of the problem P we have this inequality

E(Ω, t) ≤ eT

{

E(Ω, 0) +M

T
∫

0

∫

Ω

[f2(x, t) + g2(x, t) + l2(x, t)] dx dt

}

, (3.14)

where M = max{2/ε, 2/µ, 2/(ασ)} and t ∈ (0, T ).

Proof If ρ is large enough, (3.10) yields

E(Ω, t) − E(Ω, 0) ≤
t

∫

0

∫

Ω

[l(x, τ) · J(x, τ)/σ + g(x, τ) ·H(x, τ) − f(x, τ) ·E(x, τ)] dx dτ,

(3.15)
where t ∈ (0, T ).

Applications of Schwarz’s inequality allow us to increase the integral as follows

t
∫

0

∫

Ω

(l · J/σ + g · H− f ·E) dx dτ ≤
t

∫

0

(
∫

Ω

1

σ
l2 dx

)1/2( ∫

Ω

1

σ
J2 dx

)1/2

dτ

+

t
∫

0

(
∫

Ω

g2 dx

)1/2( ∫

Ω

H2 dx

)1/2

dτ +

t
∫

0

(
∫

Ω

f2 dx

)1/2( ∫

Ω

E2 dx

)1/2

dτ

≤
(

t
∫

0

2

ασ

∫

Ω

l2 dx dτ

)1/2( t
∫

0

1

2

∫

Ω

α

σ
J2 dx dτ

)1/2

+

(

t
∫

0

2

µ

∫

Ω

g2 dx dτ

)1/2

×
(

t
∫

0

1

2

∫

Ω

µH2 dx dτ

)1/2

+

(

t
∫

0

2

ε

∫

Ω

f2 dx dτ

)1/2(
t

∫

0

1

2

∫

Ω

εE2 dx dτ

)1/2

≤
[

t
∫

0

1

2

∫

Ω

(

εE2 + µH2 +
α

σ
J2

)

dx dτ

]1/2[(

t
∫

0

2

ε

∫

Ω

f2 dx dτ

)1/2

+

(

t
∫

0

2

µ

∫

Ω

g2 dx dτ

)1/2

+

(

t
∫

0

2

ασ

∫

Ω

l2 dx dτ

)1/2]

.

(3.16)
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Using the elementary inequality 2ab ≤ a2 + b2, we have 2(ab)1/2 ≤ a + b; then,

(a1/2 + b1/2 + c1/2)2 = a+ b+ c+ 2(ab)1/2 + 2(ac)1/2 + 2(bc)1/2 ≤ 4(a+ b+ c) and hence

a1/2 + b1/2 + c1/2 ≤ 2(a+ b+ c)1/2.

Therefore, (3.16) becomes

t
∫

0

∫

Ω

(l · J/σ + g ·H− f · E)dx dτ (3.17)

≤
[

t
∫

0

E(Ω, τ) dτ

]1/2

2

(

t
∫

0

2

ε

∫

Ω

f2 dx dτ +

t
∫

0

2

µ

∫

Ω

g2 dx dτ +

t
∫

0

2

ασ

∫

Ω

l2 dx dτ

)1/2

≤
t

∫

0

E(Ω, τ) dτ +

t
∫

0

∫

Ω

(

2

ε
f2 +

2

µ
g2 +

2

ασ
l2

)

dx dτ

and (3.15), with

ξ(t) =

t
∫

0

E(Ω, τ) dτ, ξ′(t) = E(Ω, t), ξ′(0) = E(Ω, 0), (3.18)

can be written as follows

ξ′(t) − ξ′(0) ≤ ξ(t) +M

T
∫

0

∫

Ω

(f2 + g2 + l2) dx dt. (3.19)

Putting

a = ξ′(0) +M

T
∫

0

∫

Ω

(f2 + g2 + l2) dx dt, (3.20)

(3.19) reduces to

ξ′(t) ≤ ξ(t) + a ∀ t ∈ (0, T ). (3.21)

From the last inequality, integrating with ξ(0) = 0, we have

ξ(t) ≤ a(et − 1), (3.22)

which allows us to derive from (3.21)

ξ′(t) ≤ aet (3.23)

and hence to obtain (3.14).
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4 Existence and Uniqueness Theorem

To study the existence and uniqueness of the solution to the problem P, we consider the
following function spaces

I1(Ω) = {E ∈ I(Ω): ∇× E ∈ L2(Ω)},
H1

α(Ω, (0, T )) = L2((0, T ); I1(Ω)) ∩H1((0, T );L2(Ω)),

H1
β(Ω, (0, T )) = H1((0, T );L2(Ω)),

H(Ω, (0, T )) = {(E,H,J) ∈ H1
α(Ω, (0, T )) ×H1

α(Ω, (0, T ))×H1
β(Ω, (0, T )) :

(E,H) satisfies (3.6) on ∂Ω × (0, T )},
W(Ω, (0, T )) = {(E,H,J) ∈ L2((0, T ); I(Ω)) × L2((0, T ); I(Ω))

× L2((0, T );L2(Ω)): (E,H) satisfies (3.6) on ∂Ω × (0, T )},

together with

W0(Ω, (0, T )) = L2((0, T );L2(Ω)) × L2((0, T ); I(Ω)) × L2((0, T );L2(Ω)),

W1(Ω, (0, T )) = L2((0, T ); I1(Ω)) × L2((0, T ); I1(Ω)) × L2((0, T );L2(Ω)),

where (0, T ) ⊂ R+.

