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Abstract: We investigate the Lyapunov stability of the stationary solutions of
the differential equations of restricted six-body problem with the gravitational
centre. The gravitational field is created by bodies P0, P1, P2, P3 and P4 with
masses m0, m1, m2, m3 and m4, respectively. In this gravitational field the
movement of a body P with zero mass (m = 0) is investigated. The bodies
P1, P2, P3 and P4 form a rhombus, rotating uniformly around the centre
of gravity P0. In the article we have formulated necessary and sufficient
conditions of Lyapunov stability and instability of equilibrium point of this
model. All necessary analytical calculations are executed in the system of
symbolical calculations (SSC) “Mathematica”.
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1 Introduction

It is known, that the restricted Newtonian many-body problem is very important for a
wide class of applications, from theoretical physics to celestial mechanics and astrody-
namics [1, 6]. It is well known [4, 5], that the differential equations of this problem are
in general not integrable, therefore Poincaré considered the first problem should be the
search for the exact particular solutions and the research of their stability [1]. The latter
problem is the most difficult in the qualitative theory of the differential equations and can
be solved within the framework of the Kolmogorov-Arnold-Mozer (���) theory [12, 13].
With occurrence of the systems of symbolic calculations, for example, Mathematica [10],
possibilities of performance of symbolic calculations have essentially increased. Such cal-
culations are necessary for correct application of the well known Arnold-Mozer theorem
[13, 15]. Let’s consider the following restricted 6-body problem in Grebenikov-Elmabsout
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Figure 1.1

model [3, 7]. In the non-inertial Euclidean space P0xyz there are six bodies P0, P1, P2,
P3, P4 and P with masses m0, m1, m2, m3, m4 and m. It is shown, that in this model
the bodies P1, P2, P3 and P4 move in one plane and form a rhombus, rotating uniformly
around a body P0 [2]. In this gravitational newtonian field, produced by mutual grav-
itation of five bodies, we investigate the motion of a body P with zero mass m = 0
(Figure 1.1).

The purpose of our work is the definition of the stationary solutions (states of equilib-
rium) of differential equations, describing this model, and the research of their Lyapunov
stability by methods of computer algebra. It has been proved, that exact rhombus-like so-
lutions do exist in this physical model, if the following conditions are executed [8]: a) the
masses, located in the opposite vertices of a rhombus, are equal among themselves:

m1 = m3; m2 = m4; (1)

b) relations of diagonals ρ1, ρ2, and masses m1, m2 of a rhombus are correlated as:

λ =
ρ3

[

8 − (1 + ρ2)3/2
]

8ρ3 − (1 + ρ2)3/2
, (2)

where
ρ1

ρ2

= ρ,
m1

m2

= λ.

2 Definition of Equilibrium State

Without loss of generality, it is possible to assume, that the gravitational rhombus rotates
always in a plane P0XY around an axis Z with a constant angular velocity ω.

It is obvious, that the sizes of a rhombus can be arbitrary, therefore we shall define
coordinates of a rhombus as follows: P1(α, 0), P2(0, 1), P3(−α, 0), P4(0,−1).

In [9] it is shown that

m2 =
4m0(1 + α2)3/2(α3 − 1) +m1(8α

3 − (1 + α2)3/2)

α3(8 − (1 + α2)3/2)
, (3)
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therefore from conditions α > 0, m0 > 0, m1 > 0, m2 > 0 we receive admissible values

of the parameter α: 1/
√

3 < α <
√

3. For α ≥ 1 the masses can take any values and in

the range 1/
√

3 < α < 1 the relation

m1 >
4(1 + α2)3/2(1 − α3)

8α3 − (1 + α2)3/2
m0 (4)

should be satisfied. The angular velocity of rotation of the rhombus P1P2P3P4 is defined
by the formula [2]

ω =

√

4fm0(1 + α2)3/2(8α3 − (1 + α2)3/2) + fm1(64α3 − (1 + α2)3/2)

4α3(1 + α2)3/2(8 − (1 + α2)3/2)
, (5)

where f is a gravitation constant.
Further for convenience we shall consider, that f = 1 and m0 = 0.
The differential equations of motion of passive gravitating point P (m = 0) in uni-

formly rotating Cartesian frame P0XY Z are [4]:

d2X

dt2
= ω2X + 2ω

dY

dt
− X

r3
+
∂R

∂X
,

d2Y

dt2
= ω2Y 2ω

dX

r3
− Y

r3
+
∂R

∂Y
,

d2Z

dt2
= −Z

r3
+
∂R

∂Z
,

(6)

where

R =
4

∑

j=1

mj

(

1

∆j
− XXj + Y Yj + ZZj

r3j

)

