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Abstract: We studied nonimpulsive orbital transfers under thrust errors
through algebraic analysis method. We analyzed the relationship among fi-
nal semi-major axis and mean deviations in the thrust vector. The nonlinear
(near parabolic) relations were found, confirming the Monte-Carlo simulations
realized in the numerical phase this investigation. These results suggest and
partially characterize the progressive deformation of the final semi-major axis
along the propulsive arc, turning 3sigma ellipsoids into banana shaped vol-
umes curved to the center of attraction (we call them “bananoids”) due to
the loss of optimality of the actual (with errors) trajectories with respect to
the nominal (no errors) trajectory.
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1 Introduction

According to Marec [1], the orbital transfer of a space vehicle under the gravitational
attraction of a celestial body is one of the classical and important problems of Astronau-
tics. Since the early decades of XX century, many researchers dedicated much attention
and interest to this problem. Ideally, we can say that, to transfer a space vehicle from one
orbit to other consists of changing its initial state, defined by its position, velocity and
mass (~r0, ~v0, m0)in a certain initial instant t0, to another state, defined by its respective
state variables ( ~rf , ~vf , mf )in a final instant tf > t0. When the transfer is done aiming to
minimize the fuel spent, we define the “Fundamental Problem of Astronautics”, that is,
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to transfer a vehicle, changing its initial state to a final state with the smallest possible
fuel spent (m0 − mf). According to Jesus [2], orbital transfers are done to meet some
objectives under some restrictions that can be put into the problem to obtain the best
possible performance for a particular mission. Examples of objectives are minimum fuel
consumption, minimum transfer time, maximum final velocity, etc. Examples of restric-
tions are rendezvous of two vehicles, the transfer between two given points in a fixed time
(Lambert problem), etc. In this way, we can consider that the orbital transfer problem,
despite basic in nature, present challenges with respect to its general characteristics since
diverse natural, modeling, economic, operational limitations need to be considered in its
formulation. So, to find the desired optimal solutions, different problem formulations
and optimization criteria can be used to best approximate it to the actual case. The
actuator models are normally used in the orbital transfer or correction problems. The
infinite propulsion, where the source is modeled as being capable of applying a large
magnitude but small duration force (with respect to the orbital period) is the most used,
but the non-impulsive hypothesis (finite propulsion) is also found in the literature under
many different constraints. The applications of these maneuvers include: small orbital
corrections of an Earth artificial satellite, to put a satellite in geostationary orbit, the
rendezvous or intercept missions, the long interplanetary travels (like “Voyager” and “Pi-
oneer” missions), the transportation and assembly of the International Space Station. In
Brazil, they include: to put and to keep in orbit the Remote Sensing Satellites 1,2 and
China-Brazil Earth Resources Satellites 1,2.

Most space missions need orbit transfers to reach their goals. These orbits are reached
sequentially through transfers between them, by changing at least one component of
the vehicle velocity or position vectors, that is, at least one of corresponding Keplerian
elements by firing thrusts, apogee motors, or other force sources. The actual thrust vector
has errors in magnitude and/or in direction with respect to the ideal thrust vector.

The magnitude errors are caused by many and unpredictable reasons as: limitations
in the manufacturing process (mechanical imprecision due to mechanical and chemical
machining, tolerances in the components, etc.) in the loading process (tolerances in the
physical and chemical characteristics of the used substances, etc.), in the thrust oper-
ation (pulsed, blow-down, under the actual conditions, etc.). They can be modeled as:
1) a constant but random deviation (“random bias”) with respect to the ideal magni-
tude, resulting in a constant actual mean magnitude with a certain probability density
function (uniform in the worst case, Gaussian in the best case); and/or 2) random fluc-
tuations around this actual mean magnitude with little or no correlation in time (“pink
or white noise”) and with a certain probability density function (uniform in the worst
case, Gaussian in the best case).