Definition 4.1 We call strong solution of P with sources (f ,g, l) ∈ W0(Ω, (0, T ))
and initial data (E0,H0,J0) ∈ I(Ω)×I(Ω)×L2(Ω) any triplet (E,H,J) ∈ H(Ω, (0, T ))
which satisfies almost everywhere (3.1) – (3.3) in Ω × (0, T ) and (3.5) in Ω.

Definition 4.2 We call weak solution of P with sources (f ,g, l) ∈ W0(Ω, (0, T )) and
initial data (E0,H0,J0) ∈ I(Ω) × I(Ω) × L2(Ω) any triplet (E,H,J) ∈ W(Ω, (0, T ))
such that the following identity

T
∫

0

∫

Ω

{

[εė(x, t) −∇× h(x, t) + p(x, t)] · E(x, t) + [µḣ(x, t) + ∇× e(x, t)]

· H(x, t) +

[

α

σ
ṗ(x, t) − 1

σ
p(x, t) − e(x, t)

]

· J(x, t) − f(x, t) · e(x, t)

+ g(x, t) · h(x, t) + l(x, t) · 1

σ
p(x, t)

}

dx dt−
T

∫

0

∫

∂Ω

[e(x, t) × H(x, t) · n(x)

+ E(x, t) × h(x, t) · n(x)] dx dt +

∫

Ω

[εE0(x) · e(x, 0) + µH0(x) · h(x, 0)

+
α

σ
J0(x) · p(x, 0)] dx = 0,

(4.1)

holds for any (e,h,p) ∈ H(Ω, (0, T )) such that

e(x, T ) = 0, h(x, T ) = 0, p(x, T ) = 0. (4.2)

We now prove the uniqueness and the existence of the weak solution.
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Theorem 4.1 (Uniqueness) The problem P has at most one solution in the sense of
Definition 4.2.

Proof The identity (4.1) must hold for any (e,h,p) ∈ H(Ω, (0, T )); therefore, fol-
lowing [6], we can choose

e(x, t) =

{

(τ − t)a(x) 0 ≤ t ≤ τ

0 τ ≤ t ≤ T
,

h(x, t) =

{

(τ − t)b(x) 0 ≤ t ≤ τ

0 τ ≤ t ≤ T
,

p(x, t) =

{

(τ − t)c(x) 0 ≤ t ≤ τ

0 τ ≤ t ≤ T
,

(4.3)

where τ is a fixed value of (0, T ) and (a,b, c) is an arbitrary triplet of I1(Ω) × I1(Ω) ×
L2(Ω).

Substituting (4.3) into (4.1), we obtain

τ
∫

0

∫

Ω

{

(τ − t)[∇× a(x) · H(x, t) −∇× b(x) · E(x, t) − J(x, t) · c(x)/σ

− (J(x, t) + f(x, t)) · a(x) + g(x, t) · b(x) + (σE(x, t) + l(x, t)) · c(x)/σ]

−
[

εa(x) · E(x, t) + µb(x) · H(x, t) +
α

σ
c(x) · J(x, t)

]}

dx dt

−
τ

∫

0

∫

∂Ω

(τ − t)[a(x) × H(x, t) · n(x) + E(x, t) × b(x) · n(x)]da dt

+ τ

∫

Ω

[

εE0(x) · a(x) + µH0(x) · b(x) +
α

σ
J0(x) · c(x)

]

dx = 0.

(4.4)

Hence, differentiating with respect to τ , we have an identity, which, on introducing
the following notation for the fields in (4.4)

Φ1(x, τ) =

τ
∫

0

Φ(x, t) dt, (4.5)

becomes

∫

Ω

{∇× a(x) ·H1(x, τ) −∇× b(x) · E1(x, τ) − [J1(x, τ) + f1(x, τ)] · a(x)

+ g1(x, τ) · b(x) + [σE1(x, τ) − J1(x, τ) + l1(x, τ)] · c(x)/σ}dx

−
∫

∂Ω

[a(x) × H1(x, τ) · n(x) + E1(x, τ) × b(x) · n(x)]da (4.6)
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+

∫

Ω

[εE0(x) · a(x) + µH0(x) · b(x) +
α

σ
J0(x) · c(x)]dx

−
∫

Ω

[

εa(x) · d
dτ

E1(x, τ) + µb(x) · d
dτ

H1(x, τ) +
α

σ
c(x) · d

dτ
J1(x, τ)

]

dx = 0.

This identity must be applied to the case with (f ,g, l) = (0,0,0) and (E0,H0,J0) =
(0,0,0), which corresponds to the homogeneous system with zero initial data.

We observe that the relation derived in such a case must hold for every (a,b, c) ∈
I1(Ω) × I1(Ω) × L2(Ω); therefore, in particular, it follows that both E1 and H1 belong
to I1(Ω).

Thus, we can put

a(x) = E1(x, τ), b(x) = H1(x, τ), c(x) = J1(x, τ), (4.7)

in the modified relation (4.6), which reduces to

d

dτ

1

2

∫

Ω

[

εE2
1(x, τ) + µH2

1(x, τ) +
α

σ
J2

1(x, τ)

]

dx

= −
∫

Ω

1

σ
J2

1(x, τ) dx −
∫

∂Ω

E1(x, τ) × H1(x, τ) · n(x) da ≤ 0,

(4.8)

on account of (3.6) too.
Since E1(x, 0) = 0, H1(x, 0) = 0, J1(x, 0) = 0, by integrating (4.8) over (0, τ) we get

∫

Ω

[

εE2
1(x, τ) + µH2

1(x, τ) +
α

σ
J2

1(x, τ)

]

dx ≤ 0, (4.9)

from which we have

E1(x, τ) = 0, H1(x, τ) = 0, J1(x, τ) = 0 (4.10)

for almost all τ ∈ (0, T ); therefore, it follows that

E(x, t) = 0, H(x, t) = 0, J(x, t) = 0 (4.11)

in Ω × (0, T ), i.e. the uniqueness of the weak solution.