,

∆2

j = (X −Xj)
2 + (Y − Yj)

2 + (Z − Zj)
2,

r2 = X2 + Y 2 + Z2, r2j = X2

j + Y 2

j + Z2

j ,

(7)

X , Y , Z are the coordinates of the zero mass (point P ), Xj , Yj , Zj are the given
coordinates of points Pj , ω is the angular velocity of rotation of the rhombus P1P2P3P4

around P0. System (6) is not integrable in a general form, therefore we shall search
for partial solutions, such as “equilibrium state”. For this purpose we shall introduce a

6-dimensional phase space x = X , y = Y , z = Z, u =
dX

dt
, v =

dY

dt
, w =

dZ

dt
. Then

the system (6) becomes

dx

dt
= u,

dy

dt
= v,

dz

dt
= w,

du

dt
= ω2x+ 2ωv − x

r3
+
∂R

∂x
,

dv

dt
= ω2y − 2ωu− y

r3
+
∂R

∂y
,

dw

dt
= − z

r3
+
∂R

∂z
.

(8)
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Finding of equilibrium state of system (8) is reduced to the solution of the system of
equations

u = 0, v = 0, , w = 0,

ω2x− x

(x2 + y2 + z2)3/2
−

(

m1(x− α)

((x − α)2 + y2 + z2)3/2
+

m2x

(x2 + (y − 1)2 + z2)3/2

+
m3(x+ α)

((x+ α)2 + y2 + z2)3/2
+

m4x

(x2 + (y + 1)2 + z2)3/2

)

= 0,

ω2y − y

(x2 + y2 + z2)3/2
−

(

m1y

((x − α)2 + y2 + z2)3/2
+

m2(y − 1)

(x2 + (y − 1)2 + z2)3/2

+
m3y

((x+ α)2 + y2 + z2)3/2
+

m4(y + 1)

(x2 + (y + 1)2 + z2)3/2

)

= 0,

z

(x2 + y2 + z2)3/2
−

(

m1z

((x− α)2 + y2 + z2)3/2
+

m2z

(x2 + (y − 1)2 + z2)3/2

+
m3z

((x+ α)2 + y2 + z2)3/2
+

m4z

(x2 + (y + 1)2 + z2)3/2

)

= 0.

(9)

From the last equation it follows that z = 0, that is all stationary solutions lay in the
plane P0xy, and the solution of the system (9) is reduced to the solution of the following
system

ω2x− x

(x2 + y2 + z2)3/2
−

(

m1(x − α)

((x− α)2 + y2 + z2)3/2
+

m2x

(x2 + (y − 1)2 + z2)3/2

+
m3(x+ α)

((x+ α)2 + y2 + z2)3/2
+

m4x

(x2 + (y + 1)2 + z2)3/2

)

= 0,

ω2y − y

(x2 + y2 + z2)3/2
−

(

m1y

((x− α)2 + y2 + z2)3/2
+

m2(y − 1)

(x2 + (y − 1)2 + z2)3/2

+
m3y

((x+ α)2 + y2 + z2)3/2
+

m4(y + 1)

(x2 + (y + 1)2 + z2)3/2

)

= 0.

(10)

The following theorem takes place.

Theorem 2.1 Necessary and sufficient condition of existence of the stationary solu-
tions of the restricted six-body problem is decidability of system (10) with respect to the
unknown x and y.

The equations (10) are nonlinear, therefore the question on their decidability can be
studied by graphic and iteration techniques. In terms of the “Mathematica” system a
graphic solution of system (10) is constructed. For example, for m1 = 0.5 and α = 0.95
the two curves are shown on Figure 2.1.

On this figure the bold points denote points P0, P1, P2, P3, P4. Cross-points of the
curves, laying on axes of coordinates, are denoted by Ni, other cross-points – by Si. The
points Ni and Si are the equilibrium solutions of system (10). The calculations show,
that the quantity of equilibrium states essentially depends both on the gravitational
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Figure 2.1

parameter m1 and on the size of the diagonal α. Using Newton iteration method, we
determine the coordinates of the equilibrium state for various values of the parameters
m1 and α.