The direction errors of misalignment’s errors with respect to its nominal action line are
caused by many and unpredictable reasons as: linear and angular displacements during
the vehicle assembly and particularly, during the thrusts assembly; displacements of the
center of mass during the injection in orbit/trajectory, and during the vehicle operation,
due to movable parts as solar panels, antennas, booms, pendulums, etc., or due to fuel
consumption, specially during their firing; many and asymmetric thrusts firing at the
same time, dead zones existing in all attitude controls used during the firing; partial
deviation of some jet plumes by the vehicle structure (plume impingement); etc. They
can be modeled like the magnitude errors. These are the magnitude and direction errors
models used in the work of Jesus [2].
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So, most space missions need trajectory/orbit transfers and they have linear and/or
angular misalignments that displace the vehicle with respect its nominal directions. The
mathematical treatment for these deviations can be done under many approaches (de-
terministic, probabilistic, minimax, etc.)

In the deterministic approach: we highlight Schwende and Strobl [3], Tandon [4],
Rodrigues [5], Santos-Paulo [6], Rocco [7] and Schultz [8], among others.

In the probabilistic approach Porcelli and Vogel [9] presented an algorithm for the
determination of the orbit insertion errors in biimpulsive noncoplanar orbital transfers
(perigee and apogee), using the covariance matrices of the sources of errors. Adams and
Melton [10] extended such algorithm to ascent transfers under a finite thrust, modeled as
a sequence of impulsive burns. They developed an algorithm to compute the propagation
of the navigation and direction errors among the nominal trajectory, with finite perigee
burns. Rao [11] built a semi-analytic theory to extend covariance analysis to long-term
errors on elliptical orbits. Howell and Gordon [12] also applied covariance analysis to the
orbit determination errors and they develop a station-keeping strategy of Sun-Earth L1
libration point orbits. Junkins, et al. [13] and Junkins [14] discussed the precision of the
error covariance matrix method through nonlinear transformations of coordinates. He
also found a progressive deformation of the initial ellipsoid of trajectory distribution (due
to Gaussian initial condition errors), that was not anticipated by the covariance analysis
of linearized models with zero mean errors. Its main results also characterize how close
or how far are Monte-Carlo analysis and covariance analysis for those examples. Carlton-
Wippern [15] proposed differential equations in polar coordinates for the growth of the
mean position errors of satellites (due to errors in the initial conditions or in the drag),
by using an approximation of Langevin’s equation and a first order perturbation theory.
Alfriend [16] studied the effects of drag uncertainty via covariance analysis.

In the minimax approach: see Russian authors, mainly.

However, all these analyses are approximated. This motivated an exhaustive numer-
ical (see [17, 18]) but exact analysis (by Monte-Carlo), and a partial algebraic analysis
done by Jesus [2]. In this work we present the first part of the algebraic analysis of
nonimpulsive orbital transfers under thrust errors. The results were obtained for two
transfers: the first, a low thrust transfer between high coplanar orbits (we call it “theo-
retical transfer”), used by Biggs [19, 20] and Prado [21]; the second, a high thrust transfer
between middle noncoplanar orbits (the first transfer of the EUTELSAT II-F2 satellite,
we call it “practical transfer”) implemented by Kuga, et al. [22]. The simulations were
done for both transfers with minimum fuel consumption. The “pitch” and “yaw” angles
were taken as control variables such that the overall minimum fuel consumption defines
each burn of the thrusts. The errors sources that we considered were the magnitude
errors, the “pitch” and “yaw” direction errors of the thrust vector, as causes of the de-
viations found in the several Keplerian elements of the transfer trajectory. These errors
sources (random-bias and white-noise errors) introduced in the orbital transfer dynamics
produce effects in the final orbit Keplerian elements in the final instant.

In this work we present an algebraic analysis of the effects of these errors on the
mean of the deviations of the Keplerian elements of the final orbit with respect to the
reference orbit (final orbit without errors in the thrust vector) for both transfers. The
approach that we used in this work for the treatment of the errors was the probabilistic
one, assuming these as having zero mean Gaussian probability density function or having
zero mean Uniform probability density function.
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Figure 2.1. Reference systems used in this work.