For the existence of the weak solution we first give this theorem.

Theorem 4.2 Let us consider the sets

R =
{

(f ,g, l) ∈ W0(Ω, (0, T )) : f = ∇× H− εĖ− J, g = ∇× E (4.12)

+ µḢ, l = αJ̇ + J − σE ∀ (E,H,J) ∈ H(Ω, (0, T ))
}

,

S = {(E0,H0,J0) ∈ I1(Ω) × I1(Ω) × L2(Ω)}, (4.13)

T = {(E0,H0,J0) ∈ I(Ω) × I(Ω) × L2(Ω)}, (4.14)
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R× S is dense in W0(Ω, (0, T )) × T .

Proof To prove the density of R× S in W0(Ω, (0, T )) × T , we consider its closure

R× S, which is a closed linear subspace of W0(Ω, (0, T )) × T , and we prove that its
orthogonal complement C contains the null element only.

If we suppose that a non-zero element ((f∗,g∗, l∗), (E∗
0,H

∗
0,J

∗
0)) ∈ C exists, it follows

that for any (E,H,J) ∈ H(Ω, (0, T )) and (E0,H0,J0) ∈ S the following equality

T
∫

0

∫

Ω

[

(∇× H− εĖ− J) · f∗ + (∇× E + µḢ) · g∗ +
1

σ
(αJ̇ + J − σE) · l∗

]

dx dt

+

∫

Ω

(

εE∗
0 · E0 + µH∗

0 ·H0 +
α

σ
J∗

0 · J0

)

dx = 0.

(4.15)

must hold.
In this identity the arbitrariness of (E,H,J) ∈ H(Ω, (0, T )) and (E0,H0,J0) ∈ S

allows us to take first H ≡ 0, J ≡ 0 and E0 = 0, then E ≡ 0, J ≡ 0 and H0 = 0 and
finally E ≡ 0, H ≡ 0 and J0 = 0 and to obtain

T
∫

0

∫

Ω

(εĖ · f∗ −∇× E · g∗ + E · l∗)dx dt = 0, E0 = 0, (4.16)

T
∫

0

∫

Ω

(µḢ · g∗ + ∇× H · f∗)dx dt = 0, H0 = 0, (4.17)

T
∫

0

∫

Ω

[

1

σ
(αJ̇ + J) · l∗ − J · f∗

]

dx dt = 0, J0 = 0, (4.18)

respectively.
The initial conditions, which must be considered in these three identities, suggest to

proceed as we have done for the uniqueness theorem, assuming now

E(x, t) =

{

0 0 ≤ t ≤ τ

(t− τ)A(x) τ ≤ t ≤ T
,

H(x, t) =

{

0 0 ≤ t ≤ τ

(t− τ)B(x) τ ≤ t ≤ T
,

J(x, t) =

{

0 0 ≤ t ≤ τ

(t− τ)C(x) τ ≤ t ≤ T
,

(4.19)

where τ is a fixed value in (0, T ), for every (A,B,C) ∈ I1(Ω)× I1(Ω)×L2(Ω), such that
(3.6) holds; therefore, with this choice (E,H,J) ∈ H(Ω, (0, T )).

Substituting (4.19) into (4.16) – (4.18), we get three relations where the range of inte-
gration (0, T ) reduces to (τ, T ). Then, differentiating with respect to τ the relations so



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 1–22 11

derived and putting

f∗i (x, τ) =

T
∫

τ

f∗(x, t)dt with
d

dτ
f∗i (x, τ) = −f∗(x, τ) (4.20)

and analogous expressions for g∗ and l∗, we obtain the following system

ε

∫

Ω

A(x) · d
dτ

f∗i (x, τ) dx +

∫

Ω

[∇× A(x) · g∗
i (x, τ)

− A(x) · l∗i (x, τ)] dx = 0,

(4.21)

µ

∫

Ω

B(x) · d
dτ

g∗
i (x, τ) dx −

∫

Ω

∇× B(x) · f∗i (x, τ) dx = 0, (4.22)

α

σ

∫

Ω

C(x) · d
dτ

l∗i (x, τ) dx +

∫

Ω

C(x) ·
[

f∗i (x, τ) − 1

σ
l∗i (x, τ)

]

dx = 0. (4.23)

We observe that this system must hold for every (A,B,C) ∈ I1(Ω) × I1(Ω) × L2(Ω);
hence, in particular, it follows that f∗i and g∗

i belong to I1(Ω) and are equal to zero on
∂Ω for the absence of any surface integral in the system.

Thus, we can put

A(x) = f∗i (x, τ), B(x) = g∗
i (x, τ), C(x) = l∗i (x, τ) (4.24)

and, adding (4.21) – (4.23), we get

d

dτ

1

2

∫

Ω

{

ε[f∗i (x, τ)]2 + µ[g∗
i (x, τ)]2 +

α

σ
[l∗i (x, τ)]

2

}

dx

=
1

σ

∫

Ω

[l∗i (x, τ)]
2 dx−

∫

Ω

[∇× f∗i (x, τ) · g∗
i (x, τ) −∇× g∗

i (x, τ) · f∗i (x, τ)] dx.