3 Research of the Linear Stability of Equilibrium State

To investigate the linear stability of the equilibrium solutions of system of the differential
equations (8) it is necessary to construct a linearized system of the differential equations
in the neighborhood of points Ni and Si, (Figure 2.1) with coordinates x∗i , y

∗

i , z
∗

i = 0,
and to study properties of eigenvalues of a matrix of this system. Denoting by x the phase
vector x = (u− u∗i , v− v∗i , w−w∗

i , x− x∗i , y− y∗i , z− z∗i ) and executing the procedure of
linearization of the right parts of system (8) in the neighborhood of a phase point x = 0
in SSC “Mathematica”, we shall get the system of linear differential equations

dx

dt
= Ax. (11)

Six-dimensional matrix A is

A =















[0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a b 0 0 2ω 0
b c 0 −2ω 0 0
0 0 d 0 0 0















. (12)

The elements a, b, c, d of matrix A depend on the values x∗i , y
∗

i , m1, α, whose expressions
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Table 3.1. Eigenvalues of matrix A.

are quite cumbersome, therefore we shall present the expressions for a and d:

a = ω2 +
3x∗2i

(x∗2i + y∗2i )5/2
− 1

(x∗2i + y∗2i )3/2
+

3x∗2i m1

((x∗i − α)2 + y∗2i )5/2

− 6x∗iαm1

((x∗i − α)2 + y∗2i )5/2
+

3αm1

((x∗i − α)2 + y∗2i )5/2
− m1

((x∗i − α)2 + y∗2i )3/2

+
3x∗2i m2

(x∗2i + (y∗i − 1)2)5/2
− m2

(x∗2i + (y∗i − 1)2)5/2
+

3x∗2i m3

((x∗i + α)2 + y∗2i )5/2

(13)

− m3

((x∗i + α)2 + y∗2i )3/2
+

6x∗2i αm3

((x∗i + α)2 + y∗2i )5/2
+

3α2m3

((x∗i + α)2 + y∗2i )5/2

+
3x∗2i m4

(x∗2i + (y∗i + 1)2)5/2
− m4

(x∗2i + (y∗i + 1)2)3/2

d = − 1

(x∗2i + y∗2i )3/2
− m1

((x∗i − α)2 + y∗2i )3/2
− m2

(x∗2i + (y∗i − 1)2)3/2
(14)

− m3

((x∗i + α)2 + y∗2i )3/2
− m4

(x∗2i + (y∗i + 1)2)3/2
.

From the formula (14) it is clear, that d < 0. The eigenvalues of a matrix A are
defined from the characteristic equation

det(A− λE) = (λ2 − d)(λ4 + (4ω2 − a− c)λ2 + ac− b2) = 0. (15)

First multiplier of the equation (15) gives two pure imaginary eigenvalues, for example,
λ5 and λ6. Using the instruction “Eigenvalues” of SSC “Mathematica” for calculation of
eigenvalues, we have received other eigenvalues λ1, λ2, λ3, λ4 of matrix A at points N1

and S1 for various values of m1 and α. Some of them are given in Table 3.1.
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From Table 3.1 it is clear, that at point N1 for any values of the parameters m1 and
α the eigenvalues of matrix A are not pure imaginary. The similar result is received for
other points Ni.

At point S1 for small enough values of m1 and α, close to unit, the eigenvalues of
matrix A are pure imaginary, that is the equilibrium solutions S1 are stable in the first
approximation. By the iterative method we calculate an interval of stability for m1

0 < m1 < m∗∗

1
= 0.0250344906 . . . . (16)

The interval of stability for α depends on m1, for each values of m1 there is an interval of
variation of α : (α∗, α∗∗). The calculated values of α∗ and α∗∗ for different m1 are given
in the following table:

m1 α∗ α∗∗ m1 α∗ α∗∗

0.001 0.9998476686 1.0031639276 0.002 0.9996953824 1.0026710278

0.003 0.9995431685 1.0022385906 0.004 0.9993910147 1.0018413555

0.009 0.9986311638 1.0001378981 0.01 0.9984793776 0.9998343232

0.02 0.9969648966 0.9972354376 0.025 0.9962099616 0.9962207882

Table 3.2.