2 Mathematical Formulation and Coordinates Systems

The orbital transfer problem studied can be formulated in the following way:

1) Globally minimize the performance index: J = m(t0) − m(tf );
2) With respect to α : [t0, tf ] → R (“pitch” angle) and β : [t0, tf ] → R (“yaw” angle)

with α, β ∈ C−1 in [t0, tf ];
3) Subject to the dynamics in inertial coordinates Xi, Yi, Zi of Figure 2.1: ∨t ∈ [t0, tf ];

m(t)
d2X

dt2
= −µm(t)

X

R3
+ Fx, (1)

m(t)
d2Y

dt2
= −µm(t)

Y

R3
+ Fy , (2)

m(t)
d2Z

dt2
= −µm(t)

Z

R3
+ Fz , (3)

Fx = F
[

cosβ sin α(cos Ω cos θ − sin Ω cos I sin θ) + sinβ sinΩ sin I

− cosβ cosα(cosΩ sin θ + sin Ω cos I cos θ)
] (4)

Fy = F
[

cosβ sin α(sin Ω cos θ + cosΩ cos I sin θ) − sin β cosΩ sin I

− cosβ cosα(sin Ω sin θ − cosΩ cos I cos θ)
]

,
(5)

Fz = F (cos β sinα sin I sin θ + cosβ cosα sin I cos θ + sinβ cos I), (6)

m(t) = m(t0) + ṁ(t − t0) (7)

with ṁ < 0

F ∼= |ṁ|c. (8)
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Or in orbital coordinates (radial R, transverse T, and binormal N) of Figure 2.1:

m(t)aR(t) = F cosβ(t) sin α(t) − µm(t)

R2(t)
, (9)

m(t)aT (t) = F cosβ(t) cos α(t), (10)

m(t)aN (t) = F sin β(t), (11)

aR(t) = V̇R − V 2
T

R
− V 2

N

R
, (12)

aT (t) = V̇T +
VRVT

R
− VN İ cos θ − VN Ω̇ sin I sin θ, (13)

aN(t) = V̇N +
VRVN

R
+ VT İ cos θ + VT Ω̇ sin I sin θ, (14)

VR = Ṙ, (15)

VT = R(Ω̇ cos I + θ̇), (16)

VN = R(−Ω̇ sin I cos θ + İ sin θ), (17)

θ = ω + f ; (18)

4) Given the initial and final orbits, and the parameters of the problem (m(t0), c, . . . ).
These equations were obtained by: 1) writing in coordinates of the dexterous rectangular
reference system with inertial directions 0XiYiZi the Newton’s laws for the motion of a
satellite S with mass m, with respect to this reference system, centered in the Earth’s
center of mass 0 with Xi axis toward the Vernal point, XiYi plane coincident with
Earth’s Equator, and Zi axis toward the Polar Star approximately; 2) rewriting them
in coordinates of the dexterous rectangular reference system with radial, transverse,
binormal directions SRTN , centered in the satellite center of mass S; helped by 3) a
parallel system with 0X0Y0Z0 directions, centered in the Earth’s center of mass 0, X0

axis toward the satellite S, X0Y0 plane coincident with the plane established by the

position ~R and velocity ~V vectors of the satellite, and Z0 axis perpendicular to this
plane; and helped by 4) the instantaneous Keplerian coordinates (Ω, I, ω, f, a, e). These
equations were later rewritten and simulated by using 5) 9 state variables, defined and
used by Biggs [19, 20] and Prado [21], as functions of an independent variable s shown in
Figure 2.2.

The non-ideal thrust vector, with magnitude and direction errors, is given by:

~FE = ~F + ∆~F , (19)

~FE = ~FR + ~FT + ~FN , (20)

| ~FE | = FE , |~F | = F, (21)

FR = (F + ∆F ) cos(β + ∆β) sin(α + ∆α), (22)

FT = (F + ∆F ) cos(β + ∆β) cos(α + ∆α), (23)

FN = (F + ∆F ) sin(β + ∆β), (24)
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Figure 2.2. Thrust vector applied to the satellite and the s variable.

where: ~F , ~FE and ∆~F are: the thrust vector without errors, the thrust vector with errors,
and the error in the thrust vector, respectively; ∆α and ∆β are the errors in the “pitch”
and in the “yaw” angles, respectively; FR, FT and FN are the components of the thrust

vector with errors ~FE in the radial, transverse and normal directions, respectively. In this
way, for each implementation of the orbital transfer arc, values of α and β are chosen,
whose errors are inside the range, that produce the direction for the overall minimum
fuel consumption.