(4.25)

Hence, taking account of the previous observation, since from (4.20)1 we have f∗i (x, T )
= 0, g∗

i (x, T ) = 0, l∗i (x, T ) = 0, the integral over (τ, T ) yields

1

2

∫

Ω

{

ε[f∗i (x, τ)]2 + µ[g∗
i (x, τ)]

2 +
α

σ
[l∗i (x, τ)]

2

}

dx+

T
∫

τ

∫

Ω

1

σ
[l∗i (x, ξ)]

2 dx dξ = 0. (4.26)

Therefore, we get

f∗(x, t) = 0, g∗(x, t) = 0, l∗(x, t) = 0. (4.27)

Thus, (4.15) reduces to
∫

Ω

(

εE∗
0 ·E0 + µH∗

0 · H0 +
α

σ
J∗

0 · J0

)

dx = 0 ∀ (E0,H0,J0) ∈ S, (4.28)

from which, choosing E(t) ≡ E0, H(t) ≡ 0, J(t) ≡ 0, then H(t) ≡ H0, E(t) ≡ 0,
J(t) ≡ 0 and finally J(t) ≡ J0, E(t) ≡ 0, H(t) ≡ 0, we get

E∗
0 = 0, H∗

0 = 0, J∗
0 = 0. (4.29)

Equations (4.27) and (4.29) are contrary to the assumed hypothesis and hence R×S
is dense in W0(Ω, (0, T )) × T .
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Theorem 4.3 (Existence) There exists the solution of the problem P in the sense of
Definition 4.2 for all data (f ,g, l) ∈ W0(Ω, (0, T )) and (E0,H0,J0) ∈ T .

Proof To show the theorem we must prove that R×S is closed in W0(Ω, (0, T ))×T .

Let (f (n),g(n), l(n)) ∈ R and (E
(n)
0 ,H

(n)
0 ,J

(n)
0 ) ∈ S, n = 1, 2, ..., be two sequences

convergent to (f ,g, l) ∈ W0(Ω, (0, T )) and (E0,H0,J0) ∈ S, respectively; we denote by

(E(n),H(n),J(n)) ∈ H(Ω, (0, T )), n = 1, 2..., the corresponding solutions.

Applying Corollary 3.1 to the differences E(n)−E(m), H(n)−H(m), J(n)−J(m) yields

1

2

∫

Ω

[

ε|E(n) − E(m)|2 + µ|H(n) − H(m)|2 +
α

σ
|J(n) − J(m)|2

]

dx

≤ eT

{[

1

2

∫

Ω

[

ε|E(n)
0 − E

(m)
0 |2 + µ|H(n)

0 − H
(m)
0 |2 +

α

σ
|J(n)

0 − J
(m)
0 |2

]

dx

+M

T
∫

0

∫

Ω

[|f (n) − f (m)|2 + |g(n) − g(m)|2 + |l(n) − l(m)|2]dx dt
}

(4.30)

and hence it follows that (E(n),H(n),J(n)), n = 1, 2..., is a Cauchy sequence; thus, there
exists the limit

lim
n→∞

(E(n),H(n),J(n)) = (E,H,J) ∈ H(Ω, (0, T )). (4.31)

Substituting the solutions and the corresponding sources into equations (3.1) – (3.3)
gives a sequence of identities; the limit as n → +∞ is an analogous identity expressed
in terms of (f ,g, l) and (E,H,J), which is the solution of our problem.

We can now prove the uniqueness and the existence of the strong solution.

Theorem 4.4 There exists a unique strong solution of the problem P in the sense of
Definition 4.1 for all data (f ,g, l) ∈ W1(Ω, (0, T )) and (E0,H0,J0) ∈ I1(Ω) × I1(Ω) ×
L2(Ω).

Proof We observe that a strong solution, when it exists, coincides with the weak

solution of the problem P. In fact, let (Ẽ, H̃, J̃) ∈ H(Ω, (0, T )) be such a strong solution,
corresponding to given initial conditions (E0,H0,J0) ∈ I1(Ω)×I1(Ω)×L2(Ω) and sources
(f ,g, l) ∈ W1(Ω, (0, T )), then it satisfies the system (3.1) – (3.3) almost everywhere. It is
enough to take the integrals over Ω and (0, T ) of the inner product of each equation of
the system with any e, h and p/σ, respectively, such that (e,h,p) ∈ H(Ω, (0, T )) and
e(x, T ) = 0, h(x, T ) = 0, p(x, T ) = 0, and subtract the second and the third relations
from the first one, to arrive at (4.1), which characterizes weak solutions.

Therefore, applying Theorem 4.1, the uniqueness of the strong solution follows at once.
For the existence of the strong solution, let (E′,H′,J′) ∈ W(Ω, (0, T )) be the weak

solution to the problem P, whose existence and uniqueness have been already proved,
corresponding to suitable data (f ′,g′, l′) ∈ W0(Ω, (0, T )) and (E′

0,H
′
0,J

′
0) ∈ I(Ω) ×

I(Ω) × L2(Ω). This solution satisfies (4.1) for any (e,h,p) ∈ H(Ω, (0, T )) such that
e(x, T ) = 0, h(x, T ) = 0, p(x, T ) = 0; therefore, as we have done to prove the unique-
ness theorem, we can choose the form (4.3) for (e,h,p) and derive a relation analogous
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to (4.6), which allows us to conclude that both E′
1 and H′