The calculations executed for other points Si, give the similar result. The carried
out analysis allows to formulate the statements, following from the classical Lyapunov
theorem on stability in the first approximation.

Theorem 3.1 The stationary solutions of the differential equations of the restricted
six-body problem, located on rotating axes of coordinates, are unstable for any values of
mass m1 and for any values of the relations of rhombus diagonals α.

Theorem 3.2 The stationary solutions of the differential equations of the restricted
six-body problem, not located on the axes of coordinates, are stable in the first approxi-
mation for any value of parameter m1 from the interval (15) and any value of parameter
α from the interval α∗ < α < α∗∗.

4 Research of Lyapunov Stability

The restricted 6-body problem is typically Hamiltonian, and, hence, differential equa-
tions, describing dynamics of our model, can be written a canonical form. Hence it
follows, in particular, that the problem of stability of the stationary solutions S1, S2,
S3, S4 in the sense of Lyapunov [5] can be solved only in the framework of KAM-theory
[6, 15] on the basis of the well known Arnold-Mozer theorem [12, 13]. Now we formulate
this theorem [6].



112 N.I. ZEMTSOVA

Theorem 4.1 Let a Hamiltonian system

dq1
dt

=
∂K

∂p1

,
dp1

dt
= −∂K

∂q1
,

dq2
dt

=
∂K

∂p2

,
dp2

dt
= −∂K

∂q2

(17)

by given with the Hamiltonian

K(q1, q2, p1, p2) = K2(q1, q2, p1, p2) +K3(q1, q2, p1, p2) +K4(q1, q2, p1, p2) + . . . ,

and let the origin be a singular point, such as the equilibrium state of system (17).
Besides, let a canonical transformation

(q1, q2, p1, p2) → (ψ1, ψ2, T1, T2)

exist, which yields
K(q1, q2, p1, p2) ≡W (ψ1, ψ2, T1, T2),

where

W (ψ1, ψ2, T1, T2) = W2(T1, T2) +W4(T1, T2) +W5(ψ1, ψ2, T1, T2) + . . . ,

W2 = σ1T1 + σ2T2, W4 = c20T
2

1 + c11T1T2 + c02T
2

2 .
(18)

If:

(1) eigenvalues of a matrix of linearized system (17) are the imaginary numbers ±iσ1,
±iσ2;

(2) n1σ1 + n2σ2 6= 0 for |n1| + |n2| ≤ 4;
(3) c20σ

2

2 + c11σ1σ2 + c02σ
2

1 6= 0,

then the equilibrium
T1 = T2 = ψ1 = ψ2 = 0

of the Hamiltonian system

dψ1

dt
=
∂W

∂T1

,
dT1

dt
= −∂W

∂ψ1

,

dψ2

dt
=
∂W

∂T2

,
dT2

dt
= −∂W

∂ψ2

with the Hamiltonian (18) is Lyapunov stable.

Now we turn to a four-dimensional-phase space of Lagrangian coordinates and im-
pulses (x, y, px, py). We shall get the Hamiltonian system of the 4-th order, equivalent
to system (8):

dx

dt
=

∂h

∂px
,

dy

dt
=

∂h

∂py
,

dpx

dt
= −∂h

∂x
,

dpy

dt
= −∂h

∂y
,

(19)
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where the Hamiltonian h is expressed by the formula (see [9]):

h = ω(ypx − xpy) +
1

2
(p2

x + p2

y) − (x2 + y2)−1/2

−m1((x − α)2 + y2)−1/2 −m2((x
2 + (y − 1)2)−1/2

−m3((x + α)2 + y2)−1/2 −m4((x
2 + (y + 1)2)−1/2.

(20)

The elementary transformation makes any point Si with coordinates x∗, y∗ the be-
ginning of coordinates: X = x− x∗, Y = y− y∗, Px = px − px∗ , Py = py − py∗ . For the
Hamiltonian we get the expression:

H = ω((Y + y∗)(PX + px∗) − (X + x∗)(PY + py∗))

+
1

2
((PX + p∗)2 + (PY + py∗)2) − ((X + x∗)2 + (Y + y∗)2)−1/2

−m1((X + x∗ − α)2 + (Y + y∗)2)−1/2 −m2((X + x∗)2

+ (Y + y∗ − 1)2)−1/2 −m3((X + x∗ + α)2 + (Y + y∗)2)−1/2

−m4((X + x∗)2 + (Y + y∗ + 1)2)−1/2.