3 Transfers with Errors in the Thrust Vector: Algebraic Analysis

We start our algebraic analysis by planar (α 6= 0) and (β = 0) transfer maneuvers. We
also choose F and m constants. Under these hypotheses, Equations (9) – (14) become:

Ft = mv̇t(t) = F cos(α(t)) − mvr(t)ḟ(t), (25)

Fr = mv̇r(t) = F sin(α(t)) + mvt(t)ḟ(t) − µm(t)

r2(t)
, (26)

ḟ(t) =
vt(t)

r(t)
, (27)
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ṙ(t) = vr(t), (28)

with, Ft and Fr the transverse and radial components of the thrust vector, respectively;
v̇t(t), v̇r(t) the transverse and radial components of the accelerations, respectively; vt(t),

vr(t) the transverse and radial components of the velocities, respectively; ḟ(t) the angular
velocity; r(t) the vector position between satellite and central body.

Our algebraic approach for the semi-major axis deviations is done through the rate
of change of the satellite mechanical energy, which is equal the power applied by forces
components in the transverse and radial directions. Their energy rate of change are:

d[Ec(t)]r
dt

= mvr(t)v̇r(t), (29)

d[Ec(t)]t
dt

= mvt(t)v̇t(t), (30)

dEp(t)

dt
=

µm(t)vr(t)

r2(t)
. (31)

Adding these equations we obtain the rate of change of the satellite mechanical energy,
EM without “pitch” error,

dEM (t)

dt
= F cosα(t)vt(t) + F sinα(t)vr(t) (32)

or, during the time interval ∆t,

∆EM (t1, t2) = EM (t2) − EM (t1)

=

t2
∫

t1

F cosα(t)vt(t) + sin α(t)vr(t) dt =
−µm

2a(t2)
+

µm

2a(t1)
,

(33)

with a(ti) the semi-major axis of the satellite orbit of the instant i.
Equation (33) for one transfer under “pitch” error, ∆α(t) is,

∆E′
M (t1, t2) = E′

M (t2) − E′
M (t1)

=

t2
∫

t1

F (cos[α(t) + ∆α(t)]v′t(t)) dt +

t2
∫

t1

F (sin[α(t) + ∆α(t)]v′r(t)) dt.
(34)

Taking the difference between Equations (33) and (34), we obtain,

∆2EM (t1, t2) ≡ ∆E′
M (t1, t2) − ∆EM (t1, t2)

=
−µm

2a′(t2)
+

µm

2a′(t1)
+

µm

2a(t2)
+

−µm

2a(t1)

=

t2
∫

t1

F (cos[α(t) + ∆α(t)]v′t(t) − cosα(t)vt(t)) dt

+

t2
∫

t1

F (sin[α(t) + ∆α(t)]v′r(t) − sin α(t)vr(t)) dt.

(35)
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If we use the fact that the semi-major axis of the initial and final orbits in the initial
instant are equal, and doing some algebraic manipulation, taking the expectation (E), of
the final equation, we have,

E [∆2EM (t1, t2)] = E
[

t2
∫

t1

F{cosα(t)[cos ∆α(t) − 1] − sin α(t) sin ∆α(t)}v′t(t) dt

]

+ E
[

t2
∫

t1

F{sinα(t)[cos ∆α(t) − 1] + cosα(t) sin ∆α(t)}v′r(t) dt

]

+ E
[

t2
∫

t1

F{cos∆α(t)}{v′t(t) − vt(t)}dt + F{sin∆α(t)}{v′r(t) − vr(t)}dt

]

.

(36)

Now, we consider that the stochastic processes are ergodic. So, the expectation opera-
tor (mean in the ensemble) commutes with the integral operator (in time). Besides this,
the function F and the trigonometric functions are deterministic in time. Therefore, we
evaluate the mean through the ensemble for equation (36),

E [∆2EM (t1, t2)] =

t2
∫

t1

F cosα(t)E [[cos ∆α(t) − 1]v′t(t)] dt

−
t2

∫

t1

F sinα(t)E [sin ∆α(t)v′t(t)] dt +

t2
∫

t1

F sin α(t)E [[cos ∆α(t) − 1]v′r(t)] dt

+

t2
∫

t1

F cosα(t)E [sin ∆α(t)v′r(t)] dt +

t2
∫

t1

F cosα(t)E [v′t(t) − vt(t)]dt

+

t2
∫

t1

F sin α(t)E [v′r(t) − vr(t)] dt.