1, defined by (4.5), belong to
I1(Ω) and that (E′,H′,J′) satisfies the following system

εĖ′
1 = ∇× H′

1 − J′
1 − f ′1 + εE′

0, (4.32)

µḢ′
1 = −∇× E′

1 + g′
1 + µH′

0, (4.33)

αJ̇′
1 = −J′

1 + σE′
1 + l′1 + αJ′

0. (4.34)

We can now fix the suitable data as follows

f ′ = − 1

µ
∇× g +

1

α
l, g′ =

1

ε
∇× f , l′ = −σ

ε
f − 1

α
l, (4.35)

E′
0 =

1

ε
(∇× H0 − J0), H′

0 = − 1

µ
∇× E0, J′

0 =
1

α
(σE0 − J0). (4.36)

Then, we put

Ẽ = E′
1 −

1

ε
f1 + E0, H̃ = H′

1 +
1

µ
g1 + H0, J̃ = J′

1 +
1

α
l1 + J0, (4.37)

which yield

Ė′
1 = ˙̃

E +
1

ε
f , Ḣ′

1 = ˙̃
H− 1

µ
g, J̇′

1 = ˙̃
J − 1

α
l (4.38)

and
Ẽ(x, 0) = E0(x), H̃(x, 0) = H0(x), J̃(x, 0) = J0(x). (4.39)

Substituting (4.38), (4.36) and the expressions of (E′
1,H

′
1,J

′
1), derived from (4.37),

together with the expressions of (f ′1,g
′
1, l

′
1), which follow from (4.35), we have

ε ˙̃
E = ∇× H̃ − J̃− f , (4.40)

µ ˙̃
H = −∇× Ẽ + g, (4.41)

α ˙̃
J = −J̃ + σẼ + l (4.42)

and hence see that (Ẽ, H̃, J̃) is the strong solution of the problem P.

5 Asymptotic Stability

The problem P can be transformed into an equivalent one characterized by zero initial
data, by putting

Ĕ(x, t) = E(x, t) − u(x, t), H̆(x, t) = H(x, t) − v(x, t),

J̆(x, t) = J(x, t) − w(x, t),

where (u,v,w) are regular fields with support compact in Ω × R+ such that

∇ · u(x, t) = 0, ∇ · v(x, t) = 0
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and

u(x, 0) = E0(x), v(x, 0) = H0(x), w(x, 0) = J0(x).

On substituting the expressions of (E,H,J) in terms of (Ĕ, H̆, J̆) and (u,v,w), equa-
tions (3.1) – (3.3) assume a similar form but with the terms

F(x, t) = −f(x, t) − w(x, t) + ∇× v(x, t) − εu̇(x, t),

G(x, t) = g(x, t) −∇× u(x, t) − µv̇(x, t),

I(x, t) = l(x, t) + σu(x, t) − w(x, t) − αẇ(x, t)

to be considered as three new sources in the corresponding equations.
Therefore, without changing the notation of the fields (E,H,J), the new problem is

given by

εĖ(x, t) −∇× H(x, t) + J(x, t) = F(x, t), (5.1)

µḢ(x, t) + ∇× E(x, t) = G(x, t), (5.2)

αJ̇(x, t) + J(x, t) − σE(x, t) = I(x, t) (5.3)

with (3.4), the new initial conditions

E0(x) = 0, H0(x) = 0, J0(x) = 0 (5.4)

and the boundary condition (3.6), which holds because of the hypotheses on u and v,
equal to zero on ∂Ω.

We introduce the Fourier transform of any f : R+ → Rn, identified with the causal
extension on (−∞, 0), where f is put equal to zero, i.e.

f̂(ω) =

+∞
∫

−∞

f(t) exp[−iωt]dt, (5.5)

and recall that if f , f ′ ∈ L2(R+) then f̂ , f̂ ′ ∈ L2(R) and we have

f̂ ′(ω) = iωf̂(ω) − f(0), f(0) =
1

π

+∞
∫

−∞

f̂(ω) dω. (5.6)

We denote by P’ the new problem (5.1) – (5.4) with the boundary condition (3.6), for
which, since it holds for any t ∈ R+, Plancherel’s theorem justifies the assumption that

∫

∂Ω

Ê(x, ω) × Ĥ∗(x, ω) · n(x) da ≥ 0 ∀ (Ê, Ĥ) ∈ Σ̂′, ∀ (x, ω) ∈ ∂Ω × R, (5.7)

where ∗ denotes the complex conjugate and Σ̂′ is the set of Fourier’s transforms of the
electromagnetic fields (E,H) ∈ Σ′.
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We consider the function spaces of Section 4, where (0, T ) is changed into R+, and,
in particular, we introduce

W2(Ω,R
+) =

{

(F,G, I) ∈ W0(Ω,R
+) :

∂n+1

∂tn+1
(F,G, I) ∈ W0(Ω,R

+),

[

∂n

∂tn
(F,G, I)

]

t=0

= 0 (n = 0, 1, 2, 3)

}

,

where the last conditions, on the initial values of the new sources and of their derivatives
with respect to time, are satisfied by choosing the derivatives of u, v, w at t = 0
opportunely.

When the Fourier transforms with respect to time are considered, the function spaces
can be distinguished with a superposed ;̂ in particular W(Ω,R+) becomes

Ŵ(Ω,R) =
{

(Ê, Ĥ, Ĵ) ∈ L2(R; I(Ω)) × L2(R; I(Ω)) × L2(R;L2(Ω)): iωÊ,

iωĤ ∈ L2(R; I(Ω)) and (Ê, Ĥ) satisfies (5.7) on ∂Ω × R
}

and analogously for Ŵ2(Ω,R).