(21)

In the new variables the Hamiltonian differential equations of motion have the form

dX

dt
=

∂H

∂PX
,

dY

dt
=

∂H

∂PY
,

dPX

dt
= −∂H

∂X
,

dPY

dt
= −∂H

∂Y
.

(22)

The formulated Arnold-Mozer theorem is in applicable to system (22), as the Hamiltonian
(22) is not a positively definite function of the variable (X,Y, PX , PY ) [5]. It is necessary
to execute its further transformations. For this purpose it is necessary to construct
Birkhoff normalization. This normalization will be executed for a certain equilibrium
position. For example, we shall consider the point S1, stable in the first approximation,
with coordinates

x∗ = 0.37355, y∗ = 0.971439,

calculated for m1 = 0.001 and α = 0.99985.

We build a sequence of Hamiltonian transformations, necessary for fulfilment of con-
ditions of the Arnold-Mozer theorem.

4.1 Transformation 1

In a sufficiently small neighborhood of the point S1 the analytical Hamiltonian (21) is
presented in the form of a convergent power series:

H = H2(X,Y, PX , PY ) +H3(X,Y ) +H4(X,Y ) + . . . ,
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where Hk(k = 2, 3, . . . ) is a homogeneous form of k-th degree, in our case

H2 = 0.414231X2 − 0.915163Y 2 + 0.5(P 2

X + P 2

Y ) − 0.690873XY

+ ω(Y PX −XPY )),

H3 = − 0.317928X3 + 0.835341Y 3 − 1.049161X2Y + 1.316579XY 2,

H4 = − 0.19571X4 − 0.73835Y 4 + 1.52426X3Y + 1.65464X2Y 2

− 2.09451XY 3.

(23)

Expression (23) indicates, that the quadratic form H2(X,Y, PX , PY ) contains the term
ω(Y PX −XPY ), which is the first obstacle on the way of investigation of the Lyapunov
stability.

4.2 Transformation 2

Let’s execute the linear transformation

[X,Y, PX , PY ] = B[q1, q2, p1, p2], (24)

where symplectic matrix [10] B is defined so, that in the new transformed Hamiltonian

K(q1, q2, p1, p2) = K2(q1, q2, p1, p2) +K3(q1, q2, p1, p2) +K4(q1, q2, p1, p2) + . . .

the quadratic form has a normal Birkhoff form [6, 14]

K2 =
1

2
σ1(q

2

1
+ p2

1
) − 1

2
σ2(q

2

2
+ p2

2
),

where frequencies σ1, σ2: σ1 = |λ1| = |λ2|, σ2 = |λ3| = |λ4|, λ1, λ2, λ3, λ4 are the
eigenvalues of linearized system for system (8) at point S1.

Finding of elements of a matrix B is reduced to the solution of system of linear
algebraic equations of the 16-th order. For the examined point S1 σ1 = 0.994537,
σ2 = 0.102242, and the matrix B has the form

B =









0 0 1.98114 5.328999

−1.03191 0.38363 −0.35829 −1.29568

−0.93804 0.16108 0.35842 1.29614

0.356334 −0.13247 0.95557 5.29166









. (25)

The application of canonical transformation (24) with matrix (25) to Hamiltonian H
gives the following expressions for the forms K2, K3 and K4:

K2 = 0.49727(p2

1 + q21) − 0.05112(p2

2 + q22),

K3 = 0.700344p3

1 − 3.771015p2

1p2 − 4.896871p1p
2

2 + 0.452007p3

2

+ 5.846024p2

1
q1 + 32.621649p1p2q1 + 45.164737p2

2
q1 + 1.821347p1q

2

1

+ 4.013408p2q
2

1 − 0.917884q31 − 2.173359p2

1q2 − 12.127657p1p2q2
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− 16.790077p2