(37)

Equation (37) is general for any probability distribution function to ∆α(t) and for
any kind of noise, that is, “white-noise”, “‘pink-noise”, or other. But, we must define if
the variables inside the integral in equation (37) are correlated or not, to evaluate the
expectation, as follows:

4 Case 1: ∆α(t) Not Correlated with Transverse and Radial Velocities
(White-Noise), Uniform Errors

In this case, we decompose the expectation operator as one product of the individual
expectations for the trigonometric functions of the ∆α(t) and the velocities components,
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because they are not correlated. For the ∆α(t) with uniform distribution inside the
interval [−∆αmax, αmax], we have,

E{[cos∆α(t1) − 1]v′t(t1)} = E{[cos∆α(t1) − 1]}E{v′t(t1)}

= vt(t1)E{[cos ∆α(t1) − 1]} = {E [cos∆α(t1)] − E(1)}vt(t1)

= vt(t1)
1

2∆αmax

[

∆αmax
∫

−∆αmax

d(∆α) cos ∆α − 1

]

=
1

2∆αmax

[sin ∆α
∣

∣

∆αmax

−∆αmax

− 1]vt(t1) = vt(t1)

[

sin ∆αmax

∆αmax

− 1

]

(38)

and,

E{[cos∆α(t1) − 1]v′r(t1)} = vr(t1)

[

sin ∆αmax

∆αmax

− 1

]

(39)

with,
E{[sin∆α(t1)]v

′
t(t1)} = E{[sin ∆α(t1)]E [v′t(t1)]}

= vt(t1)
1

2∆αmax

∆αmax
∫

−∆αmax

d(∆α) sin ∆α

= vt(t1)

[

1

2∆αmax

]

[cos∆α]∆αmax

−∆αmax

= 0

(40)

and,

E [sin ∆α(t1)]v
′
r(t1) = 0. (41)

We consider that the velocities effects inside the internal [−∆αmax, ∆αmax] in the
same time are, practically, balanced, because the deviations occur between values maxima
and minima inside them. That is, the velocities with errors and without them are very
close values. So,

E{v′t,r(t)} = vt,r(t1). (42)

With these results equation (37) becomes,

E{∆2EM (t1, t2)} =

t2
∫

t1

F cosα(t)vt(t)

{

sin ∆αmax

∆αmax

− 1

}

dt

+

t2
∫

t1

F sin α(t)vr(t)

{

sin ∆αmax

∆αmax

− 1

}

dt.

(43)

In other hand, we have,

E{∆2EM (t1, t2)} = E
{

µm

2a(t2)
− µm

2a′(t2)

}

=
µm

2

1

a(t2)
E
{

∆a(t2)

a′(t2)

}

(44)



96 A.D.C. JESUS, M.L.O. SOUZA AND A.F.B.A. PRADO

with,

∆a(t2) = a′(t2) − a(t2). (45)

If we expand equation (44) about the rate
∆a(t2)

a(t2)
, we get:

µm

2

[

1

a2(t2)
E{∆a(t2)} −

1

a3(t2)
E{∆2a(t2)}

+
1

a4(t2)
E{∆3a(t2)} −

1

a5(t2)
E{∆4a(t2)} + . . .

]

=
µm

2

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)}.

(46)

We can compare equations (46) and (43), getting:

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = K1

[

sin ∆αmax

∆αmax

− 1

]

= K1

[

− 1

3!
∆2αmax +

1

5!
∆4αmax − 1

7!
∆6αmax + . . .

]

= K1

∞
∑

n=1

(−1)n+1 1

(2n + 1)!
∆2nαmax

(47)

with,

K1 =
2

µ

(Q1 + Q2)

m
, (48)

where Q1 and Q2 are quadratures.
Equation (47) describes a sequence of even power terms for the maximum deviation

in “pitch” with respect the expected values of the semi-major axis. For n = 1, we have,

E{∆a(t2)} = − 1

3!
∆2αmaxK1a

2(t2) = − 1

3!
∆2αmaxK2, (49)

K2 = K1a
2(t2). (50)

This result shows that in first order the cause/effect relationship is parabolic. But
that the general curve would be a composition of all even power terms.