Theorem 5.1 If

I(ω) =

∫

Ω

(

|Ê|2 + |Ĥ|2 + |Ĵ|2 + |∇ × Ê|2 + |∇ × Ĥ|2
)

dx, (5.8)

under suitable conditions on the material constants the following inequality

(min{ε, µ})2I(ω) ≤ δ2(ω)

∫

Ω

(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx (5.9)

holds with δ(ω) a positive function of the material constants for any ω ∈ R.

Proof Application of Fourier’s transform to the system (5.1) – (5.3), taking account
of (5.6)1 and (5.4), yields

iωεÊ(x, ω) −∇× Ĥ(x, ω) + Ĵ(x, ω) = F̂(x, ω), (5.10)

iωµĤ(x, ω) + ∇× Ê(x, ω) = Ĝ(x, ω), (5.11)

(1 + iωα)Ĵ(x, ω) − σÊ(x, ω) = Î(x, ω). (5.12)

From this system, the integrals over Ω of the inner products of the first equation with

Ê∗, Ĵ∗ and ∇× Ĥ∗ yield

iωε

∫

Ω

|Ê|2 dx−
∫

Ω

∇× Ĥ · Ê∗ dx +

∫

Ω

Ĵ · Ê∗ dx =

∫

Ω

F̂ · Ê∗ dx, (5.13)

iωε

∫

Ω

Ê · Ĵ∗ dx−
∫

Ω

∇× Ĥ · Ĵ∗ dx+

∫

Ω

|Ĵ|2 dx =

∫

Ω

F̂ · Ĵ∗ dx, (5.14)

iωε

∫

Ω

Ê ·∇ × Ĥ∗ dx−
∫

Ω

|∇ × Ĥ|2 dx+

∫

Ω

Ĵ ·∇ × Ĥ∗ dx =

∫

Ω

F̂ ·∇ × Ĥ∗ dx; (5.15)
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analogously, the inner products of the conjugate of the second equation with Ĥ and

∇× Ê give

−iωµ
∫

Ω

|Ĥ|2 dx+

∫

Ω

∇× Ê∗ · Ĥ dx =

∫

Ω

Ĝ∗ · Ĥ dx, (5.16)

−iωµ
∫

Ω

Ĥ∗ · ∇ × Ê dx+

∫

Ω

|∇ × Ê|2 dx =

∫

Ω

Ĝ∗ · ∇ × Ê dx, (5.17)

and finally from the inner products of the conjugate of the third equation with Ĵ and Ê

it follows that

(1 − iωα)

∫

Ω

|Ĵ|2 dx− σ

∫

Ω

Ê∗ · Ĵ dx =

∫

Ω

Î∗ · Ĵ dx, (5.18)

(1 − iωα)

∫

Ω

Ĵ∗ · Ê dx− σ

∫

Ω

|Ê|2 dx =

∫

Ω

Î∗ · Ê dx. (5.19)

Let ω 6= 0. The real parts of (5.19), (5.18), (5.17) and (5.15) yield

σ

∫

Ω

|Ê|2 dx = −Re

∫

Ω

Î∗ · Ê dx + Re

∫

Ω

Ĵ∗ · Ê dx+ ωα Im

∫

Ω

Ĵ∗ · Ê dx, (5.20)

∫

Ω

|Ĵ|2 dx = Re

∫

Ω

Î∗ · Ĵ dx+ σRe

∫

Ω

Ê∗ · Ĵ dx, (5.21)

∫

Ω

|∇ × Ê|2 dx = Re

∫

Ω

Ĝ∗ · ∇ × Ê dx− ωµ Im

∫

Ω

Ĥ∗ · ∇ × Ê dx, (5.22)

∫

Ω

|∇ × Ĥ|2 dx = −Re

∫

Ω

F̂ · ∇ × Ĥ∗ dx

− ωε Im

∫

Ω

Ê · ∇ × Ĥ∗ dx+ Re

∫

Ω

Ĵ · ∇ × Ĥ∗ dx;

(5.23)

while the imaginary part of (5.16) gives

µ

∫

Ω

|Ĥ|2 dx =
1

ω

(

− Im

∫

Ω

Ĝ∗ · Ĥ dx + Im

∫

Ω

∇× Ê∗ · Ĥ dx

)

. (5.24)

In (5.20) – (5.24) we have some quantities to be derived.
First, from the real part of (5.16) we have at once

Re

∫

Ω

∇× Ê∗ · Ĥ dx = Re

∫

Ω

Ĝ∗ · Ĥ dx, (5.25)
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which, taking account of (5.7), allows us to derive from the real part of (5.13)

Re

∫

Ω

Ĵ · Ê∗ dx = Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da; (5.26)

therefore, (5.21) becomes
∫

Ω

|Ĵ|2 dx = Re

∫

Ω

Î∗ · Ĵ dx+ σ

(

Re

∫

Ω

F̂ · Ê∗ dx

+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

.

(5.27)

Then, we consider (5.19), whose imaginary part, on account of (5.26), yields

Im

∫

Ω

Ĵ∗ · Ê dx = Im

∫

Ω

Î∗ · Ê dx+ ωα

(

Re

∫

Ω

F̂ · Ê∗ dx

+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

,

(5.28)

whence, taking account of (5.26) too, (5.20) assumes the following form

σ

∫

Ω

|Ê|2 dx = −Re

∫

Ω

Î∗ · Ê dx+ ωα Im

∫

Ω

Î∗ · Ê dx

+ (1 + ω2α2)

[

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
]

.