2
q2 − 1.354234p1q1q2 − 2.984107p2q1q2 + 1.023717q2

1
q2

+ 0.251729p1q
2

2
+ 0.554696p2q

2

2
− 0.380585q1q

2

2
+ 0.047163q3

2
,

K4 = − 6.249106p4

1 − 69.140864p3

1p2 − 285.506731p2

1p
2

2 − 521.541002p1p
3

2

− 355.623129p4

2 − 5.919479p3

1q1 − 40.652926p2

1p2q1 − 89.158571p1p
2

1q1

− 61.002839p3

2
q1 + 11.059209p2

1
q2
1

+ 62.773252p1p2q
2

1
+ 88.314296p2

2
q2
1

+ 3.396809p1q
3

1 + 8.059740p2q
3

1 − 0.837196q41 + 2.200668p3

1q2

+ 15.113422p2

1p2q2 + 33.146227p1p
2

2q2 + 22.678852p3

2q2 − 8.222901p2

1q1q2

− 46.674065p1p2q1q2 − 65.664708p2

2
q1q2 − 3.788466p1q

2

1
q2 − 8.98904p2q

2

1
q2

+ 1.244968q3
1
q2 + 1.528502p2

1
q2
2

+ 8.675942p1p2q
2

2
+ 12.205991p2

2
q2
2

+ 1.408427p1q1q
2

2 + 3.341829p2q1q
2

2 − 0.694257q21q
2

2 − 0.174536p1q
3

2

− 0.414127p2q
3

2
+ 0.172068q1q

3

2
− 0.015992q4

2
.

4.3 Transformation 3

Let’s pass from the canonical variables (q1, q2, p1, p2) to the new canonical variables
according to the Birkhoff formulas [14]

q1 =
√

2τ1 sin θ1, q2 =
√

2τ2 sin θ2,

p1 =
√

2τ1 cos θ1, p2 =
√

2τ2 cos θ2.
(26)

Transformation (26) eliminates expressions with the coordinates θ1, θ2 from the qua-
dratic part of the new Hamiltonian F and leaves expressions, dependent only on the new
variables τ1, τ2. If we present new Hamiltonian F in the form

F (θ1, θ2, τ1, τ2) = F2(τ1, τ2) + F3(θ1, θ2, τ1, τ2) + F4(θ1, θ2, τ1, τ2) + . . . ,

then after necessary symbolical transformations we shall receive

F2 = σ1τ1 − σ2τ2 = 0.994537τ1 − 0.102242τ2,

F3 = (0.197768 cosθ1 − 1.7831 cos3θ1 + 2.18664 sinθ1 + 4.78281 sin3θ1)τ
3/2

+ (6.46201 cos(2θ1 − θ2) + 0.342795 cosθ2 − 4.54683 cos(2θ1 + θ2)

+ 25.3277 sin(2θ1 − θ2) − 1.62584 sinθ2 + 20.806 sin(2θ1 + θ2))τ1
√
τ2

− (6.5692 cosθ1 + 5.7507 cos(θ1 − 2θ2) + 1.53053 cos(θ1 + 2θ2)

− 63.3344 sinθ1 − 40.781 sin(θ1 − 2θ2) − 23.6299 sin(θ1 + 2θ2))
√
τ1τ2

+ (1.35108 cosθ2 − 0.072612 cos2θ2 − 11.7728 sinθ2 − 11.9062 sin3θ2)τ
3/2

1
,

F4 = (−5.09985− 10.8238 cos2θ1 − 9.07276 cos4θ1 − 2.52267 sin2θ1

− 4.65814 sin4θ1)τ
2

1 − (74.5687 cos(θ1 − θ2) + 70.691 cos(3θ1 − θ2)
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+ 70.081 cos(θ1 + θ2) + 61.223 cos(3θ1 + θ2) + 9.64362 sin(θ1 − θ2)

+ 27.3509 sin(3θ1 − θ2) + 6.8308 sin(θ1 + θ2) + 21.362 sin(3θ1 + θ2))τ
3/2

√
τ2

− (196.358τ1τ2 + 371.598 cos2θ1 + 211.36 cos(2θ1 − 2θ2) + 198.027 cos2θ2

+ 164.69 cos(2θ1 + 2θ2) + 87.7501 sin2θ1 + 57.3347 sin(2θ1 − 2θ2)

− 6.1244 sin2θ2 + 33.2323(2θ1 + 2θ2))τ1τ2 − (298.027 cos(θ1 − 3θ2)

+ 810.55 cos(θ1 − θ2) + 745.399 cos(θ1 + θ2) + 232.19 cos(θ1 + 3θ2)

+ 48.8327 sin(θ1 − 3θ2) + 106.145 sin(θ1 − θ2) + 73.522 sin(θ1 + θ2)

+ 15.512 sin(θ1 + 3θ2))
√
τ1τ

3/2

2
− (527.356 + 711.214 cos2θ2

+ 183.923 cos4θ2 − 22.2647 sin2θ2 − 11.5465 sin4θ2)τ
2

2
.