5 Case 2: ∆α(t) Not Correlated with Transverse and Radial Velocities
(White-Noise), Gaussian Errors

The procedures for the ∆α(t) with Gaussian distribution inside the interval [−∆αmax,

∆αmax] are the same for the uniform distribution. So,
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[E{cos∆α(t1)} − 1]vt(t1) = vt(t1)

{

∞
∫

−∞

cos[∆α] d(∆α)
e−

(∆α)
2σα√

2πσα

− 1

}

= vt(t1)
{

e
−σ

2
α

2 − 1
}

= vt(t1)

{

− σ2
α

2
+

σ4
α

8
− σ6

α

48
+ . . .

}

,

(51)

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = K1

∞
∑

n=1

(−1)n σ2n
α

2nn!
. (52)

The form of the curve in equation (52) is similar that in equation (47). That is, there

is a clear nonlinear relationship between cause (∆αmax =
√

3σα) and effect (∆a(t2)).
For n = 1, we have,

E{∆a(t2)} = −1

6
σ2

αK2. (53)

6 Case 3: ∆α(t) Correlated with Transverse and Radial Velocities
(Pink-Noise), Uniform Errors

In this case, we cannot decompose the expectation operator as a product of the individual
expectations for the trigonometric functions of the ∆α(t) and the velocities components,
because now they are correlated. The procedures are the same done until this point,
except that we must evaluate the expectation of the products of the different variables,
without decomposing them. Besides this, we consider the ∆α(t) random-bias deviations,
that is, ∆α(t) = constant = ∆α(t1) = ∆α. After many mathematical manipulations we
found the following equation, for both cases, uniform and Gaussian distribution,

Ir,t =

t1
∫

t2

E{(cos∆α)v̇′r,t(t)ḟ
′(t)} dt. (54)

We know that the integral of the odd functions for symmetrical distributions is null.
But equation (54) has an even product of the functions. The odd functions inside the
product are not known, but we can modeled its product as one even function, for exam-
ple, cos∆α.

Other important approach in this way is to consider for equation (26) that the ex-
pectation of the product is equal the product of the expectations of the functions, so
that,

E
{

cos(∆α)

r
′2(t)

}

= E
{

cos(∆α)
1

r
′2(t)

}

∼= E{cos(∆α)}E
{

1

r
′2(t)

}

=
E{cos(∆α)}

r2(t)
. (55)

The final forms are:

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = λ1 − λ2∆

2αmax + λ3∆
4αmax − . . . (56)
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for the uniform case and,

∞
∑

n=1

(−1)n+1 1

an+1(t2)
E{∆na(t2)} = λ4 − λ5σ

2
α + λ6σ

4
α − λ7σ

6
α + . . . (57)

for the Gaussian case, where the coefficients are

λ1 = Q8[Q5 + Q6 − vt(t1)] + Q12[Q10 + Q3 − vr(t1)], (58)

λ2 =

{

[2Q3Q12 − Q8Q4 + Q8Q5]

[

1

2

1

2!
+

1

2

1

3!

]

+ [Q10Q12 + Q8Q6 + Q8Q5]
1

3!

}

, (59)

λ3 =

{

[−Q8Q4+Q8Q5]

[

1

2

1

2!

1

3!
+

1

2

1

4!

]

+
1

3!
[Q6+Q10Q12]+

Q8Q5

7!
− Q12Q3

2

1

5!

}

, (60)

λ4 = Q8[Q6 − vt(t1)] + Q12[Q11 − vr(t1)], (61)

λ5 = Q12 +
Q8Q6

2
− Q8Q4 + Q12Q11,1, (62)

λ6 = Q12 +
Q8Q6

8
− Q8Q4 + Q12Q11,2, (63)

λ7 =
2

3
Q12 +

Q8Q6

48
− 2

3
Q8Q4 + Q12Q11,3. (64)

The Qij functions are quadratures. The first order for both cases are:

E{∆a(t2)} = λ1a
2(t2) − λ2a

2(t2)∆
2αmax (65)

for the uniform case and,

E{∆a(t2)} = λ4a
2(t2) − λ5a

2(t2)σ
2
α, (66)

for the Gaussian case.
These results show once more the nonlinear relationship between cause and effect.