(5.29)

Substituting this relation into the imaginary part of (5.13) we get

Im

∫

Ω

∇× Ĥ · Ê∗ dx = − Im

∫

Ω

F̂ · Ê∗ dx+

(

ω2 αε

σ
− 1

)

Im

∫

Ω

Î∗ · Ê dx

− ω
ε

σ
Re

∫

Ω

Î∗ · Ê dx+ ω

[

ε

σ
(1 + ω2α2) − α

](

Re

∫

Ω

F̂ · Ê∗ dx

+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

(5.30)

useful to rewrite (5.24) and (5.22) as follows

µ

∫

Ω

|Ĥ|2 dx = − 1

ω

(

Im

∫

Ω

Ĝ∗ · Ĥ dx+ Im

∫

Ω

F̂ · Ê∗ dx

)

− ε

σ
Re

∫

Ω

Î∗ · Ê dx

+
1

ω

(

ω2αε

σ
− 1

)

Im

∫

Ω

Î∗ · Ê dx+

[

ε

σ
(1 + ω2α2) − α

](

Re

∫

Ω

F̂ · Ê∗ dx

+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

,

(5.31)
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∫

Ω

|∇ × Ê|2 dx = Re

∫

Ω

Ĝ∗ · ∇ × Ê dx + ωµ

{

− Im

∫

Ω

F̂ · Ê∗ dx

− ω
ε

σ
Re

∫

Ω

Î∗ · Ê dx +

(

ω2 αε

σ
− 1

)

Im

∫

Ω

Î∗ · Ê dx+ ω

[

ε

σ
(1 + ω2α2) − α

]

×
(

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)}

.

(5.32)

Finally, for (5.23) we must derive its last term, which follows from the real part of
(5.14), using (5.27) and (5.28), i.e.

Re

∫

Ω

∇× Ĥ · Ĵ∗ dx = −Re

∫

Ω

F̂ · Ĵ∗ dx − ωε Im

∫

Ω

Î∗ · Ê dx + Re

∫

Ω

Î∗ · Ĵ dx

+ (σ − ω2εα)

(

Re

∫

Ω

F̂ · Ê∗ dx + Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

,

(5.33)

hence, we have

∫

Ω

|∇ × Ĥ|2 dx = −Re

∫

Ω

F̂ · ∇ × Ĥ∗ dx+ ωε

[

− Im

∫

Ω

F̂ · Ê∗ dx

+ ω
ε

σ

(

− Re

∫

Ω

Î∗ · Ê dx+ ωα Im

∫

Ω

Î∗ · Ê dx

)]

− Re

∫

Ω

F̂ · Ĵ∗ dx

− 2ωε Im

∫

Ω

Î∗ · Ê dx+ Re

∫

Ω

Î∗ · Ĵ dx+

{

σ + ω2ε

[

ε

σ
(1 + ω2α2) − 2α

]}

×
(

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx−
∫

∂Ω

Ê∗ × Ĥ · n da
)

.

(5.34)

Thus, from (5.29) multiplied by ε/σ, (5.31), (5.27), (5.32) and (5.34) we have

∫

Ω

(

ε|Ê|2 + µ|Ĥ|2 + |Ĵ|2 + |∇ × Ê|2 + |∇ × Ĥ|2
)

dx =

{

ε

σ
(1 + α2ω2)[2 + (ε+ µ)ω2]

+ 2σ − α[1 + (2ε+ µ)ω2]

}(

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx

−
∫

∂Ω

Ê∗ × Ĥ · n da
)

− 1

ω
[1 + (ε+ µ)ω2] Im

∫

Ω

F̂ · Ê∗ dx− Re

∫

Ω

F̂ · Ĵ∗ dx (5.35)

− Re

∫

Ω

F̂ · ∇ × Ĥ∗ dx− 1

ω
Im

∫

Ω

Ĝ∗ · Ĥ dx+ Re

∫

Ω

Ĝ∗ · ∇ × Ê dx
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− ε

σ
[2 + (ε+ µ)ω2] Re

∫

Ω

Î∗ · Ê dx+
1

ω

{

εα

σ
ω2[2 + (ε+ µ)ω2]

− [1 + (2ε+ µ)ω2]

}

Im

∫

Ω

Î∗ · Ê dx+ 2 Re

∫

Ω

Î∗ · Ĵ dx.

In this equality we have the presence of a surface integral, which must satisfy the
boundary condition (5.7). This term can be neglected if its coefficient is not positive,
that is when

ϕ(ξ) ≡ ε

σ
α2(ε+ µ)ξ2 +

[

ε

σ
(ε+ µ+ 2α2) − α(2ε+ µ)

]

ξ + 2
ε

σ
+ 2σ − α ≥ 0 (5.36)

for all ω ∈ R, with ξ = ω2.

We give some sufficient conditions to can neglect this boundary term in (5.35).

We first examine the case when all the coefficients in (5.36) are positive or null; thus,
we impose that the following system

{

2εα2 − (2ε+ µ)σα+ ε(ε+ µ) ≥ 0,

2σ2 − ασ + 2ε ≥ 0
(5.37)

must be satisfied for all positive values of the material constants.