4.4 Transformation 4

Let’s construct the final canonical transformation

(θ1, θ2, τ1, τ2) → (ψ1, ψ2, T1, T2) (27)

which sets to zero the form of order of 3/2F3(θ1, θ2, τ1, τ2), and excludes phase angles
from the second-order form F4(θ1, θ2, τ1, τ2). Besides, the quadratic form F2(τ1, τ2) does
not change. So, the transformed Hamiltonian should be

W (ψ1, ψ2, T1, T2) = W2(T1, T2) +W4(T1, T2) +W5(ψ1, ψ2, T1, T2) + . . . . (28)

We shall search the given transformation as

θ1 = ψ1 + V13(ψ1, ψ2, T1, T2) + V14(ψ1, ψ2, T1, T2),

θ2 = ψ2 + V23(ψ1, ψ2, T1, T2) + V24(ψ1, ψ2, T1, T2),

τ1 = T1 + U13(ψ1, ψ2, T1, T2) + U14(ψ1, ψ2, T1, T2),

τ2 = T2 + U23(ψ1, ψ2, T1, T2) + U24(ψ1, ψ2, T1, T2),

(29)

where V13, V14, V23, V24, U13, U14, U23, U24 are determined from some linear partial
differential equations. For example, the equation for the unknown function U13 has the
form

∂U13

∂ψ1

σ1 +
∂U13

∂ψ2

σ2 = A13(ψ1, ψ2, T1, T2),

whereA13 is expressed by partial derivative of forms F3(θ1, θ2, τ1, τ2) and F4(θ1, θ2, τ1, τ2),
in which the replacement (27) is executed. The solution, which guarantees the form (28)
for the new HamiltonianW (ψ1, ψ2, T1, T2), is to be found by the method of characteristics
[10] and has the form

U13 = (0.198854 cosψ1 + 1.7929 cos3ψ1 − 2.19865 sinψ1 − 4.809 sin3ψ1)T
3/2

1

+ (6.179 cos(2ψ1 − ψ2) + 4.819 cos(2ψ1 + ψ2) − 24.222 sin(2ψ1 − ψ2)

− 22.054 sin(2ψ1 + ψ2))T1

√
T 2 + (6.605 cosψ1 + 4.79616 cos(ψ1 − 2ψ2)

− 63.6823 sinψ1 + 1.937 cos(ψ1 + 2ψ2) − 34.012 sin(ψ1 − 2ψ2)

− 29.909 sin(ψ1 + 2ψ2))
√
T 1T2.
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Carrying out transformation (29) with the found functions V13, V14, V23, V24, U13, U14,
U23, U24, we receive for transformed Hamiltonian the final form (28), where

W2 = σ1T1 − σ2T2 = 0.99453T1 − 0.102242T2,

W4 = −197.657T 2

1
− 5539.05T1T2 + 2591.95T 2

2
.

As a result of the executed transformations it is possible to assert the following.

1. The intervals for m1: (0,m∗∗

1
) and α: (α∗, α∗∗) are found. At each point of these

intervals the linear system is stable.
2. The resonant curves are determined

{

f1,−2(m1, α) = σ1(m1, α) − 2σ2(m1, α),

f1,−2(m1, α) = 0,
{

f1,−3(m1, α) = σ1(m1, α) − 3σ2(m1, α),

f1,−3(m1, α) = 0,

(30)

which should be excluded from the set of intervals of stability.
3. Third condition of the theorem is also executed, thus for the point S1 the value

of function W4(σ1, σ2) is equal to 2018.72.

The executed calculations for points S2, S3, S4 give similar results.
Thus, the following statement is valid.

Theorem 4.1 The equilibrium points, not lying on coordinate axes, are Lyapunov
stable for any values of parameters m1 from interval of stability 0 < m1 < m∗∗

1 =
0.0250344906 . . . and any values of α from interval α∗ < α < α∗∗, except for the points,
belonging to two resonant curves (30).
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