The terms λ1a
2(t2) and λ4a

2(t2) are constants and do not change the general form of
the curves. We can compare both results of the deviations (uniform and Gaussian) by
relating,

∆αmax =
√

3σα. (67)

If we replace this equation inside equation (47), we conclude that:

(a) for the first order the results are the same, for the same σα;

(b) for other orders, the Gaussian semi-major axis deviations are
(2n + 1)!

6nn!
greater

than the uniform deviations, for the same σα.

7 Transfers with Errors in the Thrust Vector: Numerical Analysis

The numerical results confirm the algebraic results obtained. We simulated (Monte-
Carlo) 1000 ensembles of the transfer trajectories for both kind of deviations (uniform-U,
Gaussian-G), for both maneuvers (“theoretical”-T, “practical”-P), for random bias (S)
and white noise (O) deviations. Figures 7.1 and 7.2 show E [a(t2)] for cases TUS, TUO,
TGS, TGO, and PUS, PUO, PGS, PGO, respectively.
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Figure 7.1. Mean semi-major axis × DES2, Theoretical Orbits.

Figure 7.2. Mean semi-major axis × DES2, Practical Orbits.

In these figures DES2 =
√

3σ∆α, where σ∆α is the pitch angle standard deviation
for zero mean. We can observe clearly the nonlinear shapes of the curves like parabolas.
The numerical results for the relation between uniform and Gaussian deviations confirms
equation (67). Figures 7.3, 7.4, 7.5 and 7.6 show that the Gaussian deviations (∆G) are
more than the uniform deviations (∆U).
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Figure 7.3. ∆G × ∆U : Theoretical and Practical Cases, Systematic Errors.

Figure 7.4. ∆G × ∆U : Theoretical and Practical Cases, Operational Errors.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 3(1) (2003) 87–103 101

Figure 7.5. ∆G × ∆U : Theoretical Case, Systematic and Operational Errors.

Figure 7.6. ∆G × ∆U : Practical Case, Systematic and Operational Errors.

The mean linear coefficient between them is 2.6 in all cases: TUS, TUO, TGS, TGO
and PUS, PUO, PGS, PGO. In theses graphics we introduced the numerical results of the
out-plane angle deviations, that is, “yaw” angle deviations, DES3. The linear coefficients
for these angle deviation are: k2, k4, k6 and k8, while for the “pitch” angle deviation,
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k1, k3, k5 and k7. The algebraic results in equation (67) anticipated the value 3 (≈ 2.6
for numerical results). This shows consistency of our results.

8 Conclusions

In the algebraic developments, we obtained expression for E{∆a(t2)} as series of even
powers of σ∆α dominated by the (σ∆α)2 term, to explain the near parabolic relations and
others found, independent of the: 1) transfer orbit (“theoretical” or “practical”); 2) en-
semble distribution (uniform or Gaussian); 3) time correlation/dependence (random-bias
or white-noise). These results suggest and partially characterizes the progressive deforma-
tion of the trajectory distribution along the propulsive arc, turning 3-sigma ellipsoids into
“banana” shaped volumes curved to the center of attraction (we call them “bananoids”)
due to the loss of optimality of the actual (with errors) trajectories with respect to the
nominal (no errors) trajectory. A similar deformation but due to: a) the mean drag
was studied by Carlton-Wippern [15]; b) initial condition Gaussian errors was shown
by Junkins [14]. As his plots also suggest, such deformations can not be anticipated by
covariance analysis ([9, 10, 12]) on linearized models with zero mean errors which propa-
gate ellipsoids into ellipsoids always centered in the nominal (no errors) trajectory. Those
results also characterize how close/far are Monte-Carlo analysis and covariance analysis
for those examples. Other details about our numerical results can be found in Jesus [23].
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ótimas de satélites artificiais. Master Dissertation. Instituto Nacional de Pesquisas Espa-
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