If we consider the first inequality in function of α and the second of σ, the system is
always satisfied if the discriminants are not greater than zero, i.e. when σ and α satisfy
these inequalities

σ ≤ 2ε

2ε+ µ

√

2(ε+ µ), α ≤ 4
√
ε. (5.38)

Moreover, some other particular cases can be considered by imposing that be positive
or null the sum of the first two terms or the sum of the second and the third term of
each inequality in (5.37). Thus, we see that if one of the following conditions, relative
to (5.37)1,

α

σ
≥ 2ε+ µ

2ε
or ασ ≤ ε(ε+ µ)

2ε+ µ
(5.39)

is satisfied together with one of the other two conditions, corresponding now to the second
inequality of (5.37),

α ≤ 2σ or ασ ≤ 2ε, (5.40)

then the system (5.37) holds and the boundary term is negligible in (5.35).

Finally, another interesting condition on the parameters can be easily derived by
neglecting the boundary terms in (5.27) and (5.29), since their coefficients are negative
for all ω ∈ R, and by assuming ε/σ ≥ α, which allows us to neglect the boundary terms
also in (5.31) and (5.32), while in (5.34) we can consider ε/σ ≥ 2α. Therefore, the other
sufficient condition is the following one

ασ ≤ ε

2
. (5.41)
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This inequality is a simpler restriction on the product of α and σ for it is expressed
in term of ε only. However, if we consider that the previous case, when (5.39)2 holds

together with (5.40)2, since 2ε > ε(ε+µ)
2ε+µ , is expressed by the unique condition

ασ ≤ ε(ε+ µ)

2ε+ µ
, (5.42)

we see that (5.41) is more restrictive than (5.42), where also µ is interested,

being
ε

2
<
ε(ε+ µ)

2ε+ µ
.

Thus, the equality (5.35) becomes an inequality whenever the boundary term can be
neglected. In these cases, let us consider the sum of the moduli of the coefficients of the
real and imaginary parts of the same integral; then we denote by γ(ω) the maximum of
these quantities and we get

min{ε, µ}I(ω) ≤ γ(ω)

[(
∫

Ω

|F̂|2 dx
)1/2( ∫

Ω

|Ê|2 dx
)1/2

+

(
∫

Ω

|F̂|2 dx
)1/2( ∫

Ω

|Ĵ|2 dx
)1/2

+

(
∫

Ω

|F̂|2 dx
)1/2( ∫

Ω

|∇ × Ĥ|2 dx
)1/2

+

(
∫

Ω

|Ĝ|2 dx
)1/2( ∫

Ω

|Ĥ|2 dx
)1/2

+

(
∫

Ω

|Ĝ|2 dx
)1/2( ∫

Ω

|∇ × Ê|2 dx
)1/2

+

(
∫

Ω

|Î|2 dx
)1/2( ∫

Ω

|Ê|2 dx
)1/2

+

(
∫

Ω

|Î|2 dx
)1/2( ∫

Ω

|Ĵ|2 dx
)1/2]

≤ 7γ(ω)

[
∫

Ω

(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx

]1/2

[I(ω)]1/2.

(5.43)

Hence we have (5.9) immediately.
Let ω = 0. In this case we are interested in finding static solutions, consequently

(5.10) – (5.12) must be considered with ω = 0, as well as (5.13) – (5.19). Proceeding as
we have done previously, we see that (5.35) reduces to

I0(0) ≡
∫

Ω

(

|Ê|2 + |Ĵ|2 + |∇ × Ê|2 + |∇ × Ĥ|2
)

dx

=

(

1

σ
+ 2σ

)(

Re

∫

Ω

F̂ · Ê∗ dx+ Re

∫

Ω

Ĝ∗ · Ĥ dx

)

− Re

∫

Ω

F̂ · Ĵ∗ dx

− Re

∫

Ω

F̂ · ∇ × Ĥ∗ dx + Re

∫

Ω

Ĝ∗ · ∇ × Ê dx− 1

σ
Re

∫

Ω

Î∗ · Ê dx (5.44)

+ 2 Re

∫

Ω

Î∗ · Ĵ dx −
(

2σ +
1

σ

)
∫

∂Ω

Ê∗ × Ĥ · n da
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≤ c

[
∫

Ω

(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx

]1/2

[I0(0)]1/2,

where all the fields are functions of (x, 0) and c is a constant [9]. Hence it follows that

I0(0) ≤ C

∫

Ω

[

|F̂(x, 0)|2 + |Ĝ(x, 0)|2 + |Î(x, 0)|2
]

dx, (5.45)

i.e. a relation similar to (5.9) with a constant C.

Theorem 5.2 Let the sources be (F,G, I) ∈ W2(Ω,R
+), then the inverse Fourier

transforms of (Ê, Ĥ, Ĵ) ∈ Ĥ(Ω,R) exist and are L2-functions with zero initial data.

Proof In (5.9) δ(ω) is a positive function of ω ∈ R and approaches infinity as ω4;
such a condition, together with the hypotheses on the sources, states that the integral
on R exists for the right-hand side of (5.9), that is

+∞
∫

−∞

∫

Ω

δ2(ω)
(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx dω < +∞. (5.46)

Therefore, (5.9) gives

+∞
∫

−∞

I(ω) dω ≤
+∞
∫

−∞

∫

Ω

(

δ(ω)

min{ε, µ}

)2
(

|F̂|2 + |Ĝ|2 + |Î|2
)

dx dω, (5.47)

i.e. there exists finite the integral over R of I(ω).
Application of Plancherel’s theorem yields the existence of the inverse Fourier trans-

forms of (Ê, Ĥ, Ĵ); moreover, these solutions have the asymptotic behaviour which follows

by belonging to the space Ĥ(Ω,R).
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